Skip to main content

Genetic and Genomic Approaches for Adaptation of Grapevine to Climate Change

  • Chapter
  • First Online:
Genomic Designing of Climate-Smart Fruit Crops

Abstract

The necessity to adapt to climate change is even stronger for grapevine than for other crops, because grape berry composition—a key determinant of fruit and wine quality, typicity and market value— highly depends on “terroir” (complete natural environment), on vintage (annual climate variability), and on their interactions. In the same time, there is a strong demand to reduce the use of pesticides. Thus, the equation that breeders and grape growers must solve has three entries that cannot be dissociated: adaptation to climate change, reduction of pesticides, and maintenance of wine typicity. Although vineyard management may cope to some extent to the short–medium-term effects of climate change, genetic improvement is necessary to provide long-term sustainable solutions to these problems. Most vineyards over the world are planted using vines that harbor two grafted plants’ genomes. Although this makes the range of interactions (scion-atmosphere, rootstock-soil, scion-rootstock) more complex, it also opens up wider possibilities for the genetic improvement of either or both the grafted genotypes. Positive aspects related to grapevine breeding are as follows: (a) a wide genetic diversity of rootstocks and scions that has not been thoroughly explored yet; (b) progress in sequencing technologies that allows high-throughput sequencing of entire genomes, faster mapping of targeted traits and easier determination of genetic relationships; (c) progress in new breeding technologies that potentially permit precise modifications on resident genes; (d) automation of phenotyping that allows faster and more complete monitoring of many traits on relatively large plant populations; (e) functional characterization of an increasing number of genes involved in the control of development, berry metabolism, disease resistance, and adaptation to environment. Difficulties involve: (a) the perennial nature and the large size of the plant that makes field testing long and demanding in manpower; (b) the low efficiency of transformation, regeneration and small size of breeding populations; (c) the complexity of the adaptive traits and the need to define more clearly future ideotypes; (d) the lack of shared and integrative platforms allowing a complete appraisal of the genotype-phenotype-environmental links; (e) legal, market and consumer acceptance of new genotypes. The present chapter provides an overview of suitable strategies and challenges linked to the adaptation of viticulture to a changing environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    New techniques in Agricultural Biotechnology, High Level Group of Scientific Advisors, Explanatory Note 02.

  2. 2.

    REGULATION (EU) No 1308/2013 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 17 December 2013 establishing a common organisation of the markets in agricultural products and repealing Council Regulations (EEC) No 922/72, (EEC) No 234/79, (EC) No 1037/2001 and (EC) No 1234/2007 (OJ L 347, 20.12.2013, p. 671).

  3. 3.

    OIV Resolution: ENO 19/2004.

  4. 4.

    COMMISSION IMPLEMENTING REGULATION (EU) 2018/606 of 19 April 2018 conferring protection under Article 99 of Regulation (EU) No 1308/2013 of the European Parliament and of the Council on the name ‘Dons’ (PDO) (O.J. L 101, 20.4.2018, p.37).

  5. 5.

    COUNCIL REGULATION (EC) No 2100/94 of 27 July 1994 on Community plant varietyrights (OJ L 227, 1.9.1994, p. 1).

References

  • Acquaah G (2012) Principles of plant genetics and breeding. Wiley-Blackwell, Chichester, UK. ISBN 978-0-470-66476-6

    Google Scholar 

  • Adam-Blondon AF, Roux C, Claux D, Butterlin G, Merdinoglu D, This P (2004) Mapping 245 SSR markers on the Vitis vinifera genome: a tool for grape genetics. Theor Appl Genet 109:1017–1027

    CAS  PubMed  Google Scholar 

  • Adam-Blondon AF, Jaillon O, Vezzulli S, Zharkikh A, Troggio M, Velasco R (2011) Genome sequence initiatives. In: Adam-Blondon AF, Martinez-Zapater JM, Kole C (eds) Genetics, genomics, and breeding of grapes. Science Publishers, Enfield, pp 211–234. ISBN:9781578087174

    Google Scholar 

  • Adam-Blondon AF, Alaux M, Pommier C, Cantu D, Cheng ZM, Cramer GR, Davies C, Delrot S, Deluc L, Di Gaspero G, Grimplet J, Fennell A, Londo JP, Kersey P, Mattivi F, Naithani S, Neveu P, Nikolski M, Pezzotti M, Reisch BI, Topfer R, Vivier MA, Ware D, Quesneville H (2016) Towards an open grapevine information system. Hort Res 3:16056

    Google Scholar 

  • Agüero CB, Meredith CP, Dandekar AM (2006) Genetic transformation of Vitis vinifera L. cvs Thompson Seedless and Chardonnay with the pear PGIP and GFP encoding genes. Vitis 45:1

    Google Scholar 

  • Aleynova-Shumakova OA, Dubrovina AS, Manyakhin AY, Kiselev KV (2014) VaCPK20 gene overexpression significantly increased resveratrol content and expression of stilbene synthase genes in cell cultures of Vitis amurensis Rupr. Appl Microbiol Biotechnol 98:5541–5549

    CAS  PubMed  Google Scholar 

  • Allamy L, Darriet P, Pons A (2015) Incidence de la date de récolte sur l’arôme des moûts et des vins des cépages Merlot et Cabernet Sauvignon:approches analytiques et sensorielles. In: Proceedings of the 19th GIESCO Symposium, Montpellier, France, 31 May–5 June 2015

    Google Scholar 

  • Allamy L, Darriet P, Pons A (2016) Identification of «dried fruits» molecular markers found in Merlot and Cabernet-Sauvignon grapes and red wines. In: Proceedings of climate change on wine production: international symposium on sustainable grape and wine production in the context of climate change, Bordeaux, France, 10–13 Apr 2016

    Google Scholar 

  • Alston JM, Fuller KB, Lapsley JT, Soleas G (2011) Too much of a good thing? Causes and consequences of increases in sugar content of California wine grapes. J Wine Econ 6:135–159

    Google Scholar 

  • Allen MS, Lacey MJ (1993) Methoxypyrazine grape flavour: influence of climate, cultivar and viticulture. Wein-Wiss 48:211–213

    CAS  Google Scholar 

  • Amel E, Manning C, Scott B, Koger S (2017) Beyond the roots of human inaction: fostering collective effort toward ecosystem conservation. Science 356:275–279

