Advertisement

A Critical Review of Unpowered Performance Metrics of Impedance-Type Haptic Devices

  • İbrahimcan Görgülü
  • Gökhan Kiper
  • Mehmet Ismet Can Dede
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 59)

Abstract

A kinesthetic haptic device’s performance relies on unpowered, powered and controlled system characteristics. In this paper, a critical review is carried out for the well-known metrics for kinematics, stiffness and dynamic aspects of robots that can be applied in evaluating the unpowered system performance of kinesthetic haptic devices. The physical meanings of these metrics are discussed and the important factors that affect the unpowered system performance of a kinesthetic haptic device are revealed.

Keywords

Haptics Performance metrics Stiffness Kinematics Dynamics 

Notes

Acknowledgements

This work is supported in part by The Scientific and Technological Research Council of Turkey via grant number 117M405.

References

  1. 1.
    Angeles, J.: Fundamentals of Robotic Mechanical Systems, vol. 2. Springer, New York (2002)zbMATHGoogle Scholar
  2. 2.
    Asada, H.: A geometrical representation of manipulator dynamics and its application to arm design. J. Dyn. Syst. Meas. Contr. 105(3), 131–142 (1983)CrossRefGoogle Scholar
  3. 3.
    Carbone, G., Ceccarelli, M.: Comparison of indices for stiffness performance evaluation. Front. Mech. Eng. China 5(3), 270–278 (2010)CrossRefGoogle Scholar
  4. 4.
    Ceccarelli, M., Carbone, G., Ottaviano, E.: Multi criteria optimum design of manipulators. Bull. Polish Acad. Sci. Tech. Sci. 53, 9–18 (2005)zbMATHGoogle Scholar
  5. 5.
    Chen, S.F., Kao, I.: Conservative congruence transformation for joint and cartesian stiffness matrices of robotic hands and fingers. Int. J. Robot. Res. 19(9), 835–847 (2000)CrossRefGoogle Scholar
  6. 6.
    Chiu, S.L.: Kinematic characterization of manipulators: an approach to defining optimality. In: Proceedings of the 1988 IEEE International Conference on Robotics and Automation, pp. 828–833. IEEE (1988)Google Scholar
  7. 7.
    Gosselin, C.: Stiffness mapping for parallel manipulators. IEEE Trans. Robot. Autom. 6(3), 377–382 (1990)CrossRefGoogle Scholar
  8. 8.
    Gosselin, C., Angeles, J.: A global performance index for the kinematic optimization of robotic manipulators. J. Mech. Des. 113(3), 220–226 (1991)CrossRefGoogle Scholar
  9. 9.
    Graettinger, T.J., Krogh, B.H.: The acceleration radius: a global performance measure for robotic manipulators. IEEE J. Robot. Autom. 4(1), 60–69 (1988)CrossRefGoogle Scholar
  10. 10.
    Khan, W.A., Angeles, J.: The kinetostatic optimization of robotic manipulators: the inverse and the direct problems. J. Mech. Des. 128(1), 168–178 (2006)CrossRefGoogle Scholar
  11. 11.
    Kim, J.O., Khosla, K.: Dexterity measures for design and control of manipulators. In: IEEE/RSJ International Workshop on Intelligent Robots and Systems’ 91. Intelligence for Mechanical Systems, Proceedings IROS 1991, pp. 758–763. IEEE (1991)Google Scholar
  12. 12.
    Paul, R.P., Stevenson, C.N.: Kinematics of robot wrists. Int. J. Robot. Res. 2(1), 31–38 (1983)CrossRefGoogle Scholar
  13. 13.
    Pham, H.H., Chen, I.M.: Optimal synthesis for workspace and manipulability of parallel flexure mechanism. In: 11th World Congress in Mechanism and Machine Science, Tianjin, China, pp. 18–21, August 2003Google Scholar
  14. 14.
    Quennouelle, C., Gosselin, C.: Stiffness matrix of compliant parallel mehanisms. In: ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 151–161. American Society of Mechanical Engineers (2008)Google Scholar
  15. 15.
    Salisbury, J.K., Craig, J.J.: Articulated hands: force control and kinematic issues. Int. J. Robot. Res. 1(1), 4–17 (1982)CrossRefGoogle Scholar
  16. 16.
    Samur, E.: Performance Metrics for Haptic Interfaces. Springer, London (2012)CrossRefGoogle Scholar
  17. 17.
    Yoshikawa, T.: Dynamic manipulability of robot manipulators. Trans. Soc. Instrum. Control Eng. 21(9), 970–975 (1985)CrossRefGoogle Scholar
  18. 18.
    Yoshikawa, T.: Manipulability of robotic mechanisms. Int. J. Robot. Res. 4(2), 3–9 (1985)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • İbrahimcan Görgülü
    • 1
  • Gökhan Kiper
    • 1
  • Mehmet Ismet Can Dede
    • 1
  1. 1.Izmir Institute of TechnologyİzmirTurkey

Personalised recommendations