Skip to main content

Genomic-Based Breeding for Climate-Smart Peach Varieties

  • Chapter
  • First Online:
Genomic Designing of Climate-Smart Fruit Crops
  • The original version of this chapter was revised. Several sections of this chapter have been removed because of ownership concerns. A Correction to this chapter is available at https://doi.org/10.1007/978-3-319-97946-5_11

Abstract

Improving the performance of peach varieties in the context of climate change requires multiple approaches. Climate change will not only alter plant phenology, but will also drive negative effects of several biotic and abiotic stressors. The challenge is to improve adaptation of peach varieties to a changing environment, while maintaining organoleptic qualities of the fruit.

This chapter focuses on the progress in genomics-assisted breeding in peach by breaking the barriers of conventional breeding. Breeding climate-smart (CS) peach trees requires the identification of traits involved in the adaptation to high levels of temperature, CO2, water deprivation, and biotic stresses. Relevant CS traits, such as those that control flowering time (chilling and heat requirements), biotic and abiotic stress tolerance (pests and diseases; water-nutrient efficiency), require prioritization. Here, we review classical mapping and breeding of peach varieties, the progress and limitations of the use of marker-assisted selection and breeding (MAS and MAB, respectively) in expression of traits, such as fruit quality and stress tolerance, and describe the rationale for the use of molecular breeding. Diversity analysis of Prunus germplasm, genome-wide association, molecular mapping, MAB and genomics-assisted breeding for CS traits are also reviewed. MAS and MAB have previously been considered as the optimal solution to plant breeding in the genomics era of plant biology, but genomic selection currently presents a promising alternative. Genomic selection is a marker-based strategy that accounts for quantitative traits controlled by a large number of genes with small effects as many CS traits are governed. The precise phenotypic assessment and appropriate biometric analysis used to identify genotype responses are also discussed.

The small but active international peach research community has delivered a high quality sequenced and annotated genome, along with several genomic tools, that potentiate each other in a positive feedback. Bioinformatics and computational biology are currently at the forefront of plant breeding programs, and deal with diverse functional genomics datasets of gene expression, metabolomics and stress physiological responses. Taken together, the existing genomic knowledge and tools may be used to confront the challenges of the development of peach varieties adapted to changing climate scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 21 January 2024

    A correction has been published.

References

  • Abbott A, Arús P, Scorza R (2007) Peach. In: Kole C (ed) Genome mapping and molecular breeding in plants: fruits and nuts. Springer, Berlin Heidelberg, pp 137–156

    Google Scholar 

  • Abdelghafar A, Burrell R, Reighard G, Gasic K (2018) Antioxidant capacity and bioactive compounds accumulation in peach breeding germplasm. J Amer Pomol Soc 72:40–69

    Google Scholar 

  • Abidi W, Cantín CM, Jiménez S, Giménez R, Moreno MA, Gogorcena Y (2015) Influence of antioxidant compounds, total sugars and genetic background on the chilling injury susceptibility of a non-melting peach (Prunus persica (L.) Batsch) progeny. J Sci Food Agri 95:351–358

    CAS  Google Scholar 

  • Ahmad R, Parfitt DE, Fass J, Ogundiwin E, Dhingra A, Gradziel TM, Lin D, Joshi NA, Martinez-Garcia PJ, Crisosto CH (2011) Whole genome sequencing of peach (Prunus persica L.) for SNP identification and selection. BMC Genomics 12:569. http://www.biomedcentral.com/1471-2164/12/569

  • Akagi T, Hanada T, Yaegaki H, Gradziel TM, Tao R (2016) Genome-wide view of genetic diversity reveals paths of selection and cultivar differentiation in peach domestication. DNA Res 23:271–282

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alioto T, Alexiou KG, Bardil A, Barteri F, Castanera R, Cruz F, Dhingra A, Duval H, Fernández i Martí Á et al (2020) Transposons played a major role in the diversification between the closely related almond and peach genomes: results from the almond genome sequence. Plant Plant J 101:455–472. https://doi.org/10.1111/tpj.14538.

  • Amador L, Sancho S, Bielsa B (2012) Physiological and biochemical parameters controlling waterlogging stress tolerance in Prunus before and after drainage. Physiol Planta 144:357–368

    CAS  PubMed  Google Scholar 

  • Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA (2016) Harnessing the power of RADseq for ecological and evolutionary genomics. Nat Rev Genet 17:81

    CAS  PubMed  PubMed Central  Google Scholar 

  • Apweiler R, Bairoch A, Wu CH (2004) Protein sequence databases. Curr Opin Chem Biol 8:76–80

    CAS  PubMed  Google Scholar 

  • Aranzana MJ, Garcia-Mas J, Carbó J, Arús P (2002) Development and variability analysis of microsatellite markers in peach. Plant Breed 121:87–92

    CAS  Google Scholar 

  • Aranzana M, Carbó J, Arús P (2003) Microsatellite variability in peach [Prunus persica (L.) Batsch]: cultivar identification, marker mutation, pedigree inferences and population structure. Theor Appl Genet 106:1341–1352. https://doi.org/10.1007/s00122-002-1128-5

  • Arismendi MJ, Almada R, Pimentel P, Bastias A, Salvatierra A, Rojas P, Hinrichsen P, Pinto M, Di Genova A, Travisany D, Maass A, Sagredo B (2015) Transcriptome sequencing of Prunus sp. rootstocks roots to identify candidate genes involved in the response to root hypoxia. Tree Genet Genomes 11:11. https://doi.org/10.1007/s11295-015-0838-1

  • Arús P, Verde I, Sosinski B, Zhebentyayeva T, Abbott AG (2012) The peach genome. Tree Genet Genomes 8:531–547

    Google Scholar 

  • Badenes ML, Parfitt DE (1995) Phylogenetic relationships of cultivated Prunus species from an analysis of chloroplast DNA variation. Theor Appl Genet 90:1035–1041

    CAS  PubMed  Google Scholar 

  • Bagchi A (2012) A brief overview of a few popular and important protein databases. Comput Mol Biosci 2:115–120

    Google Scholar 

  • Bahuguna RN, Jagadish SVK (2015) Temperature regulation of plant phenological development. Environ Exp Bot 111:83–90. http://www.sciencedirect.com/science/article/pii/S0098847214002512

  • Barakat A, Sriram A, Park J, Zhebentyayeva T, Main D, Abbott A (2012) Genome wide identification of chilling responsive microRNAs in Prunus persica. BMC Genomics 13:481

    CAS  Google Scholar 

  • Baró-Montel N, Torres R, Casals C, Teixidó N, Segarra J, Usall J (2018) Developing a methodology for identifying brown rot resistance in stone fruit. Eur J Plant Pathol 154:287–303. https://doi.org/10.1007/s10658-018-01655-1

    Article  CAS  Google Scholar 

  • Bazakos C, Hanemian M, Trontin C, Jiménez-Gómez JM, Loudet O (2017) New strategies and tools in quantitative genetics: How to go from the phenotype to the genotype. Annu Rev Plant Physiol 68:435–455

    CAS  Google Scholar 

  • Bedis K, Jiménez S, Dridi J, Morales F, Irigoyen JJ, Gogorcena Y (2017) Prunus rootstocks for peach climate change adaptation. In: 2nd agriculture and climate change conference: climate ready resource use-efficient crops to sustain food and nutritional security. Sitges, Spain, p P2.044

    Google Scholar 

  • Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Ostell J, Pruitt KD, Sayers EW (2005) GenBank. Nucleic Acids Res 33:34–38

    Google Scholar 

  • Bielenberg DG, Wang Y (Eileen), Li Z, Zhebentyayeva T, Fan S, Reighard GL, Scorza R, Abbott AG (2008) Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genet Genomes 4:495–507. https://doi.org/10.1007/s11295-007-0126-9

  • Bielenberg D, Gasic K, Chaparro JX (2009) An introduction to peach (Prunus persica). In: Folta K, Gardiner S (eds) Genetics and genomics of Rosaceae. In: Plant genetics and genomics: crops and models 6. Springer, New York, pp 223–234. http://link.springer.com/10.1007/978-0-387-77491-6

  • Bielenberg DG, Rauh B, Fan S, Gasic K, Abbott AG, Reighard GL, Okie WR, Wells CE (2015) Genotyping by sequencing for SNP-based linkage map construction and QTL analysis of chilling requirement and bloom date in peach [Prunus persica (L.) Batsch]. PLoS ONE 10:1–14. https://doi.org/10.1371/journal.pone.0139406

    Article  CAS  Google Scholar 

  • Bielsa B, Leida C, Rubio-Cabetas MJ (2016) Physiological characterization of drought stress response and expression of two transcription factors and two LEA genes in three Prunus genotypes. Sci Hortic (Amsterdam) 213:260–269. http://www.sciencedirect.com/science/article/pii/S0304423816305659

  • Bink M, Boer M, Braak C, Jansen J, Voorrips R, de Weg W (2008) Bayesian analysis of complex traits in pedigreed plant populations. Euphytica 161:85–96

    Google Scholar 

  • Biscarini F, Nazzicari N, Bink M, Arús P, Aranzana MJ, Verde I, Micali S, Pascal T, Quilot-Turion B, Lambert P, Linge S, Pacheco I, Bassi D, Stella A, Rossini L (2017) Genome-enabled predictions for fruit weight and quality from repeated records in European peach progenies. BMC Genomics 18:1–15

    Google Scholar 

  • Bliss FA (2010) Marker-assisted breeding in horticultural crops. In: Acta Horticulturae. International Society for Horticultural Science (ISHS), Leuven, Belgium, pp 339–350. https://doi.org/10.17660/ActaHortic.2010.859.40

  • Bolser D, Staines DM, Pritchard E, Kersey P (2016) Ensembl plants: integrating tools for visualizing, mining, and analyzing plant genomics data. In: Edwards D (ed) Plant bioinformatics. Methods in molecular biology, vol 1374. Humana Press, New York, NY, pp 115-40. https://doi.org/10.1007/978-1-4939-3167-5_6

  • Bouhadida M, Casas AM, Moreno MA, Gogorcena Y (2007a) Molecular characterization of Miraflores peach variety and relatives using SSRs. Sci Hort 111(2):140–145. http://hdl.handle.net/10261/3673

    CAS  Google Scholar 

  • Bouhadida M, Martín JP, Eremin G, Pinochet J, Moreno MÁ, Gogorcena Y (2007b) Chloroplast DNA diversity in Prunus and its implication on genetic relationships. J Amer Soc Hort Sci 132(5):670–679. https://doi.org/10.21273/JASHS.132.5.670

    CAS  Google Scholar 

  • Bouhadida M, Casas AM, Gonzalo MJ, Arús P, Moreno MA, Gogorcena Y (2009) Molecular characterization and genetic diversity of Prunus rootstocks. Sci Hort 120(2):237–245. https://doi.org/10.1016/j.scienta.2008.11.015

    CAS  Google Scholar 

  • Bouhadida M, Moreno MA, Gonzalo MJ, Alonso JM, Gogorcena Y (2011) Genetic variability of introduced and local Spanish peach cultivars determined by SSR markers. Tree Genet Genomes 7:257–270. https://doi.org/10.1007/s11295-010-0329-3

  • Bradshaw JE (2017) Plant breeding: past, present and future. Euphytica 213:60 (1–12)

    Google Scholar 

  • Byrne DH (2006) Trends and progress of low-chill stone fruit breeding temperate fruit research in a changing world. Production technologies for low-chill temperate fruits. Second International Workshop. Chiang Mai, Thailand, pp 13–17

    Google Scholar 

  • Byrne DH, Sherman WB, Bacon TA (2000) Stone fruit genetic pool and its exploitation for growing under warm winter conditions. In: Erez A (ed) Temperate fruit crops in warm climates. Kluwer Academic Publishers, Boston, pp 157–230

    Google Scholar 

  • Byrne DH, Raseira MB, Bassi D, Piagnani MC, Gasic K, Reighard GL, Moreno MA, Pérez S (2012) Peach. In: Badenes ML, Byrne DH (eds) Fruit breeding. Springer, New York, pp 505–569. https://doi.org/10.1007/978-1-4419-0763-9_14

  • Cantín CM, Moreno MA, Gogorcena Y (2009) Evaluation of the antioxidant capacity, phenolic compounds, and vitamin C content of different peach and nectarine [Prunus persica (L.) Batsch] breeding progenies. J Agri Food Chem 57:4586–4592. https://doi.org/10.1021/jf900385a

  • Cantín CM, Crisosto CH, Ogundiwin EA, Gradziel T, Torrents J, Moreno MA, Gogorcena Y (2010a) Chilling injury susceptibility in an intra-specific peach [Prunus persica (L.) Batsch] progeny. Postharvest Biol Technol 58:79–87. https://doi.org/10.1016/j.postharvbio.2010.06.002

  • Cantín CM, Gogorcena Y, Moreno MA (2010b) Phenotypic diversity and relationships of fruit quality traits in peach and nectarine [Prunus persica (L.) Batsch] breeding progenies. Euphytica 171:211–226. https://doi.org/10.1007/s10681-009-0023-4

  • Cao K, Wang L, Zhu G, Fang W, Chen C, Zhao P (2011) Construction of a linkage map and identification of resistance gene analog markers for root-knot nematodes in wild peach, Prunus kansuensis. J Amer Soc Hort Sci 136:190–197

    Google Scholar 

  • Cao K, Wang L, Zhu G, Fang W, Chen C, Luo J (2012) Genetic diversity, linkage disequilibrium, and association mapping analyses of peach (Prunus persica) landraces in China. Tree Genet Genomes 8:975–990

    Google Scholar 

  • Cao K, Zheng Z, Wang L, Liu X, Zhu G, Fang W, Cheng S, Zeng P, Chen C, Wang X, Xie M, Zhong X, Wang X et al (2014) Comparative population genomics reveals the domestication history of the peach, Prunus persica, and human influences on perennial fruit crops. Genome Biol 15:415. http://www.ncbi.nlm.nih.gov/pubmed/25079967

  • Cao K, Zhou Z, Wang Q, Guo J, Zhao P, Zhu G, Fang W, Chen C, Wang X, Wang X, Tian Z, Wang L (2016) Genome-wide association study of 12 agronomic traits in peach. Nat Commun 7:1–10. https://doi.org/10.1038/ncomms13246

  • Cao K, Li Y, Deng CH, Gardiner SE, Zhu G, Fang W, Chen C, Wang X, Wang L (2019) Comparative population genomics identified genomic regions and candidate genes associated with fruit domestication traits in peach. Plant Biotechnol J 1–17. https://doi.org/10.1111/pbi.13112

  • Casals C, Segarra J, De Cal A, Lamarca N, Usall J (2015) Overwintering of Monilinia spp. on mummified stone fruit. J Phytopathol 163:160–167

    Google Scholar 

  • Castède S, Campoy JA, García JQ, Le Dantec L, Lafargue M, Barreneche T, Wenden B, Dirlewanger E (2014) Genetic determinism of phenological traits highly affected by climate change in Prunus avium: flowering date dissected into chilling and heat requirements. New Phytol 202:703–715

    PubMed  Google Scholar 

  • Castillo AI, Nelson ADL, Haug-Baltzell AK, Lyons E (2018) A tutorial of diverse genome analysis tools found in the CoGe web-platform using Plasmodium spp. as a model. Database 1–16. https://doi.org/10.1093/database/bay030

  • Chain PSG, Grafham DV, Fulton RS, Fitzgerald MG, Hostetler J, Muzny D, Ali J, Birren B, Bruce DC, Buhay C (2009) Genome project standards in a new era of sequencing. Science 326(5950):236–237

    CAS  PubMed  Google Scholar 

  • Chaparro JX, Werner DJ, O’Malley D, Sederoff RR (1994) Targeted mapping and linkage analysis of morphological isozyme, and RAPD markers in peach. Theor Appl Genet 87:805–815

    CAS  PubMed  Google Scholar 

  • Chekanova JA (2015) Long non-coding RNAs and their functions in plants. Curr Opin Plant Biol 27:207–216

    CAS  PubMed  Google Scholar 

  • Ciacciulli A, Cirilli M, Chiozzotto R, Attanasio G, Da Silva Linge C, Pacheco I, Rossini L, Bassi D (2018) Linkage and association mapping for the slow softening (SwS) trait in peach (P. persica L. Batsch) fruit. Tree Genet Genomes 14:93

    Google Scholar 

  • Cirilli M, Geuna F, Babini AR, Bozhkova V, Catalano L, Cavagna B, Dallot S, Decroocq V, Dondini L, Foschi S, Ilardi V, Liverani A, Mezzetti B, Minafra A, Pancaldi M, Pandolfini T, Pascal T, Savino VN, Scorza R, Verde I, Bassi D (2016) Fighting sharka in peach: current limitations and future perspectives. Front Plant Sci 7:1290. https://www.frontiersin.org/article/10.3389/fpls.2016.01290

  • Cirilli M, Rossini L, Geuna F, Palmisano F, Minafra A, Castrignanò T, Gattolin S, Ciacciulli A, Babini AR, Liverani A, Bassi D (2017) Genetic dissection of Sharka disease tolerance in peach (P. persica L. Batsch). BMC Plant Biol 17:192. https://doi.org/10.1186/s12870-017-1117-0

  • Cirilli M, Flati T, Gioiosa S, Tagliaferri I, Ciacciulli A, Gao Z, Gattolin S, Geuna F, Maggi F, Bottoni P, Rossini L, Bassi D, Castrignanò T, Chillemi G (2018) PeachVar-DB: a curated collection of genetic variations for the interactive analysis of peach genome data. Plant Cell Physiol 59:1–9

    Google Scholar 

  • Claverie M, Bosselut N, Lecouls A, Voisin R, Lafargue B, Poizat C, Kleinhentz M, Laigret F, Dirlewanger E, Esmenjaud D (2004a) Location of independent root-knot nematode resistance genes in plum and peach. Theor Appl Genet 108:765–773

    CAS  PubMed  Google Scholar 

  • Claverie M, Dirlewanger E, Cosson P, Bosselut N, Lecouls A, Voisin R, Kleinhentz M, Lafargue B, Caboche M, Chalhoub B, Esmenjaud D (2004b) High-resolution mapping and chromosome landing at the root-know nematode resistance locus Ma from Myrobalan plum using a large-insert BAC DNA library. Theor Appl Genet 109:1318–1327

    CAS  PubMed  Google Scholar 

  • Cochard H, Bariga H, Kleinhentz M, Eshe L (2008) Is xylem cavitation resistance a relevant criterion for screening drought resistance among Prunus species? J Plant Physiol 165:976–982

    CAS  PubMed  Google Scholar 

  • Cockerham CC (1963) Estimation of genetic variances. In: Hanson W, Robinson H (eds) Statistical genetics and plant breeding. NAS-NRC, 982, Washington, DC, pp 53–94

    Google Scholar 

  • Couvillon G, Erez A (1985) Effect of level and duration of high temperatures on rest in the peach. J Amer Soc Hort Sci 110:579–581

    Google Scholar 

  • Craufurd PQ, Wheeler TR (2009) Climate change and the flowering time of annual crops. J Exp Bot 60:2529–2539. https://doi.org/10.1093/jxb/erp196

    Article  CAS  PubMed  Google Scholar 

  • Da Silva Linge C, Bassi D, Bianco L, Pacheco I, Pirona R, Rossini L (2015) Genetic dissection of fruit weight and size in an F2 peach (Prunus persica (L.) Batsch) progeny. Mol Breed 35:71

    Google Scholar 

  • Da Silva Linge C, Antanaviciute L, Abdelghafar A, Arús P, Bassi D, Rossini L, Ficklin S, Gasic K (2018) High-density multi-population consensus genetic linkage map for peach. PLoS ONE 13:e0207724. http://dx.plos.org/10.1371/journal.pone.0207724

  • Dalla Costa L, Malnoy M, Gribaudo I (2017) Breeding next generation tree fruits: technical and legal challenges. Hort Res 4:17067

    Google Scholar 

  • Davey JW, Blaxter ML (2011) RADSeq: next-generation population genetics. Brief Funct Genomics 9:416–423

    PubMed Central  Google Scholar 

  • De Souza VA, Byrne DH (1998) Heritability, genetic and phenotypic correlations, and predicted selection response of quantitative traits in peach: II. An analysis of several fruit traits. J Amer Soc Hort Sci 123:604–611

    Google Scholar 

  • Dehkordi AN, Rubio M, Babaeian N, Albacete A, Martínez-Gómez P (2018) Phytohormone signaling of the resistance to plum pox virus (PPV, sharka disease) induced by almond (Prunus dulcis (Miller) Webb) grafting to peach (P. persica L. Batsch). Viruses 10:238

    Google Scholar 

  • Deniz E, Erman B (2017) Long noncoding RNA (lincRNA), a new paradigm in gene expression control. Funct Integr Genom 17:135–143

    CAS  Google Scholar 

  • Dennis F Jr (2003) Problems in standardizing methods for evaluating the chilling requirements for the breaking of dormancy in buds of woody plants. HortScience 38:347–350

    Google Scholar 

  • Dirlewanger E, Cosson P, Tavaud M, Aranzana M, Poizat C, Zanetto A, Arús P, Laigret F (2002) Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor Appl Genet 105:127–138

    CAS  PubMed  Google Scholar 

  • Dirlewanger E, Graziano E, Joobeur T, Garriga-Calderé F, Cosson P, Howad W, Arús P (2004) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci USA 101:9891–9896

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dirlewanger E, Quero-García J, Le Dantec L, Lambert P, Ruiz D, Dondini L, Illa E, Quilot-Turion B, Audergon JM, Tartarini S, Letourmy P, Arús P (2012) Comparison of the genetic determinism of two key phenological traits, flowering and maturity dates, in three Prunus species: peach, apricot and sweet cherry. Heredity (Edinb) 109:280–292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong Q, Schlueter SD, Brendel V (2004) PlantGDB, plant genome database and analysis tools. Nucleic Acids Res 32:354–359

    CAS  Google Scholar 

  • Donoso J, Picañol R, Serra O, Howad W, Alegre S, Arús P, Eduardo I (2016) Exploring almond genetic variability useful for peach improvement: mapping major genes and QTLs in two interspecific almond × peach populations. Mol Breed 36:1–17

    CAS  Google Scholar 

  • Dridi J (2012) Caracterización de la respuesta bioquímica y molecular de patrones de Prunus en condiciones de cambio climático. CIHEAM-IAMZ, Zaragoza; Universidat de Lleida, Spain. 90p. http://intranet.iamz.ciheam.org/isis/contenidos/busquedaIsis.php

  • Eduardo I, Pacheco I, Chietera G, Bassi D, Pozzi C, Vecchietti A, Rossini L (2011) QTL analysis of fruit quality traits in two peach intraspecific populations and importance of maturity date pleiotropic effect. Tree Genet Genomes 7(2):323–335

    Google Scholar 

  • Eduardo I, Chietera G, Pirona R, Pacheco I, Troggio M, Banchi E, Bassi D, Rossini L, Vecchietti A, Pozzi C (2013) Genetic dissection of aroma volatile compounds from the essential oil of peach fruit: QTL analysis and identification of candidate genes using dense SNP maps. Tree Genet Genomes 9:189–204

    Google Scholar 

  • Eduardo I, Picañol R, Rojas E, Batlle I, Howad W, Aranzana MJ, Arús P (2015) Mapping of a major gene for the slow ripening character in peach: co-location with the maturity date gene and development of a candidate gene-based diagnostic marker for its selection. Euphytica 205:627–636

    CAS  Google Scholar 

  • Eldem V, Akcay UC, Ozhuner E, Bakir Y, Uranbey S, Unver T (2012) Genome-wide identification of miRNAs responsive to drought in peach (Prunus persica) by high-throughput deep sequencing. PLoS ONE7:e50298

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elsadr H, Sherif S, Banks T, Somers D, Jayasankar S (2019) Refining the genomic region containing a major locus controlling fruit maturity in peach. Sci Rep 9:7522. https://doi.org/10.1038/s41598-019-44042-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:1–10

    Google Scholar 

  • Erez A, Couvillon G (1987) Characterization of the influence of moderate temperatures on rest completion in peach. J Amer Soc Hort Sci 112:677–680

    Google Scholar 

  • Esmenjaud D, Srinivasan C (2013) Molecular breeding. In: Kole C, Abbott AG (eds) Genetics, genomics and breeding of stone fruits. CRC Press, Boca Raton, FL, pp 158–211

    Google Scholar 

  • Esposito A, Colantuono C, Ruggieri V, Chiusano ML (2016) Bioinformatics for agriculture in the next-generation sequencing era. Chem Biol Technol Agri 3:1–12

    Google Scholar 

  • ESTree Consortium (2005) Development of an oligo-based microarray (µPEACH 1.0) for genomics studies in peach fruit. Acta Hort 682:263–268

    Google Scholar 

  • Falara V, Manganaris GA, Ziliotto F, Manganaris A, Bonghi C, Ramina A, Kanellis AK (2011) A ß-D-xylosidase and a PR-4B precursor identified as genes accounting for differences in peach cold storage tolerance. Funct Integr Genom 11:357–368

    CAS  Google Scholar 

  • Falconer DS (1989) Introduction to quantitative genetics, 3 edn. Longmans Green/Wiley, Harlow, Essex, UK/New York, 438p

    Google Scholar 

  • Fan S, Bielenberg DG, Zhebentyayeva TN, Gregory L, Okie WR, Holland D, Abbott AG (2010) Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). New Phytol 185:917–930

    PubMed  Google Scholar 

  • FAO (2018) The future of food and agriculture—alternative pathways to 2050. Summary version, FAO, Rome, p 60

    Google Scholar 

  • FAOSTAT (2019). http://www.faostat.fao.org (10 November 2019, date last accessed)

  • Feliciano A, Feliciano AJ, Ogawa J (1987) Monilinia fructicola resistance in the peach cultivar Bolinha. Phytopathology 77:776–780

    Google Scholar 

  • Font i Forcada C, Oraguzie N, Igartua E, Moreno MA, Gogorcena Y (2013) Population structure and marker-trait associations for pomological traits in peach and nectarine cultivars. Tree Genet Genomes 9:331–349. https://doi.org/10.1007/s11295-012-0553-0

  • Font i Forcada C, Gradziel TM, Gogorcena Y, Moreno MÁ (2014) Phenotypic diversity among local Spanish and foreign peach and nectarine [Prunus persica (L.) Batsch] accessions. Euphytica 197:261–277. https://doi.org/10.1007/s10681-014-1065-9

  • Foulongne M, Pascal T, Pfeiffer F, Kervella J (2003) QTLs for powdery mildew resistance in peach × Prunus davidiana crosses: consistency across generations and environments. Mol Breed 12:33–50

    CAS  Google Scholar 

  • Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I (2004) VISTA: computational tools for comparative genomics. Intl J Earth Sci Eng 32:273–279

    Google Scholar 

  • Fresnedo-Ramírez J, Martínez-García PJ, Parfitt DE, Crisosto CH, Gradziel TM (2013) Heterogeneity in the entire genome for three genotypes of peach [Prunus persica (L.) Batsch] as distinguished from sequence analysis of genomic variants. BMC Genomics 14:750. https://doi.org/10.1186/1471-2164-14-750

  • Frett TJ, Reighard GL, Okie WR, Gasic K (2014) Mapping quantitative trait loci associated with blush in peach [Prunus persica (L.) Batsch]. Tree Genet Genomes 10:367–381

    Google Scholar 

  • Fu W, Burrell R, da Silva Linge C, Schnabel G, Gasic K (2018) Breeding for brown rot (Monilinia spp.) tolerance in Clemson University peach breeding program. J Amer Pomol Soc 72:94–100

    Google Scholar 

  • Génard M, Bruchou C (1992) Multivariate analysis of within-tree factors accounting for the variation of peach fruit quality. Sci Hortic (Amsterdam) 52:37–51

    Google Scholar 

  • Genome Database for Rosaceae (2019) IRSC 16K SNP array for Prunus persica. https://www.rosaceae.org/analysis/267 (14 November 2019, date last accessed)

  • Gillen A, Bliss F (2005) Identification and mapping of markers linked to the Mi gene for root-knot nematode resistance in peach. J Amer Soc Hort Sci 130:24–33

    CAS  Google Scholar 

  • Gogorcena Y, Parfitt DE (1994) Evaluation of RAPD marker consistency for detection of polymorphism in apricot. Sci Hort 59:163–167. https://doi.org/10.1016/0304-4238(94)90083-3

    Google Scholar 

  • Gonzalo MJ, Moreno MA, Gogorcena Y (2011) Physiological responses and differential gene expression in Prunus rootstocks under iron deficiency conditions. J Plant Physiol 168:887–893. https://doi.org/10.1016/j.jplph.2010.11.017

    CAS  PubMed  Google Scholar 

  • Gonzalo MJ, Dirlewanger E, Moreno MA, Gogorcena Y (2012) Genetic analysis of iron chlorosis tolerance in Prunus rootstocks. Tree Genet Genomes 8:943–955. https://doi.org/10.1007/s11295-012-0474-y

    Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokhsar DS (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:1178–1186

    Google Scholar 

  • Gradziel TM, Wang D (1993) Evaluation of brown rot resistance and its relation to enzymatic browning in clingstone peach germplasm. J Amer Soc Hortic Sci 1993, 118:675–679

    Google Scholar 

  • Grover JW, Bomhoff M, Davey S, Gregory BD, Mosher RA, Lyons E (2017) CoGe LoadExp+: a web-based suite that integrates next-generation sequencing data analysis workflows and visualization. Plant Direct 1(2). https://doi.org/10.1002/pld3.8

  • Hancock J, Scorza R, Lobos G (2008) Peaches. In: Hancock J (ed) Temperate fruit crop breeding: germplasm to genomics. Springer, Netherlands, pp 265–298

    Google Scholar 

  • Haug-Baltzell A, Stephens SA, Davey S, Scheidegger CE, Lyons E (2017) SynMap2 and SynMap3D: Web-based whole-genome synteny browsers. Bioinformatics 33(14):2197–2198

    Google Scholar 

  • Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    Google Scholar 

  • Heo JB, Sung S (2011) Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331:76–79

    Google Scholar 

  • Hernández Mora JR, Micheletti D, Bink M, Van De Weg E, Cantín C, Nazzicari N, Caprera A, Dettori MT, Micali S, Banchi E, Campoy JA, Dirlewanger E, Lambert P, Pascal T, Troggio M, Bassi D, Rossini L, Verde I, Quilot-Turion B, Laurens F, Arús P, Aranzana MJ (2017) Integrated QTL detection for key breeding traits in multiple peach progenies. BMC Genomics 18:1–15

    Google Scholar 

  • Herrero J, Muffato M, Beal K, Fitzgerald S, Gordon L, Pignatelli M, Vilella AJ, Searle SMJ, Amode R, Brent S, Spooner W, Kulesha E, Yates A, Flicek P (2016) Ensembl comparative genomics resources. Database 2016:1–17. https://doi.org/10.1093/database/bav09

    Article  Google Scholar 

  • Hogeweg P (2011) The roots of bioinformatics in theoretical biology. PLoS Comput Biol 7:1–5

    Google Scholar 

  • Howad W, Yamamoto T, Dirlewanger E, Testolin R, Cosson P, Cipriani G, Monforte AJ, Georgi L, Abbott AG, Arús P (2005) Mapping with a few plants: using selective mapping for microsatellite saturation of the Prunus reference map. Genetics 171:1305–1309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hulme PE (2011) Contrasting impacts of climate-driven flowering phenology on changes in alien and native plant species distributions. New Phytol 189:272–281. http://www.jstor.org/stable/40960892

  • Initiative TAG (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report. In: Pachauri RK, Meyer LA (eds) Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, Switzerland, p 124

    Google Scholar 

  • IPCC (2018) Summary for policymakers. In: Masson-DelmotteV, Zhai P, Pörtner HO, Roberts D, Skea J et al (eds) Global warming of 1.5 °C. An IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development and efforts to eradicate poverty. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 3-24, https://doi.org/10.1017/9781009157940.001

  • Iquebal MA, Jaiswal S, Mukhopadhyay CS, Sarkar C, Rai A, Kumar D (2015) Applications of bioinformatics in plant and agriculture. In: Barh D, Khan M, Davies E (eds) PlantOmics: the omics of plant science. Springer, New Delhi, pp 755–790

    Google Scholar 

  • Iwata H, Minamikawa MF, Kajiya-Kanegae H, Ishimori M, Hayashi T (2016) Genomics-assisted breeding in fruit trees. Breed Sci 66:100–115. https://www.jstage.jst.go.jp/article/jsbbs/66/1/66_100/_article

  • Jagadish SVK, Bahuguna RN, Djanaguiraman M, Gamuyao R, Prasad PVV, Craufurd PQ (2016) Implications of high temperature and elevated CO2 on flowering time in plants. Front Plant Sci 7:1–11

    Google Scholar 

  • Jannink J-L, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genom 9:166–177

    CAS  PubMed  Google Scholar 

  • Jiménez S, Pinochet J, Abadía A, Moreno MA, Gogorcena Y (2008) Tolerance response to iron chlorosis of Prunus selections as rootstocks. HortScience 43:304–309. http://hortsci.ashspublications.org/content/43/2/304.full

    Google Scholar 

  • Jiménez S, Ollat N, Deborde C, Maucourt M, Rellán-Álvarez R, Moreno MA, Gogorcena Y (2011) Metabolic response in roots of Prunus rootstocks submitted to iron chlorosis. J Plant Physiol 168:58–63. https://doi.org/10.1016/j.jplph.2010.08.010

    Google Scholar 

  • Jiménez S, Dridi J, Gutiérrez D, Moret D, Irigoyen JJ, Moreno MA, Gogorcena Y (2013) Physiological, biochemical and molecular responses in four Prunus rootstocks submitted to drought stress. Tree Physiol 33:1061–1075. https://doi.org/10.1093/treephys/tpt074

    PubMed  Google Scholar 

  • Jiménez S, Fattahi M, Bedis K, Nasrolahpour-moghadam Sh, Irigoyen JJ, Gogorcena Y (2020) Interactional effects of climate change factors on the water status, photosynthetic rate and metabolic regulation in peach. Front Plant Sci 11:43. https://doi.org/10.3389/fpls.2020.00043

  • Jin J, Tian F, Yang DC, Meng YQ, Kong L, Luo J, Gao G (2017) PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res 45:1040–1045

    Google Scholar 

  • Joobeur T, Viruel MA, De Vicente MC, Jáuregui B, Ballester J, Dettori MT, Verde I, Truco MJ, Messeguer R, Batlle I, Quarta R, Dirlewanger E, Arús P (1998) Construction of a saturated linkage map for Prunus using an almond × peach F2 progeny. Theor Appl Genet 97:1034–1041

    CAS  Google Scholar 

  • Jung S, Jesudurai C, Staton M, Du Z, Ficklin S, Cho I, Abbott A, Tomkins J, Main D (2004) GDR (genome database for Rosaceae): integrated web resources for Rosaceae genomics and genetics research. BMC Bioinformatics 5:1–8

    Google Scholar 

  • Jung S, Ficklin SP, Lee T, Cheng CH, Blenda A, Zheng P, Yu J, Bombarely A, Cho I et al (2014) The genome database for Rosaceae (GDR): year 10 update. Nucleic Acids Res 42:1237–1244

    Google Scholar 

  • Jung S, Lee T, Cheng CH, Buble K, Zheng P, Yu J, Humann J, Ficklin SP, Gasic K et al (2019) 15 years of GDR: new data and functionality in the genome database for Rosaceae. Nucleic Acids Res 47:D1137–D1145. https://doi.org/10.1093/nar/gky1000

    Article  PubMed  Google Scholar 

  • Kole C, Muthamilarasan M, Henry R, Edwards D, Sharma R, Abberton M, Batley J, Bentley A, Blakeney M, Bryant J et al (2015) Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects. Front Plant Sci 6:1–16. https://doi.org/10.3389/fpls.2015.00563

  • Ksouri N, Jiménez S, Wells CE, Contreras-Moreira B, Gogorcena Y (2016) Transcriptional responses in root and leaf of Prunus persica under drought stress using RNA sequencing. Front Plant Sci 7:1715. https://doi.org/10.3389/fpls.2016.01715. https://www.frontiersin.org/articles/10.3389/fpls.2016.01715/full

  • Ksouri N, Castro-Mondragón J, Montardit-Tardà F, van Helden J, Contreras-Moreira B, Gogorcena Y (2020) Co-expression network drives prediction of cis elements in plants using peach as a model. bioRxiv 2020.02.28.970137; https://doi.org/10.1101/2020.02.28.970137

  • Lambert P, Pascal T (2011) Mapping Rm2 gene conferring resistance to the green peach aphid (Myzus persicae Sulzer) in the peach cultivar Rubira®. Tree Genet Genomes 7:1057–1068

    Google Scholar 

  • Lambert P, Campoy JA, Pacheco I, Mauroux J-B, Da Silva Linge C, Micheletti D, Bassi D, Rossini L, Dirlewanger E, Pascal T, Troggio M, Aranzana MJ, Patocchi A, Arús P (2016) Identifying SNP markers tightly associated with six major genes in peach [Prunus persica (L.) Batsch] using a high-density SNP array with an objective of marker-assisted selection (MAS). Tree Genet Genomes 12:121. https://doi.org/10.1007/s11295-016-1080-1

  • Laurens F, Aranzana MJ, Arus P, Bassi D, Bink M, Bonany J, Caprera A, Corelli-Grappadelli L, Costes E, Durel CE, Mauroux JB, Muranty H, Nazzicari N, Pascal T, Patocchi A, Peil A, Quilot-Turion B, Rossini L, Stella A, Troggio M, Velasco R, Van De Weg E (2018) An integrated approach for increasing breeding efficiency in apple and peach in Europe. Hort Res 5:11. https://doi.org/10.1038/s41438-018-0016-3

    Article  CAS  Google Scholar 

  • Lee TH, Tang H, Wang X, Paterson AH (2012) PGDD: a database of gene and genome duplication in plants. Nucleic Acids Res 41:1152–1158

    Google Scholar 

  • Li X, Meng X, Jia H, Yu M, Ma R, Wang L, Cao K, Shen Z, Niu L, Tian J, Chen M, Xie M, Arus P, Gao Z, Aranzana MJ (2013) Peach genetic resources: diversity, population structure and linkage disequilibrium. BMC Genetics 14:84. http://www.biomedcentral.com/1471-2156/14/84

  • Li Y, Wang L, Zhu G, Fang W, Cao K, Chen C, Wang X, Wang X (2016) Phenological response of peach to climate change exhibits a relatively dramatic trend in China, 1983–2012. Sci Hortic 209:192–200. https://www.sciencedirect.com/science/article/pii/S030442381630293X?via%3Dihub

  • Li S, Shao Z, Fu X, Xiao W, Li L, Chen M, Sun M, Li D, Gao D (2017) Identification and characterization of Prunus persica miRNAs in response to UVB radiation in greenhouse through high-throughput sequencing. BMC Genomics 18:938

    Google Scholar 

  • Li Y, Cao K, Zhu G, Fang W, Chen C, Wang X, Zhao P, Guo J, Ding T, Guan L, Zhang Q, Guo W, Fei Z, Wang L (2019) Genomic analyses of an extensive collection of wild and cultivated accessions provide new insights into peach breeding history. Genome Biol 20:36. https://doi.org/10.1186/s13059-019-1648-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu L, He Y, Dong B, Han F, Wu YX, Tian JB (2012) Review of the peach germplasm resources and breeding in China. Acta Hort 940:187–192

    Google Scholar 

  • Llácer G, Alonso JM, Rubio-Cabetas MJ, Batlle I, Iglesias I, Vargas FJ, García-Brunton J, Badenes ML (2009) Peach industry in Spain. J Amer Pomol Soc 63:128–133

    Google Scholar 

  • Lloret A, Badenes ML, Ríos G (2018) Modulation of dormancy and growth responses in reproductive buds of temperate trees. Front Plant Sci 9:1–12. https://www.frontiersin.org/article/10.3389/fpls.2018.01368/full

  • Lorenz A, Nice L (2017) Training population design and resource allocation for genomic selection in plant breeding. In: Varshney RK, Roorkiwal M, Sorrells ME (eds) Genomic selection for crop improvement: new molecular breeding strategies for crop improvement. Springer International Publishing, Cham, Switzerland, pp 7–22

    Google Scholar 

  • Lorenzana RE, Bernardo R (2009) Accuracy of genotypic value predictions for marker-based selection in biparental plant populations. Theor Appl Genet 120:151–161

    PubMed  Google Scholar 

  • Luedeling E, Brown PH (2011) A global analysis of the comparability of winter chill models for fruit and nut trees. Intl J Biometeorol 55:411–421. https://doi.org/10.1007/s00484-010-0352-y

    Article  Google Scholar 

  • Luedeling E, Girvetz EH, Semenov MA, Brown PH (2011) Climate change affects winter chill for temperate fruit and nut trees. PLoS ONE 6:e20155. https://dx.plos.org/10.1371/journal.pone.0020155

  • Mancero-Castillo D, Beckman T, Harmon P, Chaparro J (2018) A major locus for resistance to Botryosphaeria dothidea in Prunus. Tree Genet Genomes 14:26

    Google Scholar 

  • Maquilan M, Olmstead M, Olmstead J, Dickson D, Chaparro J (2018a) Genetic analyses of resistance to the peach root-knot nematode (Meloidogyne floridensis) using microsatellite markers. Tree Genet Genomes 14:47. https://doi.org/10.1007/s11295-018-1260-2

    Article  Google Scholar 

  • Martínez-García PJ, Parfitt D, Bostock R, Fresnedo-Ramírez J, Vazquez-Lobo A, Ogundiwin EA, Gradziel TM, Crisosto CH (2013a) Application of genomic and quantitative genetic tools to identify candidate resistance genes for brown rot resistance in peach. PLoS ONE8:e78634

    PubMed  PubMed Central  Google Scholar 

  • Martínez-García PJ, Parfitt DE, Ogundiwin EA, Fass J, Chan HM, Ahmad R, Lurie S, Dandekar A, Gradziel TM, Crisosto CH (2013b) High density SNP mapping and QTL analysis for fruit quality characteristics in peach (Prunus persica L.). Tree Genet Genomes 9:19–36

    Google Scholar 

  • Martínez-Gómez P, Prudencio AS, Gradziel TM, Dicenta F (2017) The delay of flowering time in almond: a review of the combined effect of adaptation, mutation and breeding. Euphytica 213:1–10

    Google Scholar 

  • Maulión E, Arroyo LE, Daorden ME, Valentini GH, Cervigni GDL (2016) Performance profiling of Prunus persica (L.) Batsch collection and comprehensive association among fruit quality, agronomic and phenological traits. Sci Hort (Amsterdam) 198:385–397. https://doi.org/10.1016/j.scienta.2015.11.017

    Article  Google Scholar 

  • Mckersie B (2015) Planning for food security in a changing climate. J Exp Bot 66:3435–3450

    CAS  PubMed  Google Scholar 

  • Meneses C, Ulloa-Zepeda L, Cifuentes-Esquivel A, Infante R, Cantin CM, Batlle I, Arús P, Eduardo I (2016) A codominant diagnostic marker for the slow ripening trait in peach. Mol Breed 36:77. https://doi.org/10.1007/s11032-016-0506-7

    Article  CAS  Google Scholar 

  • Micheletti D, Dettori MT, Micali S, Aramini V, Pacheco I, Da Silva Linge C, Foschi S, Banchi E, Barreneche T, Quilot-Turion B, Lambert P, Pascal T, Iglesias I, Carbó J, Wang LR, Ma RJ, Li XW, Gao ZS, Nazzicari N, Troggio M, Bassi D, Rossini L, Verde I, Laurens F, Arús P, Aranzana MJ (2015) Whole-genome analysis of diversity and SNP-major gene association in peach germplasm. PLoS ONE 10:1–19

    Google Scholar 

  • Mnejja M, Garcia-Mas J, Audergon J-M, Arús P (2010) Prunus microsatellite marker transferability across rosaceous crops. Tree Genet Genomes 6:689–700. https://doi.org/10.1007/s11295-010-0284-z

    Article  Google Scholar 

  • Momenpour A, Imani A, Bakhshi D, Akbarpour E (2018) Evaluation of salinity tolerance of some selected almond genotypes budded on GF 677 rootstock. Int J Fruit Sci 18:410–435. https://doi.org/10.1080/15538362.2018.1468850

    Article  Google Scholar 

  • Monet R, Bassi D (2008) Classical genetics and breeding. In: Layne D, Bassi D (eds) The peach. Botany, production and uses. CAB International, Wallingford, UK, pp 61–84

    Google Scholar 

  • Montardit-Tardá F, Ksouri N, Gogorcena Y, Contreras-Moreira B (2018) Genomic delimitation of proximal promoter regions: three approaches in Prunus persica. In: XIV symposium on bioinformatics-JBI 2018, Granada, Spain. http://hdl.handle.net/10261/176678

  • Moreno MA, Gogorcena Y, Pinochet J (2008) Mejora y selección de patrones Prunus tolerantes a estreses abióticos. In: Ávila Gómez CM, Atienza Peñas SG, Moreno Yangüela MT, Cubero Salmerón JI (eds) La Adaptación al Ambiente y los Estreses Abióticos en la Mejora Vegetal. JUNTA DE ANDALUCIA. IFAPA. Consejería de Agricultura, Sevilla, Spain, pp 449–475

    Google Scholar 

  • Nuñez-Lillo G, Cifuentes-Esquivel A, Troggio M, Micheletti D, Infante R, Campos-Vargas R, Orellana A, Blanco-Herrera F, Meneses C (2015) Identification of candidate genes associated with mealiness and maturity date in peach [Prunus persica (L.) Batsch] using QTL analysis and deep sequencing. Tree Genet Genomes 11:86. https://doi.org/10.1007/s11295-015-0911-9

  • Nuñez-Lillo G, Balladares C, Pavez C, Urra C, Sanhueza D, Vendramin E, Dettori MT, Arús P, Verde I, Blanco-Herrera F, Campos-Vargas R, Meneses C (2019) High-density genetic map and QTL analysis of soluble solid content, maturity date, and mealiness in peach using genotyping by sequencing. Sci Hortic (Amsterdam) 257:108734. https://doi.org/10.1016/j.scienta.2019.108734

    Article  CAS  Google Scholar 

  • Obi VI, Barriuso JJ, Moreno MA, Giménez R, Gogorcena Y (2017) Optimizing protocols to evaluate brown rot (Monilinia laxa) susceptibility in peach and nectarine fruits. Australas Plant Pathol 46:183–189. https://doi.org/10.1007/s13313-017-0475-2

    Article  CAS  Google Scholar 

  • Obi VI, Barriuso JJ, Gogorcena Y (2018) Peach brown rot: still in search of an ideal management option. Agriculture 8:125. http://www.mdpi.com/2077-0472/8/8/125

  • Obi VI, Barriuso JJ, Usall J, Gogorcena Y (2019) Breeding strategies for identifying superior peach genotypes resistant to brown rot. Sci Hortic (Amsterdam) 246:1028–1036. https://doi.org/10.1016/j.scienta.2018.10.027

    Google Scholar 

  • Ogundiwin EA, Marti C, Forment J, Pons C, Granell A, Gradziel TM, Peace CP, Crisosto CH (2008) Development of ChillPeach genomic tools and identification of cold-responsive genes in peach fruit. Plant Mol Biol 68:379–397

    CAS  PubMed  Google Scholar 

  • Oliveira Lino L, Pacheco I, Mercier V, Faoro F, Bassi D, Bornard I, Quilot-Turion B (2016) Brown rot strikes Prunus fruit: an ancient fight almost always lost. J Agri Food Chem 64:4029–4047

    CAS  Google Scholar 

  • Pacheco I, Bassi D, Eduardo I, Ciacciulli A, Pirona R, Rossini L (2014) QTL mapping for brown rot (Monilinia fructigena) resistance in an intraspecific peach (Prunus persica L. Batsch) F1 progeny. Tree Genet Genomes 10:1223–1242

    Google Scholar 

  • Pascal T, Aberlenc R, Confolent C, Hoerter M, Lecerf E, Tuéro C, Lambert P (2017) Mapping of new resistance (Vr2, Rm1) and ornamental (Di2, pl) mendelian trait loci in peach. Euphytica 213:1–12

    CAS  Google Scholar 

  • Pascal T, Kervella J, Pfeiffer FG, Sauge MH, Esmenjaud D (1998) Evaluation of the interspecific progeny Prunus persica cv Summergrand × Prunus davidiana for disease resistance and some agronomic features. Acta Hortic 465:185–191

    Google Scholar 

  • Peace CP (2017) DNA-informed breeding of rosaceous crops: promises, progress and prospects. Hort Res 4:1–13. https://doi.org/10.1038/hortres.2017.6

    Article  Google Scholar 

  • Peace C, Norelli JL (2009) Genomics approaches to crop improvement in the Rosaceae. In: Folta KM, Gardiner SE (eds) Genetics and genomics of Rosaceae. In: Plant genetics and genomics: crops and models 6. Springer, New York, pp 19–53. http://link.springer.com/10.1007/978-0-387-77491-6

  • Peace CP, Crisosto CH, Gradziel TM (2005) Endopolygalacturonase: a candidate gene for freestone and melting flesh in peach. Mol Breed 16:21–31

    CAS  Google Scholar 

  • Pereira A (2016) Plant abiotic stress challenges from the changing environment. Front Plant Sci 7:1123. https://www.frontiersin.org/article/10.3389/fpls.2016.01123

  • Pérez S (1992) Miglioramento genetico delle pesco nel Messico. Italy, Bologna, pp 90–92

    Google Scholar 

  • Pérez GS (2009) Duraznero: ecofisiología, mejoramiento genético y cultivo, 2a. Universidad Autónoma de Querétaro, Querétaro, Mexico

    Google Scholar 

  • Pérez S (2017) Análisis del cambio climático y propuestas para promover el cultivo de frutales templados en regiones tropicales. In: INTA (ed) VII Encuentro Latinoamericano Prunus Sin Fronteras. San Pedro, Argentina

    Google Scholar 

  • Pérez S, Montes S, Mejia C (1993) Analysis of peach germplasm in Mexico. J Amer Soc Hortic Sci 118:519–524

    Google Scholar 

  • Picañol R, Eduardo I, Aranzana MJ, Howad W, Batlle I, Iglesias I, Alonso JM, Arús P (2013) Combining linkage and association mapping to search for markers linked to the flat fruit character in peach. Euphytica 190:279–288

    Google Scholar 

  • Pinochet J (2010) Replantac (Rootpac R), a plum-almond hybrid rootstock for replant situations. HortScience 45:299–301

    Google Scholar 

  • Pirona R, Eduardo I, Pacheco I, Da Silva Linge C, Miculan M, Verde I, Tartarini S, Dondini L, Pea G, Bassi D, Rossini L (2013) Fine mapping and identification of a candidate gene for a major locus controlling maturity date in peach. BMC Plant Biol 13:166

    PubMed  PubMed Central  Google Scholar 

  • Pozzi C, Vecchietti A (2009) Peach structural genomics. In: Folta KM, Gardiner SE (eds) Genetics and genomics of Rosaceae. In: Plant genetics and genomics: Crops and models 6. Springer, New York, pp 235–257. http://link.springer.com/10.1007/978-0-387-77491-6

  • Prieto H (2011) Genetic transformation strategies in fruit crops. In: Álvarez M (ed) Genetic transformation. InTech, pp 81–100

    Google Scholar 

  • Promchot S, Boonprakob U, Byrne D (2008) Genotype and environment interaction of low-chill peaches and nectarines in subtropical highlands of Thailand. Thai J Agri Sci 41:53–61

    Google Scholar 

  • Quarta R, Dettori MT, Verde I, Marchesi U, Palombi A (2000) Characterization and evaluation of genetic diversity in peach germplasm using RAPD and AFLP markers. Acta Hortic 546:489–496

    Google Scholar 

  • Quilot B, Wu BH, Kervella J, Génard M, Foulongne M, Moreau K (2004) QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana. Theor Appl Genet 109:884–897

    CAS  PubMed  Google Scholar 

  • Rajapakse S, Belthoff LE, He G, Estager AE, Scorza R, Verde I, Ballard RE, Baird WV, Callahan A, Monet R, Abbott AG (1995) Genetic linkage mapping in peach using morphological, RFLP and RAPD markers. Theor Appl Genet 90:503–510

    CAS  PubMed  Google Scholar 

  • Reig G, Alegre S, Gatius F, Iglesias I (2015) Adaptability of peach cultivars [Prunus persica (L.) Batsch] to the climatic conditions of the Ebro Valley, with special focus on fruit quality. Sci Hortic (Amsterdam) 190:149–160

    Google Scholar 

  • Rhee SY, Dickerson J, Xu D (2006) Bioinformatics and its applications in plant biology. Annu Rev Plant Biol 57:335–360

    CAS  PubMed  Google Scholar 

  • Rodríguez-A J, Sherman WB, Scorza R, Wisniweski M, Okie WR (1994) ‘Evergreen’ peach, its inheritance and dormant behavior. J Amer Soc Hortic Sci 119:789–792

    Google Scholar 

  • Romeu JF, Monforte AJ, Sánchez G, Granell A, García-Brunton J, Badenes ML, Ríos G (2014) Quantitative trait loci affecting reproductive phenology in peach. BMC Plant Biol 14:1–16

    Google Scholar 

  • Rubio M, Pascal T, Bachellez A, Lambert P (2010) Quantitative trait loci analysis of Plum pox virus resistance in Prunus davidiana P1908: new insights on the organization of genomic resistance regions. Tree Genet Genomes 6:291–304

    Google Scholar 

  • Rubio M, Martínez-Gómez P, García JA, Dicenta F (2013) Interspecific transfer of resistance to Plum pox virus from almond to peach by grafting. Ann Appl Biol 163:466–474

    Google Scholar 

  • Sabbadini S, Pandolfini T, Girolomini L, Molesini B, Navacchi O (2015) Peach (Prunus persica L.). In: Wang K (ed) Agrobacterium protocols. Methods in molecular biology. Springer, New York, pp 205–215

    Google Scholar 

  • Sánchez G, Venegas-Caleron M, Salas J, Monforte A, Badenes M, Granell A (2013) An integrative ‘omics’ approach identifies new candidate genes to impact aroma volatiles in peach fruit. BMC Genomics 14:343

    Google Scholar 

  • Sánchez G, Martínez J, Romeu J, García J, Monforte AJ, Badenes ML, Granell A (2014) The peach volatilome modularity is reflected at the genetic and environmental response levels in a QTL mapping population. BMC Plant Biol 14:137

    PubMed  PubMed Central  Google Scholar 

  • Sánchez-Pérez R, Del Cueto J, Dicenta F, Martínez-Gómez P (2014) Recent advancements to study flowering time in almond and other Prunus species. Front Plant Sci 5:1–7. https://www.frontiersin.org/articles/10.3389/fpls.2014.00334/full

  • Sandefur P, Frett T, Clark J, Gasic K, Peace C (2017) A DNA test for routine prediction in breeding of peach blush, Ppe-Rf-SSR. Mol Breed 37:1–15. https://doi.org/10.1007/s11032-016-0615-3

    Article  CAS  Google Scholar 

  • Saucet SB, Van Ghelder C, Abad P, Duval H, Esmenjaud D (2016) Resistance to root-knot nematodes Meloidogyne spp. in woody plants. New Phytol 211:41–56

    CAS  PubMed  Google Scholar 

  • Saucet SB, Van Ghelder C, Abad P, Duval H, Esmenjaud D (2016) Resistance to root-knot nematodes Meloidogyne spp. in woody plants. New Phytol 211:41–56

    Google Scholar 

  • Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, Canese K, Chetvernin V, Church DM, DiCuccio M, Federhen S et al (2009) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 38:5–16

    Google Scholar 

  • Scalabrelli G, Couvillon G (1986) The effect of temperature and bud type on rest completion and the GDH requirement for budbreak in ‘Redhaven’ peach. J Amer Soc Hort Sci 111:537–540

    Google Scholar 

  • Schneider M, Bairoch A, Wu CH, Apweiler R (2005) Plant protein annotation in the UniProt knowledgebase. Plant Physiol 138:59–66

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schomburg I, Chang A, Schomburg D (2002) BRENDA, enzyme data and metabolic information. Nucleic Acids Res 30:47–49

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scorza R, Mehlenbacher S, Lightner G (1985) Inbreeding and coancestry of freestone peach cultivars of the eastern United States and implications for peach germplasm improvement. J Amer Soc Hort Sci 110:547–552

    Google Scholar 

  • Scorza R, Okie W (1990) Peaches. In: Moore J, Ballington JR Jr (eds) Genetic resources of temperate fruit and nut crops. ISHS-Wageningen, The Netherlands, pp 175–232

    Google Scholar 

  • Scorza R, Sherman W (1996) Peaches. In: Janick J, Moore J (eds) Fruit breeding Vol. I. Tree and tropical fruits. Wiley, New York, pp 325–440

    Google Scholar 

  • Shi M, Hu X, Wei Y, Hou X, Yuan X, Liu J, Liu Y (2017) Small RNAs and degradome revealed conserved regulations of miRNAs on auxin-responsive genes during fruit enlargement in peaches. Intl J Mol Sci 18:2599

    Google Scholar 

  • Swiezewski S, Liu F, Magusin A, Dean C (2009) Cold-induced silencing by long antisense transcripts of an Arabidopsis polycomb target. Nature 462:799

    CAS  PubMed  Google Scholar 

  • Testolin R, Marrazo T, Cipriani G, Quarta R, Verde I, Dettori M, Pancaldi M, Sansavini S (2000) Microsatellite DNA in peach (Prunus persica L. Batsch) and its use in fingerprinting and testing the genetic origin of cultivars. Genome 43:512–520

    CAS  PubMed  Google Scholar 

  • Thurow LB, Raseira MCB, Bonow S, Arge LWP, Castro CM (2017) Population genetic analysis of Brazilian peach breeding germplasm. Rev Bras Frutic 39:1–14. https://doi.org/10.1590/0100-29452017166

    Article  Google Scholar 

  • Toyama T (1974) Haploidy in peach. HortScience 9:187–188

    Google Scholar 

  • Turral H, Burke J, Faurès J-M (2011) Climate change, water and food security. Water Report 36. Food and Agriculture Organization of the United Nations, Rome, 200p. http://www.fao.org/docrep/014/i2096e/i2096e00.htm

  • Van Bel M, Diels T, Vancaester E, Kreft L, Botzki A, Van De Peer Y, Coppens F, Vandepoele K (2018) PLAZA 4.0: An integrative resource for functional, evolutionary and comparative plant genomics. Nucleic Acids Res 46:1190–1196

    Google Scholar 

  • van Dijk EL, Jaszczyszyn Y, Naquin D, Thermes C (2018) The third revolution in sequencing technology. Trends Genet 34:666–681

    PubMed  Google Scholar 

  • Van Ghelder C, Lafargue B, Dirlewanger E, Ouassa A, Voisin R, Polidori J, Kleinhentz M, Esmenjaud D (2010) Characterization of the RMja gene for resistance to root-knot nematodes in almond: spectrum, location, and interest for Prunus breeding. Tree Genet Genomes 6:503–511

    Google Scholar 

  • Vanderzande S, Piaskowski JL, Luo F, Edge-Garza DA, Klipfel J, Schaller A, Martin S, Peace C (2018) Crossing the finish line: how to develop diagnostic DNA tests as breeding tools after QTL discovery. J Hortic 5:1–6. https://www.omicsonline.org/open-access/crossing-the-finish-line-how-to-develop-diagnostic-dna-tests-as-breeding-tools-after-qtl-discovery-2376-0354-1000228-99783.html?aid=99783

  • Vanderzande S, Howard NP, Cai L, Da Silva Linge C, Antanaviciute L, Bink MC, Kruisselbrink J, Bassil N, Gasic K, Iezzoni A, Van de Weg E, Peace C (2019) High-quality, genome-wide SNP genotypic data for pedigreed germplasm of the diploid outbreeding species apple, peach, and sweet cherry through a common workflow. bioRxiv. https://doi.org/10.1101/514281

  • Velasco D, Hough J, Aradhya M, Ross-Ibarra J (2016) Evolutionary genomics of peach and almond domestication. G3 Genes|Genomes|Genetics 6:3985–3993. http://www.g3journal.org/content/6/12/3985.abstract

  • Vendramin E, Pea G, Dondini L, Pacheco I, Dettori MT, Gazza L, Scalabrin S, Strozzi F, Tartarini S, Bassi D, Verde I, Rossini L (2014) A unique mutation in a MYB gene cosegregates with the nectarine phenotype in peach. PLoS ONE 9:e90574

    PubMed  PubMed Central  Google Scholar 

  • Verde I, Bassil N, Scalabrin S, Gilmore B, Lawley CT, Gasic K, Micheletti D, Rosyara UR, Cattonaro F, Vendramin E et al (2012) Development and evaluation of a 9K SNP array for peach by internationally coordinated SNP detection and validation in breeding germplasm. PLoS ONE7:e35668

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, Marroni F, Zhebentyayeva T, Dettori MT, Grimwood J, Cattonaro F et al (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45:487–494

    CAS  PubMed  Google Scholar 

  • Verde I, Jenkins J, Dondini L, Micali S, Pagliarani G, Vendramin E, Paris R, Aramini V, Gazza L, Rossini L et al (2017) The Peach v2.0 release: High-resolution linkage mapping and deep resequencing improve chromosome-scale assembly and contiguity. BMC Genomics 18:1–18

    Google Scholar 

  • Wang L, Zhao S, Gu C, Zhou Y, Zhou H, Ma J, Cheng J, Han Y (2013) Deep RNA-Seq uncovers the peach transcriptome landscape. Plant Mol Biol 83:365–377

    CAS  PubMed  Google Scholar 

  • Wang J, Meng X, Dobrovolskaya OB, Orlov YL, Chen M (2017) Non-coding RNAs and their roles in stress response in plants. Genom Proteom Boinformat 15:301–312

    CAS  Google Scholar 

  • Warburton ML, Bliss FA (1996) Genetic diverstiy in peach [Prunus persica (L.) Batsch] revealed by random amplified polymorphic DNA (RAPD) markers and compared to inbreeding coefficients. J Amer Soc Hortic Sci 121:1012–1019

    Google Scholar 

  • Xie R, Li X, Chai M, Song L, Jia H, Wu D, Chen M, Chen K, Aranzana MJ, Gao Z (2010) Evaluation of the genetic diversity of Asian peach accessions using a selected set of SSR markers. Sci Hortic (Amsterdam) 125:622–629

    CAS  Google Scholar 

  • Yamamoto T, Terakami S (2016) Genomics of pear and other Rosaceae fruit trees. Breed Sci 66:148–159. https://www.jstage.jst.go.jp/article/jsbbs/66/1/66_148/_article

  • Yang N, Reighard G, Ritchie D, Okie W, Gasic K (2013) Mapping quantitative trait loci associated with resistance to bacterial spot (Xanthomonas arboricola pv. pruni) in peach. Tree Genet Genomes 9:573–586

    Google Scholar 

  • Yoon J, Liu D, Song W, Liu W, Zhang A, Li S (2006) Genetic diversity and ecogeographical phylogenetic relationships among peach and nectarine cultivars based on Simple Sequence Repeat (SSR) markers. J Amer Soc Hort Sci 131:513–521. http://journal.ashspublications.org/content/131/4/513.abstract

  • Yu J, Hu S, Wang J, Wong GK-S, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science (80-) 296(5565):79–92. http://science.sciencemag.org/content/296/5565/79.abstract

  • Zeballos JL (2012) Identification of genomic regions related to fruit quality traits in peach. CIHEAM-IAMZ, Zaragoza; Universidad de Lleida, Spain, 88p. http://intranet.iamz.ciheam.org/isis/contenidos/busquedaIsis.php

  • Zeballos JL, Abidi W, Giménez R, Monforte AJ, Moreno MA, Gogorcena Y (2016) Mapping QTLs associated with fruit quality traits in peach [Prunus persica (L.) Batsch] using SNP maps. Tree Genet Genomes 12:37. https://doi.org/10.1007/s11295-016-0996-9

  • Zhang B, Wang Q (2015) MicroRNA-based biotechnology for plant improvement. J Cell Physiol 230:1–15

    PubMed  Google Scholar 

  • Zhang C, Zhang B, Ma R, Yu M, Guo S, Guo L, Korir NK (2016) Identification of known and novel microRNAs and their targets in peach (Prunus persica) fruit by high-throughput sequencing. PLoS ONE11:e0159253

    PubMed  PubMed Central  Google Scholar 

  • Zhang X, Huang C, Wu D, Qiao F, Li W, Duan L, Wang K, Xiao Y, Chen G, Liu Q, Xiong L, Yang W, Yan J (2017) High-throughput phenotyping and QTL mapping reveals the genetic architecture of maize plant growth. Plant Physiol 173:1554–1564. http://www.plantphysiol.org/content/173/3/1554.abstract

Download references

This study was supported by the Spanish Research Agency [grant AGL2017-83358-R funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”] and the Government of Aragón [grant A09_23R], co-financed with FEDER funds; and the CSIC [grant 2020AEP119] to Y. Gogorcena. N. Kouri was the recipient of a pre-doctoral contract awarded by the Government of Aragon, Spain. To the memory of M. Badenes for her sincere friendship and for sharing her knowledge in peach, who sadly passed away while this chapter was being edited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yolanda Gogorcena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gogorcena, Y., Sánchez, G., Moreno-Vázquez, S., Pérez, S., Ksouri, N. (2020). Genomic-Based Breeding for Climate-Smart Peach Varieties. In: Kole, C. (eds) Genomic Designing of Climate-Smart Fruit Crops. Springer, Cham. https://doi.org/10.1007/978-3-319-97946-5_8

Download citation

Publish with us

Policies and ethics