    CAS  PubMed  Google Scholar 

  • Amyotte B, Bowen AJ, Banks T, Rajcan I, Somers DJ (2017) Mapping the sensory perception of apple using descriptive sensory evaluation in a genome wide association study. PLoS ONE 12:e0171710

    PubMed  PubMed Central  Google Scholar 

  • Anderson C, Choisne N, Adam-Blondon AF, Dry IB (2011) Positional cloning of disease resistance genes in grapevine. In: Adam-Blondon AF, Martinez-Zapater JM, Kole C (eds) Genetics, genomics and breeding of grapes. Science Publishers, Enfield, pp 186–210, ISBN:9781578087174

    Google Scholar 

  • Aradhya MK, Dangl GS, Prins BH, Boursiquot JM, Walker MA, Meredith CP, Simon CJ (2003) Genetic structure and differentiation in cultivated grape, Vitis vinifera L. Genet Res 81:179–192

    CAS  PubMed  Google Scholar 

  • Antolin MC, Baigorri H, De Luis I, Aguirrezabal F, Geny L, Broquedis M, Sanchez-Diaz M (2003) ABA during reproductive development in non-irrigated grapevines (Vitis vinifera L. cv. Tempranillo). Aust J Grape Wine Res 9:169–176

    CAS  Google Scholar 

  • Aradhya M, Wang Y, Walker MA, Prins BH, Koehmstedt AM, Velasco D, Gerrath JM, Dangl GS, Preece JE (2013) Genetic diversity, structure, and patterns of differentiation in the genus Vitis. Plant Syst Evol 299:317–330

    CAS  Google Scholar 

  • Arrizabalaga M, Morales F, Oyarzun M, Delrot S, Gomes E, Irigoyen JJ, Hilbert G, Pascual I (2018) Tempranillo clones differ in the response of berry sugar and anthocyanin accumulation to elevated temperature. Plant Sci 267:74–83

    CAS  PubMed  Google Scholar 

  • Arroyo-García R, Lefort F, Andrés MT, Ibáñez J, Borrego J, Jouve N, Cabello F, Martínez-Zapater JM (2002) Chloroplast microsatellite polymorphisms in Vitis species. Genome 45:1142–1149

    PubMed  Google Scholar 

  • Arroyo-Garcia R, Ruiz-Garcia L, Bolling L, Ocete R, Lopez MA, Arnold C, Ergul A, Soylemezoglu G, Uzun HI, Cabello F, Ibanez J, Aradhya MK, Atanassov A, Atanassov I, Balint S, Cenis JL, Costantini L, Goris-Lavets S, Grando MS, Klein BY, McGovern PE, Merdinoglu D, Pejic I, Pelsy F, Primikirios N, Risovannaya V, Roubelakis-Angelakis KA, Snoussi H, Sotiri P, Tamhankar S, This P, Troshin L, Malpica JM, Lefort F, Martinez-Zapater JM (2006) Multiple origins of cultivated grapevine (Vitis vinifera L. ssp. sativa) based on chloroplast DNA polymorphisms. Mol Ecol 15:3707–3714

    CAS  PubMed  Google Scholar 

  • Arroyo-García R, Cantos M, Lara M, López M-Á, Gallardo A, Ocete CA, Pérez Á, Bánáti H, García JL, Ocete R (2016) Characterization of the largest relic Eurasian wild grapevine reservoir in Southern Iberian Peninsula. Span J Agri Res 14:e0708

    Google Scholar 

  • Azuma A, Yakushiji H, Koshita Y, Kobayashi S (2012) Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Planta 236:1067–1080

    CAS  PubMed  Google Scholar 

  • Bacilieri R, Lacombe T, Le Cunff L, Di Vecchi-Staraz M, Laucou V, Genna B, Peros JP, This P, Boursiquot JM (2013) Genetic structure in cultivated grapevines is linked to geography and human selection. BMC Plant Biol 13:25

    PubMed  PubMed Central  Google Scholar 

  • Balestrini R, Salvioli A, Dal Molin A, Novero M, Gabelli G, Paparelli E, Marroni F, Bonfante P (2017) Impact of an arbuscular mycorrhizal fungus versus a mixed microbial inoculum on the transcriptome reprogramming of grapevine roots. Mycorrhiza 27:417–430

    CAS  PubMed  Google Scholar 

  • Bandurska H, Niedziela J, Chadzinikolau T (2013) Separate and combined responses to water deficit and UV-B radiation. Plant Sci 213:98–105

    Google Scholar 

  • Barba P, Cadle-Davidson L, Harriman J, Glaubitz J, Brooks S, Hyma K, Reisch B (2014) Grapevine powdery mildew resistance and susceptibility loci identified on a high-resolution SNP map. Theor Appl Genet 127:73–84

    CAS  PubMed  Google Scholar 

  • Barba P, Lillis J, Luce RS, Travadon R, Osier M, Baumgartner K, Wilcox WF, Reisch BI, Cadle-Davidson L (2018) Two dominant loci determine resistance to Phomopsis cane lesions in F1 families of hybrid grapevines. Theor Appl Genet 131:1173–1189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barker CL, Donald T, Pauquet J, Ratnaparkhe MB, Bouquet A, Adam-Blondon AF, Thomas MR, Dry I (2005) Genetic and physical mapping of the grapevine powdery mildew resistance gene, Run1, using a bacterial artificial chromosome library. Theor Appl Genet 111:370–377

    CAS  PubMed  Google Scholar 

  • Barlass M, Skene KGM (1978) In vitro propagation of grapevine (Vitis vinifera L.) from fragmented shoot apices. Vitis 17:335–340

    Google Scholar 

  • Barnaba FE, Bellincontro A, Mencarelli F (2014) Portable NIR-AOTF spectroscopy combined with winery FTIR spectroscopy for an easy, rapid, in-field monitoring of Sangiovese grape quality. J Sci Food Agri 94:1071–1077

    CAS  Google Scholar 

  • Barnaud A, Laucou V, This P, Lacombe T, Doligez A (2010) Linkage disequilibrium in wild French grapevine. Vitis vinifera L. subsp. silvestris. Heredity 104:431–437

    CAS  PubMed  Google Scholar 

  • Barrios-Masias FH, Knipfer T, McElrone AJ (2015) Differential responses of grapevine rootstocks to water stress are associated with adjustments in fine root hydraulic physiology and suberization. J Exp Bot 66:6069–6078

    CAS  PubMed  PubMed Central  Google Scholar 

  • Battilana J, Costantini L, Emanuelli F, Sevini F, Segala C, Moser S, Velasco R, Versini G, Grando MS (2009) The 1-deoxy-d-xylulose 5-phosphate synthase gene co-localizes with a major QTL affecting monoterpene content in grapevine. Theor Appl Genet 118:653–669

    CAS  PubMed  Google Scholar 

  • Battilana J, Emanuelli F, Gambino G, Gribaudo I, Gasperi F, Boss PK, Grando MS (2011) Functional effect of grapevine 1-deoxy-D-xylulose 5-phosphate synthase substitution K284N on Muscat flavour formation. J Exp Bot 62:5497–5508

    CAS  PubMed  PubMed Central  Google Scholar 

  • Battilana J, Lorenzi S, Moreira FM, Moreno-Sanz P, Failla O, Emanuelli F, Grando MS (2013) Linkage mapping and molecular diversity at the flower sex locus in wild and cultivated grapevine reveal a prominent SSR haplotype in hermaphrodite plants. Mol Biotechnol 54:1031–1037

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bauerle TL, Smart DR, Bauerle WL, Stockert C, Eissenstat DM (2008) Root foraging in response to heterogenous soil moisture in two grapevines that differ in potential growth rate. New Phytol 179:857–866

    PubMed  Google Scholar 

  • Bavaresco L, Fogher C (1996) Lime-induced chlorosis of grapevine as affected by rootstock and root infection with arbuscular mycorrhiza and Pseudomonas fluorescens. Vitis 35(3):119–123

    CAS  Google Scholar 

  • Bellow S, Latouche G, Brown SC, Poutaraud A, Cerovic ZG (2013) Optical detection of downy mildew in grapevine leaves: daily kinetics of autofluorescence upon infection. J Exp Bot 64:333–341

    CAS  PubMed  Google Scholar 

  • Bert PF, Bordenave L, Donnart M, Hévin C, Ollat N, Decroocq S (2013) Mapping genetic loci for tolerance to lime-induced iron deficiency chlorosis in grapevine rootstocks (Vitis sp.). Theor Appl Genet 126:451–473

    CAS  PubMed  Google Scholar 

  • Bianchi D, Grossi D, Tincani DTG, Simone Di Lorenzo G, Brancadoro L, Rustioni L (2018) Multi-parameter characterization of water stress tolerance in Vitis hybrids for new rootstock selection. Plant Physiol Biochem 132:333–340

    CAS  PubMed  Google Scholar 

  • Bianco L, Cestaro A, Linsmith G, Muranty H, Denancé C, Théron A, Poncet C, Micheletti D, Kerschbamer E, Di Pierro EA, Larger S, Pindo M, Van de Weg E, Davassi A, Laurens F, Velasco R, Durel C-E, Troggio M (2016) Development and validation of the Axiom® Apple 480K SNP genotyping array. Plant J 86:62–74

    CAS  PubMed  Google Scholar 

  • Bigard A, Berhe DT, Maoddi E, Sire Y, Boursiquot JM, Ojeda H, Peros JP, Doligez A, Romieu C, Torregrosa L (2018) Vitis vinifera L. fruit diversity to breed varieties anticipating climate changes. Front Plant Sci 9:455

    Google Scholar 

  • Bindi M, Fibbi L, Gozzini B, Orlandini S, Miglietta F (1996) Modelling the impact of future climate scenarios on yield and yield variability of grapevine. Clim Res 7:213–224

    Google Scholar 

  • Bindi M, Fibbi L, Miglietta F (2001) Free Air CO2 Enrichment (FACE) of grapevine (Vitis vinifera L.): II. Growth and quality of grape and wine in response to elevated CO2 concentrations. Eur J Agron 14:145–155

    Google Scholar 

  • Blanc S, Wiedemann-Merdinoglu S, Dumas V, Mestre P, Merdinoglu D (2012) A reference genetic map of Muscadinia rotundifolia and identification of Ren5, a new major locus for resistance to grapevine powdery mildew. Theor Appl Genet 125:1663–1675

    CAS  PubMed  Google Scholar 

  • Bobeica N, Poni S, Hilbert G, Renaud C, Gomes E, Delrot S, Dai Z (2015) Differential responses of sugar, organic acids and anthocyanins to source-sink modulation in Cabernet Sauvignon and Sangiovese grapevines. Front Plant Sci 6:382

    PubMed  PubMed Central  Google Scholar 

  • Bois B, Zito Calonnec A (2017) Climate vs grapevine pests and diseases worldwide: the first results of a global survey. OENO One 51:133–139

    Google Scholar 

  • Bonada M, Jeffery DW, Petrie PR, Moran MA, Sadras VO (2015) Impact of elevated temperature and water deficit on the chemical and sensory profiles of Barossa Shiraz grapes and wines. Aust J Grape Wine Res 21:240–253

    CAS  Google Scholar 

  • Boss PK, Thomas MR (2002) Association of dwarfism and floral induction with a grape ‘green revolution’ mutation. Nature 416:847–850

    CAS  PubMed  Google Scholar 

  • Bota J, Flexas J, Medrano H (2001) Genetic variability of photosynthesis and water use in Balearic grapevine cultivars. Ann Appl Biol 138:353–361

    Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boubals D (1966) Hérédité de la résistance au phylloxéra radicicole chez la vigne. Annales d’Amélioration des Plantes 16:327–347

    Google Scholar 

  • Boulton R (1980) The general relationship between potassium, sodium and pH in grape juice and wine. Am J Enol Vitic 31:182–186

    CAS  Google Scholar 

  • Bouquet A (1980) Vitis muscadinia hybridization: A new way in grape breeding for disease resistance in France. In: Proceedings of the 3rd international symposium on grape breeding, Davis, USA, 15–20 June 1980

    Google Scholar 

  • Bouquet A (1983) Etude de la résistance au phylloxéra radicicole des hybrides Vitis vinifera × Muscadinia rotundifolia. Vitis 22:311–323

    Google Scholar 

  • Bouquet A (2011) Grapevines and viticulture. In: Adam-Blondon AF, Martinez-Zapater JM, Kole C (eds) Genetics, genomics, and breeding of grapes. Science Publishers, Enfield, pp 1–29. ISBN:9781578087174

    Google Scholar 

  • Bouquet A, Torregrosa L (2003) Micropropagation of the grapevine. In: Jain SM, Ishii K (eds) Micropropagation of woody trees, fruits. Springer, Berlin, pp 319–352. ISBN:978-94-010-0125-0

    Google Scholar 

  • Bouquet A, Torregrosa L, Iocco P, Thomas MR (2009) Grapes. In: Kole C, Hall TC (eds) Compendium of transgenic crop plants: transgenic temperate fruits and nuts. Blackwell Publishing, Oxford, pp 189–232. ISBN:9781405169240

    Google Scholar 

  • Boursiquot JM, Lacombe T, Laucou V, Julliard S, Perrin F-X, Lanier N, Legrand D, Meredith C, This P (2009) Parentage of Merlot and related winegrape cultivars of southwestern France: discovery of the missing link. Aust J Grape Wine Res 15:144–155

    Google Scholar 

  • Bowers JE, Meredith CP (1997) The parentage of a classic wine grape, Cabernet Sauvignon. Nat Genet 16(1):84–87

    CAS  PubMed  Google Scholar 

  • Bowers J, Boursiquot JM, This P, Chu K, Johansson H, Meredith C (1999) Historical genetics: the parentage of Chardonnay, Gamay, and other wine grapes of Northeastern France. Science 285:1562–1565

    CAS  PubMed  Google Scholar 

  • Braun F (2017) Identifikation von „Qualitäts“-Chromosomen in Vitis zur Frühdiagnose von Weinqualität. PhD Thesis

    Google Scholar 

  • Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland T, Glenisson P, Holstege FC, Kim IF, Markowitz V, Matese JC, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29:365–371

    CAS  PubMed  Google Scholar 

  • Buttrose MS (1970) Fruitfulness in grapevines: the response of different cultivars to light, temperature and daylength. Vitis 9:121–125

    Google Scholar 

  • Buttrose MS (1974) Fruitfulness in grapevine: effects of water stress. Vitis 12:299–305

    Google Scholar 

  • Cabezas JA, Cervera MT, Ruiz-Garcia L, Carreno J, Martinez-Zapater JM (2006) A genetic analysis of seed and berry weight in grapevine. Genome 49:1572–1585

    CAS  PubMed  Google Scholar 

  • Cadle-Davidson L (2008) Variation within and between Vitis spp. for foliar resistance to the downy mildew pathogen Plasmopara viticola. Plant Dis 92:1577–1584

    PubMed  Google Scholar 

  • Cadle-Davidson L, Gadoury D, Fresnedo-Ramirez J, Yang S, Barba P, Sun Q, Demmings EM, Seem R, Schaub M, Nowogrodzki A, Kasinathan H, Ledbetter C, Reisch BI (2016) Lessons from a phenotyping center revealed by the genome-guided mapping of powdery mildew resistance loci. Phytopathology 106:1159–1169

    CAS  PubMed  Google Scholar 

  • Caffarra A, Rinaldi M, Eccel E, Rossi V, Pertot I (2012) Modelling the impact of climate change on the interaction between grapevine and its pests and pathogens: European grapevine moth and powdery mildew. Agri Ecosyst Environ 148:89–101

    Google Scholar 

  • Calonnec A, Wiedemann-Merdinoglu S, Delière L, Cartolaro P, Schneider C, Delmotte F (2013) The reliability of leaf bioassays for predicting disease resistance on fruit: a case study on grapevine resistance to downy and powdery mildew. Plant Pathol 62:533–544

    Google Scholar 

  • Canaguier A, Grimplet J, Di Gaspero G, Scalabrin S, Duchene E, Choisne N, Mohellibi N, Guichard C, Rombauts S, Le Clainche I, Berard A, Chauveau A, Bounon R, Rustenholz C, Morgante M, Le Paslier MC, Brunel D, Adam-Blondon AF (2017) A new version of the grapevine reference genome assembly (12X.v2) and of its annotation (VCost.v3). Genom Data 14:56–62

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cangahuala-Inocente GC, Silva MF, Jonhson JM (2011) Arbuscular mycorrhizal symbiosis elicits proteome responses opposite of P-starvation in SO4 grapevine rootstock upon root colonisation with two Glomus species. Mycorrhiza 21:473–493

    CAS  PubMed  Google Scholar 

  • Cao K, Zhou Z, Wang Q, Guo J, Zhao P, Zhu G, Fang W, Chen C, Wang X, Wang X, Tian Z, Wang L (2016) Genome-wide association study of 12 agronomic traits in peach. Nat Commun 7:13246

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carbonell-Bejerano P, Santa Maria E, Torres-Perez R, Royo C, Lijavetzky D, Bravo G, Aguirreolea J, Sanchez-Diaz M, Antolin MC, Martinez-Zapater JM (2013) Thermotolerance responses in ripening berries of Vitis vinifera L. cv Muscat Hamburg. Plant Cell Physiol 54:1200–1216

    CAS  PubMed  Google Scholar 

  • Carbonell-Bejerano P, de Carvalho LC, Dias JEE, Martínez-Zapater JM, Amâncio S (2016) Exploiting Vitis genetic diversity to manage with stress. In: Gerós H, Chaves MM, Medrano H, Delrot S (eds) Grapevine in a changing environment. Wiley, Chichester, pp 347–380. ISBN 978-1-118-73605-0

    Google Scholar 

  • Carbonell-Bejerano P, Royo C, Torres-Pérez R, Grimplet J, Fernandez L, Franco-Zorrilla JM, Lijavetzky D, Baroja E, Martínez J, García-Escudero E, Ibáñez J, Martínez-Zapater JM (2017) Catastrophic unbalanced genome rearrangements cause somatic loss of berry color in grapevine. Plant Physiol 75:1–16

    Google Scholar 

  • Cardone MF, D’Addabbo P, Alkan C, Bergamini C, Catacchio CR, Anaclerio F, Chiatante G, Marra A, Giannuzzi G, Perniola R, Ventura M, Antonacci D (2016) Inter-varietal structural variation in grapevine genomes. Plant J 88:648–661

    CAS  PubMed  Google Scholar 

  • Carrier G, Le Cunff L, Dereeper A, Legrand D, Sabot F, Bouchez O, Audeguin L, Boursiquot JM, This P (2012) Transposable elements are a major cause of somatic polymorphism in Vitis vinifera L. PLoS ONE 7:e32973

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carrier G, Huang YF, Le Cunff L, Fournier-Level S, Vialet S, Souquet JM, Cheynier V, Terrier N, This P (2013) Selection of candidate genes for grape proanthocyanidin pathway by an integrative approach. Plant Physiol Biochem 72:87–95

    CAS  PubMed  Google Scholar 

  • Carvalho LC, Amancio S (2018) Cutting the Gordian Knot of abiotic stress in grapevine: from the test tube to climate change adaptation. Physiol Plant. https://doi.org/10.1111/ppl.12857

    Article  PubMed  PubMed Central  Google Scholar 

  • Carvalho LC, Coito JL, Goncalves EF, Chaves MM, Amancio S (2016) Differential physiological response of the grapevine varieties Touriga Nacional and Trincadeira to combined heat, drought and light stresses. Plant Biol 18(Suppl 1):101–111

    CAS  PubMed  Google Scholar 

  • Cattonaro F, Testolin R, Scalabrin S, Morgante M, Gaspero GD (2014) Genetic diversity in the grapevine germplasm. In: Tuberosa R, Graner A, Frison E (eds) Genomics of plant genetic resources: volume 1. Managing, sequencing and mining genetic resources. Springer Netherlands, Dordrecht, pp 683–704. ISBN:978-94-007-7572-5

    Google Scholar 

  • Chaib J, Torregrosa L, Mackenzie D, Corena P, Bouquet A, Thomas MR (2010) The microvine—a model system for rapid forward and reverse genetics of grapevines. Plant J 61:1083–1092

    Google Scholar 

  • Chen J, Wang N, Fang LC, Liang ZC, Li SH, Wu BH (2015) Construction of a high-density genetic map and QTLs mapping for sugars and acids in grape berries. BMC Plant Biol 15:1–14

    Google Scholar 

  • Cheng S, Xie X, Xu Y, Zhang C, Wang X, Xhang J, Wang Y (2016) Genetic transformation of a fruit specific, highly expressed stilbene synthase gene fron Chinese wild Vitis quinquangularis. Planta 234:1041–1053

    Google Scholar 

  • Chenu K, Chapman SC, Tardieu F, McLean G, Welcker C, Hammer GL (2009) Simulating the yield impacts of organ-level quantitative trait loci associated with drought response in maize: a ‘gene-to-phenotype’ modeling approach. Genetics 183:1507–1523

    PubMed  PubMed Central  Google Scholar 

  • Chin C-S, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT, Clum A, Dunn C, O’Malley R, Figueroa-Balderas R, Morales-Cruz A, Cramer GR, Delledonne M, Luo CY, Ecker JR, Cantu D, Rank DR, Schatz MC (2016) Phased diploid genome assembly with single-molecule real-time sequencing. Nature Meth 13:1050–1054

    CAS  Google Scholar 

  • Cho RJ, Mindrinos M, Richards DR, Sapolsky RJ, Anderson M, Drenkard E, Dewdney L, Reuber TL, Stammers M, Federspiel N, Theologis A, Yang WH, Hubbell E, Au M, Chung EY, Lashkari D, Lemieux B, Dean C, Lipshutz RJ, Ausubel FM, Davis RW, Oefner PJ (1999) Genome-wide mapping with biallelic markers in Arabidopsis thaliana. Nat Genet 23:203–207

    CAS  PubMed  Google Scholar 

  • Choné X (2001) Stem water potential is a sensitive indicator of grapevine water status. Ann Bot 87:477–483

    Google Scholar 

  • Chuine I, Yiou P, Viovy N, Seguin B, Daux V, Le Roy Ladurie E (2004) Historical phenology: grape ripening as a past climate indicator. Nature 432:289–290

    CAS  PubMed  Google Scholar 

  • Cipriani G, Spadotto A, Jurman I, Di Gaspero G, Crespan M, Meneghetti S, Frare E, Vignani R, Cresti M, Morgante M, Pezzotti M, Pe E, Policriti A, Testolin R (2010) The SSR-based molecular profile of 1005 grapevine (Vitis vinifera L.) accessions uncovers new synonymy and parentages, and reveals a large admixture amongst varieties of different geographic origin. Theor Appl Genet 121:1569–1585

    PubMed  Google Scholar 

  • Cipriani G, Di Gaspero G, Canaguier A, Jusseaume J, Tassin J, Lemainque A, Thareau V, Adam-Blondon A-F, Testolin R (2011) Molecular linkage maps: strategies, resources and achievements. In: Adam-Blondon AF, Martinez-Zapater JM, Kole C (eds) Genetics, genomics and breeding of grapes. Science Publishers, Enfield, pp 111–136

    Google Scholar 

  • Cochetel N, Escudié F, Cookson SJ, Dai Z, Vivin P, Bert P-F, Muñoz MS, Delrot S, Klopp C, Ollat N, Lauvergeat V (2017) Root transcriptomic responses of grafted grapevines to heterogeneous nitrogen availability depend on rootstock genotype. J Exp Bot 68:4339–4355

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen SD, Tarara JM, Gambetta GA, Matthews MA, Kennedy JA (2012) Impact of diurnal temperature variation on grape berry development, proanthocyanidin accumulation, and the expression of flavonoid pathway genes. J Exp Bot 63:2655–2665

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coito JL, Ramos MJN, Cunha J, Silva HG, Amâncio S, Costa MMR, Rocheta M (2017) VviAPRT3 and VviFSEX: two genes involved in sex specification able to distinguish different flower types in Vitis. Front Plant Sci 8:98

    PubMed  PubMed Central  Google Scholar 

  • Comas LH, Anderson LJ, Dunst RM, Lakso AN, Eissenstat DM (2005) Canopy and environmental control of root dynamics in a long-term study of Concord grape. New Phytol 167:829–840

    CAS  PubMed  Google Scholar 

  • Corso M, Vannozzi A, Maza E, Vitulo N, Meggio F, Pitacco A, Telatin A, D’Angelo M, Feltrin E, Negri AS, Prinsi B, Valle G, Ramina A, Bouzayen M, Bonghi C, Lucchin M (2015) Comprehensive transcript profiling of two grapevine rootstock genotypes contrasting in drought susceptibility links the phenylpropanoid pathway to enhanced tolerance. J Exp Bot 66:5739–5752

    CAS  PubMed  PubMed Central  Google Scholar 

  • Costantini L, Battilana J, Lamaj F, Fanizza G, Grando MS (2008) Berry and phenology-related traits in grapevine (Vitis vinifera L.): from quantitative trait loci to underlying genes. BMC Plant Biol 8:38

    Google Scholar 

  • Coupel-Ledru A, Lebon É, Christophe A, Doligez A, Cabrera-Bosquet L, Péchier P, Hamard P, This P, Simonneau T (2014) Genetic variation in a grapevine progeny (Vitis vinifera L. cvs Grenache × Syrah) reveals inconsistencies between maintenance of daytime leaf water potential and response of transpiration rate under drought. J Exp Bot 65:6205–6218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coupel-Ledru A, Lebon E, Christophe A, Gallo A, Gago P, Pantin F, Doligez A, Simonneau T (2016) Reduced nighttime transpiration is a relevant breeding target for high water-use efficiency in grapevine. Proc Natl Acad Sci USA 113:8963–8968

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coutos-Thévenot P, Poinssot B, Bonomelli A, Yean H, Breda C, Buffard D, Esnault R, Hain R, Boulay M (2001) In vitro tolerance to Botrytis cinerea of grapevine 41B rootstock in transgenic plants expressing the stilbene synthase Vst1 gene under the control of a pathogen inducible PR 10 promoter. J Exp Bot 52:901–910

    PubMed  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163

    Google Scholar 

  • Cuadros-Inostroza A, Ruiz-Lara S, Gonzalez E, Eckardt A, Willmitzer L, Pena-Cortes H (2016) GC-MS metabolic profiling of Cabernet Sauvignon and Merlot cultivars during grapevine berry development and network analysis reveals a stage- and cultivar-dependent connectivity of primary metabolites. Metabolomics 12:39

    PubMed  PubMed Central  Google Scholar 

  • Cuéllar T, Pascaud F, Verdeil J-L, Torregrosa L, Adam-Blondon A-F, Thibaud J-B, Sentenac H, Gaillard I (2010) A grapevine Shaker inward K+ channel activated by the calcineurin B-like calcium sensor 1–protein kinase CIPK23 network is expressed in grape berries under drought stress conditions. Plant J 61:58–69

    PubMed  Google Scholar 

  • Cutanda-Perez MC, Ageorges A, Gomez C, Vialet S, Terrier N, Romieu C, Torregrosa L (2009) Ectopic expression of VlmybA1 in grapevine activates a narrow set of genes involved in anthocyanin synthesis and transport. Plant Mol Biol 69:633–648

    CAS  PubMed  Google Scholar 

  • Da Silva C, Zamperin G, Ferrarini A, Minio A, Dal Molin A, Venturini L, Buson G, Tononi P, Avanzato C, Zago E, Boido E, Dellacassa E, Gaggero C, Pezzotti M, Carrau F, Delledonne M (2013) The high polyphenol content of grapevine cultivar Tannat berries is conferred primarily by genes that are not shared with the reference genome. Plant Cell 25:4777–4788

    PubMed  PubMed Central  Google Scholar 

  • Dabauza M, Velasco L, Pazos-Navaro M, Perez-Benito E, Hellin P, Flores P, Gomez-Garay A, Martinez MC, Lacasa A (2014) Enhanced resistance to Botrytis cinerea in genetically-modified Vitis vinifera L. plants over-expressing the grapevine stilbene synthase gene. Plant Cell Tiss Org Cult 120:229–238

    Google Scholar 

  • Dai ZW, Vivin P, Ollat N, Barrieu F, Delrot S (2010) Physiological and modelling approaches to understand water and carbon fluxes in relation with grape berry growth and quality. Aust J Grape Wine Res 16:70–85

    CAS  Google Scholar 

  • Dai ZW, Ollat N, Gomès E, Decroocq S, Tandonnet JP, Bordenave L, Pieri P, Hilbert G, Kappel C, Van Leeuwen C et al (2011) Ecophysiological, genetic and molecular causes of variation in grape berry weight and composition: a review. Am J Enol Vitic 64:413–425

    Google Scholar 

  • Dai ZW, Leon C, Feil R, Lunn JE, Delrot S, Gomes E (2013) Metabolic profiling reveals coordinated switches in primary carbohydrate metabolism in grape berry (Vitis vinifera L.), a non-climacteric fleshy fruit. J Exp Bot 64:1345–1355

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dai ZW, Meddar M, Renaud C, Merlin I, Hilbert G, Delrot S, Gomes E (2014) Long-term in vitro culture of grape berries and its application to assess the effects of sugar supply on anthocyanin accumulation. J Exp Bot 65:4665–4677

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dai L, Wang D, Xie X, Zhang C, Wang X, Xu Y, Wang Y, Zhang J (2016) The novel gene VpPR4-1 from Vitis pseudoreticulata increases powdery mildew resistance in transgenic Vitis vinifera L. Front Plant Sci 7:695

    PubMed  PubMed Central  Google Scholar 

  • Dai L, Xie X, Yang Y, Zhang C, Xu Y, Zhang J. Wang Y (2017) VpUR9, a novel RING-type ubiquitin ligase gene from Vitis pseudoreticulata, is involved in powdery mildew response in transgenic V. vinifera plants. Plant Cell Tiss Org Cult 131:41–49

    Google Scholar 

  • Dalbó MA, Ye GN, Weeden NF, Steinkellner H, Sefc KM, Reisch BI (2000) A gene controlling sex in grapevines placed on a molecular marker-based genetic map. Genome 43:333–340

    PubMed  Google Scholar 

  • Dalla Costa L, Pessina S, Campa M, Hancke MV, Flachoskwy H, Malnoy M (2016) efficient heat-shock removal of the selectable marker gene in genetically modified grapevine. Plant Cell Tiss Org Cult 124:471–481

    CAS  Google Scholar 

  • Dalla Costa L, Malnoy M, Gribaudo I (2017) Breeding next generation tree fruits: technical and legal challenges. Hort Res 4:17067. https://doi.org/10.1038/hortres.2017.67

    Article  CAS  Google Scholar 

  • Dalla Costa L, Emanuelli F, Trenti M. Moreno-Sanz P. Lorenzi S, Coller E, Moser S, Slagheaufi D, Cestaro A, Larcher R, Gribaudo I, Malnoy M, Grando S (2018) Induction of terpene biosynthesis in berries of microvine transformed with VvDXS1 alleles Front Plant Sci 2017 8:2244

    Google Scholar 

  • Dandekar AM, Gouran H, Ibáñez AM, Uratsu SL, Agüero CB, McFarland S, Borhani Y, Feldstein PA, Bruening G, Nascimento R, Goulart LR, Pardington PE, Chaudhary A, Norvell M, Civerolo E, Gupta G (2012) An engineered innate immune defense protects grapevines from Pierce disease. Proc Nat Acad Sci USA 109:3721–3725

    Google Scholar 

  • Dandekar AM, Jacobson A, Ibáñez AM, Gouran H, Dolan DL, Agüero CB, Uratsu SL, Just R, Zaini PA (2019) Trans-graft protection against Pierce’s disease mediated by transgenic grapevine rootstocks. Front Plant Sci. 10:84

    PubMed  PubMed Central  Google Scholar 

  • Das P, Majumder AL (2019) Transcriptome analysis of grapevine under salinity and identification of key genes responsible for salt tolerance. Funct Integr Genom 19:61–73

    CAS  Google Scholar 

  • Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510

    CAS  PubMed  Google Scholar 

  • Davies WJ, Tardieu F, Trejo CL (1994) How do chemical signals work in plants that grow in drying soil? Plant Physiol 104:309–314

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Andrès MT, Cabezas JA, Cervera MT, Borrego J, Martinez-Zapater JM, Jouve N (2007) Molecular characterization of grapevine rootstocks maintained in germplasm collections. Am J Enol Viticult 58:75–86

    Google Scholar 

  • De Andrès MT, Benito A, Perez-Rivera G, Ocete R, Lopez MA, Gaforio L, Munoz G, Cabello F, Martinez-Zapater JM, Arroyo-Garcia R (2012) Genetic diversity of wild grapevine populations in Spain and their genetic relationships with cultivated grapevines. Mol Ecol 21:800–816

    PubMed  Google Scholar 

  • De Bei R, Fuentes S, Gilliham M, Tyerman S, Edwards E, Bianchini N, Smith J, Collins C (2016) VitiCanopy: a free computer app to estimate canopy vigor and porosity for grapevine. Sensors 16(4). https://doi.org/10.3390/s16040585

  • DeBolt S, Ristic R, Iland PG, Ford CM (2008) Altered light interception reduces grape berry weight and modulates organic acid biosynthesis during development. Hort Sci 43:957–961

    Google Scholar 

  • de Herralde F, del Mar Alsina M, Aranda X, Save R, Biel C (2006) Effects of rootstocks and irrigation regime on hydraulic architecture of Vitis vinifera L. cv. Tempranillo. J Intl Sci Vigne Vin 40:133–139

    Google Scholar 

  • de Herralde F, Savé R, Aranda X, Biel C (2010) Grapevine roots and soil environment: growth, distribution and function. In: Delrot S, Medrano H, Or E, Bavaresco L, Grando S (eds) Methodologies and results in grapevine research. Springer, Netherlands, Dordrecht, pp 1–20. ISBN 978-90-481-9283-0

    Google Scholar 

  • De Lorenzis G, Chipashvili R, Failla O, Maghradze D (2015) Study of genetic variability in Vitis vinifera L. germplasm by high-throughput Vitis18kSNP array: the case of Georgian genetic resources. BMC Plant Biol 15:154

    Google Scholar 

  • Degu A, Morcia C, Tumino G, Hochberg U, Toubiana D, Mattivi F, Schneider A, Bosca P, Cattivelli L, Terzi V, Fait A (2015) Metabolite profiling elucidates communalities and differences in the polyphenol biosynthetic pathways of red and white Muscat genotypes. Plant Physiol Biochem 86:24–33

    CAS  PubMed  Google Scholar 

  • Demmings EM, Cadle-Davidson L, Sacks G, Fennell A, Gadoury DM, Sun Q, Schweitzer P, Londo J, Ledbetter C, Clark M, Luby J, The SL, Mansfield AK, Manns D, Springer L, Chitwood D, Barba P, Hwang C-F, Sapkota S, Fresnedo J, Yang S, Reisch BI (2017) VitisGen discoveries in local and centralized trait evaluation. Acta Hort 1188:323–328

    Google Scholar 

  • Destrac-Irvine A, Van Leeuwen C (2017) The Vitadapt project: extensive phenotyping of a wide range of varieties in order to optimize the use of genetic diversity within the Vitis vinifera species as a tool for adaptation to a changing environment. Proceedings Sustainable grape and wine production in the context of climate change. Bordeaux, 10–13 April 2016

    Google Scholar 

  • Dhekney SA, Li ZT, Gray DJ (2011) Grapevines engineered to express cisgenic vitis vinifera thaumatin-like protein exhibit fungal disease resistance. In vitro Cell Dev Biol Plant 47:458–466

    Google Scholar 

  • Di Gaspero G, Peterlunger E, Testolin R, Edwards KJ, Cipriani G (2000) Conservation of microsatellite loci within the genus Vitis. Theor Appl Genet 101:301–308

    Google Scholar 

  • Di Gaspero G, Cipriani G, Marrazzo MT, Andreetta D, Prado Castro MJ, Peterlunger E, Testolin R (2005) Isolation of (AC)n-microsatellites in Vitis vinifera L. and analysis of genetic background in grapevines under marker assisted selection. Mol Breed 15:11–20

    Google Scholar 

  • Di Gaspero G, Cipriani G, Adam-Blondon A-F, Testolin R (2007) Linkage maps of grapevine displaying the chromosomal locations of 420 microsatellite markers and 82 markers for R-gene candidates. Theor Appl Genet 114:1249–1263

    PubMed  Google Scholar 

  • Di Genova A, Almeida A, Munoz-Espinoza C, Vizoso P, Travisany D, Moraga C, Pinto M, Hinrichsen P, Orellana A, Maass A (2014) Whole genome comparison between table and wine grapes reveals a comprehensive catalog of structural variants. BMC Plant Biol 14:7

    PubMed  PubMed Central  Google Scholar 

  • Diaz-Riquelme J, Zhurov V, Rioja C, Perez-Moreno I, Torres-Perez R, Grimplet J, Carbonell-Bejerano P, Bajda S, Van Leeuwen T, Martinez-Zapater JM, Grbic M, Grbic V (2016) Comparative genome-wide transcriptome analysis of Vitis vinifera responses to adapted and non-adapted strains of two-spotted spider mite, Tetranychus urticae. BMC Genomics 17:74

    PubMed  PubMed Central  Google Scholar 

  • Divilov K, Wiesner-Hanks T, Barba P, Cadle-Davidson L, Reisch BI (2017) Computer vision for high-throughput quantitative phenotyping: a case study of grapevine downy mildew sporulation and leaf trichomes. Phytopathology 107:1549–1555

    PubMed  Google Scholar 

  • Divilov K, Barba P, Cadle-Davidson L, Reisch BI (2018) Single and multiple phenotype QTL analyses of downy mildew resistance in interspecific grapevines. Theor Appl Genet 131:1133–1143

    PubMed  PubMed Central  Google Scholar 

  • Doligez A, Bouquet A, Danglot Y, Lahogue F, Riaz S, Meredith CP, Edwards KJ, This P (2002) Genetic mapping of grapevine (Vitis vinifera L.) applied to the detection of QTLs for seedlessness and berry weight. Theor Appl Genet 105:780–795

    CAS  PubMed  Google Scholar 

  • Doligez A, Adam-Blondon AF, Cipriani G, Di Gaspero G, Laucou V, Merdinoglu D, Meredith CP, Riaz S, Roux C, This P (2006a) An integrated SSR map of grapevine based on five mapping populations. Theor Appl Genet 113:369–382

    CAS  PubMed  Google Scholar 

  • Doligez A, Audiot E, Baumes R, This P (2006b) QTLs for muscat flavour and monoterpenic odorant content in grapevine (Vitis vinifera L.). Mol Breed 18:109–125

    CAS  Google Scholar 

  • Doligez A, Bertrand Y, Farnos M, Grolier M, Romieu C, Esnault F, Dias S, Berger G, François P, Pons T, Ortigosa P, Roux C, Houel C, Laucou V, Bacilieri R, Péros JP, This P (2013) New stable QTLs for berry weight do not colocalize with QTLs for seed traits in cultivated grapevine (Vitis vinifera L.). BMC Plant Biol 13:217

    Google Scholar 

  • Donati C, Hiller NL, Tettelin H, Muzzi A, Croucher NJ, Angiuoli SV, Oggioni M, Dunning Hotopp JC, Hu FZ, Riley DR, Covacci A, Mitchell TJ, Bentley SD, Kilian M, Ehrlich GD, Rappuoli R, Moxon ER, Masignani V (2010) Structure and dynamics of the pan-genome of Streptococcus pneumoniae and closely related species. Genome Biol 11:R107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doucleff M, Jin Y, Gao F, Riaz S, Krivanek AF (2004) A genetic linkage map of grape, utilizing Vitis rupestris and Vitis arizonica. Theor Appl Genet 109:1178–1187

    CAS  PubMed  Google Scholar 

  • Downton WJS (1977) Influence of rootstocks on the accumulation of chloride, sodium and potassium in grapevines. Aust J Agri Res 28:879–889

    CAS  Google Scholar 

  • Downey MO, Dokoozlian NK, Krstic M (2006) Cultural practice and environmental impacts on the flavonoid composition of grapes and wine: a review of recent research. Am J Enol Vitic 57:3

    Google Scholar 

  • Dubrovina AS, Aleynova OA, Kiselev KV (2016) Influence of overexpression of the true and false alternative transcripts of calcium-dependent protein kinase CPK9 and CPK3a genes on the growth, stress tolerance, and resveratrol content in Vitis amurensis cell cultures. Acta Physiol Plant 38:78

    Google Scholar 

  • Dubrovina AS, Aleynova OA, Manyakhin AY, Kiselev KV (2018) The role of Calcium dependent protein kinase genes CPK16, CPK25, CPK30 and CPK32 in stilbene biosynthesis and the stress resistance of grapevine Vitis amurensis Rupr. Appl Biochem Microbiol 54:410–417

    CAS  Google Scholar 

  • Duchêne E, Meluc D, Panigai L, Langellier F, Monamy C, Schneider C (2001) Elaboration du nombre de baies par m2 pour le pinot noir et le chardonnay en Alsace, Bourgogne et Champagne. J Intl Sci Vigne Vin 35:215–224

    Google Scholar 

  • Duchêne E, Schneider C (2005) Grapevine and climatic changes: a glance at the situation in Alsace. Agron Sustain Dev 25:93–99

    Google Scholar 

  • Duchêne E, Butterlin G, Claudel P, Dumas V, Jaegli N, Merdinoglu D (2009) A grapevine (Vitis vinifera L.) deoxy-D-xylulose synthase gene colocates with a major quantitative trait loci for terpenol content. Theor Appl Genet 118:541–552

    PubMed  Google Scholar 

  • Duchêne E, Huard F, Dumas V, Schneider C, Merdinoglu D (2010) The challenge of adapting grapevine varieties to climate change. Clim Res 41:193–204

    Google Scholar 

  • Duchêne E, Butterlin G, Dumas V, Merdinoglu D (2012a) Towards the adaptation of grapevine varieties to climate change: QTLs and candidate genes for developmental stages. Theor Appl Genet 124:623–635

    PubMed  Google Scholar 

  • Duchêne E, Dumas V, Jaegli N, Merdinoglu D (2012b) Deciphering the ability of different grapevine genotypes to accumulate sugar in berries. Aust J Grape Wine Res 18:319–328

    Google Scholar 

  • Duchêne E, Dumas V, Jaegli N, Merdinoglu D (2014) Genetic variability of descriptors for grapevine berry acidity in Riesling, Gewürztraminer and their progeny Aust J Grape Wine Res 20:91–99

    Google Scholar 

  • Dumont C, Cochetel N, Lauvergeat V, Cookson SJ, Ollat N, Vivin P (2016) Screening root morphology in grafted grapevine using 2D digital images from rhizotrons. In: Proceedings of the first international symposium on grapevine roots, Rauscedo, Italy, 16–17 Oct 2016. Acta Hort, vol 1136, pp 213–220

    Google Scholar 

  • Dunlevy JD, Dennis EG, Soole KL, Perkins MV, Davies C, Boss PK (2013) A methyltransferase essential for the methoxypyrazine-derived flavour of wine. Plant J 75:606–617

    CAS  PubMed  Google Scholar 

  • Dunlevy JD, Blackmore DH, Watkins JL, Edwards EJ, Walker RR, Walker AR (2019) SSR genotyping and sodium exclusion phenotyping of a Vitis hybrid population (K51-40 × Schwarzmann). Acta Hort (in press)

    Google Scholar 

  • Düring H (1994) Photosynthesis of ungrafted and grafted grapevines: effects of rootstock genotype and plant age. Am J Enol Vitic 45:297–299

    Google Scholar 

  • