Skip to main content

Solving Partial Differential Equations with Bernstein Neural Networks

  • Conference paper
  • First Online:
Book cover Advances in Computational Intelligence Systems (UKCI 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 840))

Included in the following conference series:

Abstract

In this paper, a neural network-based procedure is suggested to produce estimated solutions (controllers) for the second-order nonlinear partial differential equations (PDEs). This concept is laid down so as to produce a prevalent approximation on the basis of the learning method which is at par with quasi-Newton rule. The proposed neural network contains the regularizing parameters (weights and biases), that can be utilized for making the error function least. Besides, an advanced technique is presented for resolving PDEs based on the usage of Bernstein polynomial. Numerical experiments alongside comparisons show the fantastic capacity of the proposed techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jin, L.: Homotopy perturbation method for solving partial differential equations with variable coefficients. Int. J. Contemp. Math. Sci. 3, 1395–1407 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Ayaz, F.: On the two-dimensional differential transform method. Appl. Math. Comput. 143, 361–374 (2003)

    MathSciNet  MATH  Google Scholar 

  3. Vitanov, N.K., Dimitrova, Z.I., Kantz, H.: Modified method of simplest equation and its application to nonlinear PDEs. Appl. Math. Comput. 216, 2587–2595 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Wazwaz, A.M.: The variational iteration method: A reliable analytic tool for solving linear and nonlinear wave equations. Comput. Math Appl. 54, 926–932 (2007)

    Article  MathSciNet  Google Scholar 

  5. Kharab, A., Kharab, R.: Spreadsheet solution of hyperbolic partial differential equation. IEEE Trans. Educ. 40, 103–110 (1997)

    Article  Google Scholar 

  6. Kincaid, D., Cheney, W.: Numerical Analysis, Mathematics of Scientific computing. Brooks/Cole, Pacific Grove (1991)

    MATH  Google Scholar 

  7. Evje, S., Karlsen, K.H.: Monotone difference approximations of BV solutions to degenerate convection-diffusion equations. SIAM. J. Numer. Anal. 37, 1838–1860 (2000)

    Article  MathSciNet  Google Scholar 

  8. Bulbul, B., Sezer, M.: Taylor polynomial solution of hyperbolic type partial differential equations with constant coefficients. Int. J. Comput. Math. 88, 533–544 (2011)

    Article  MathSciNet  Google Scholar 

  9. Guo, S., Mei, L., Zhou, Y.: The compound G G′ - expansion method and double non-traveling wave solutions of (2 + 1)-dimensional nonlinear partial differential equations. Comput. Math Appl. 69, 804–816 (2015)

    Article  MathSciNet  Google Scholar 

  10. Falletta, S., Monegato, G., Scuderi, L.: A space-time BIE method for nonhomogeneous exterior wave equation problems. The Dirichlet case. IMA J. Numer. Anal. 32, 202–226 (2012)

    Article  MathSciNet  Google Scholar 

  11. Martinez, P.: A new method to obtain decay rate estimates for dissipative systems. ESAIM Control Optim. Calc. Var. 4, 419–444 (1999)

    Article  MathSciNet  Google Scholar 

  12. Gibson, J.S.: An analysis of optimal modal regulation: convergence and stability. SIAM J. Control Optim. 19, 686–707 (1981)

    Article  MathSciNet  Google Scholar 

  13. Kroner, A., Kunisch, K.: A minimum effort optimal control problem for the wave equation. Comput. Optim. Appl. 57, 241–270 (2014)

    Article  MathSciNet  Google Scholar 

  14. Cybenko, G.: Approximation by superposition of a sigmoidal function. Math. Control Sig. Syst. 2, 303–314 (1989)

    Article  MathSciNet  Google Scholar 

  15. Jafari, R., Yu, W.: Uncertainty nonlinear systems modeling with fuzzy equations. In: Proceedings of the 16th IEEE International Conference on Information Reuse and Integration, pp. 182–188, San Francisco, Calif, USA, August (2015)

    Google Scholar 

  16. Jafari, R., Yu, W.: Uncertainty nonlinear systems control with fuzzy equations. In: IEEE International Conference on Systems, Man, and Cybernetics, pp. 2885–2890 (2015)

    Google Scholar 

  17. Jafari, R., Yu, W.: Uncertainty nonlinear systems modeling with fuzzy equations. Math. Probl. Eng. 2017, 10 (2017)

    Article  Google Scholar 

  18. Jafari, R., Yu, W., Li, X.: Numerical solution of fuzzy equations with Z-numbers using neural networks. Intell. Autom. Soft Comput. 23, 1–7 (2017)

    Article  Google Scholar 

  19. Jafari, R., Yu, W., Li, X., Razvarz, S.: Numerical solution of fuzzy differential equations with Z-numbers using Bernstein neural networks. Int. J. Comput. Intell. Syst. 10, 1226–1237 (2017)

    Article  Google Scholar 

  20. Razvarz, S., Jafari, R., Granmo, O.C., Gegov, A.: Solution of dual fuzzy equations using a new iterative method. In: Asian Conference on Intelligent Information and Database Systems, pp. 245–255 (2018)

    Google Scholar 

  21. Dissanayake, M.W.M.G., Phan-Thien, N.: Neural-network based approximations for solving partial differential equations. Commun. Numer. Meth. Eng. 10, 195–201 (2000)

    Article  Google Scholar 

  22. He, S., Reif, K., Unbehauen, R.: Multilayer neural networks for solving a class of partial differential equations. Neural Netw. 13, 385–396 (2000)

    Article  Google Scholar 

  23. Montelora, C., Saloma, C.: Solving the nonlinear Schrodinger equation with an unsupervised neural network: estimation of error in solution. Opt. Commun. 222, 331–339 (2003)

    Article  Google Scholar 

  24. Alli, H., Ucar, A., Demir, Y.: The solutions of vibration control problems using artificial neural networks. J. Franklin Inst. 340, 307–325 (2003)

    Article  MathSciNet  Google Scholar 

  25. Sukavanam, N., Panwar, V.: Computation of boundary control of controlled heat equation using artificial neural networks. Int. Commun. Heat Mass Transf. 30, 1137–1146 (2003)

    Article  Google Scholar 

  26. Curtis, S., Ghosh, S.: A variable selection approach to monotonic regression with Bernstein polynomials. J. Appl. Stat. 38, 961–976 (2011)

    Article  MathSciNet  Google Scholar 

  27. Acosta, C.D., Burger, R., Mejia, C.E.: Monotone difference schemes stabilized by discrete mollification for strongly degenerate parabolic equations. Numer. Meth. Part Differ. Equ. 28, 38–62 (2012)

    Article  MathSciNet  Google Scholar 

  28. Dehghan, M.: On the solution of an initial-boundary value problem that combines neumann and integral condition for the wave equation. Numer. Meth. Partial Differ. Equ. 21, 24–40 (2005)

    Article  MathSciNet  Google Scholar 

  29. Tongue, B.H.: Principles of Vibration. Oxford University Press, New York (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raheleh Jafari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Razvarz, S., Jafari, R., Gegov, A. (2019). Solving Partial Differential Equations with Bernstein Neural Networks. In: Lotfi, A., Bouchachia, H., Gegov, A., Langensiepen, C., McGinnity, M. (eds) Advances in Computational Intelligence Systems. UKCI 2018. Advances in Intelligent Systems and Computing, vol 840. Springer, Cham. https://doi.org/10.1007/978-3-319-97982-3_5

Download citation

Publish with us

Policies and ethics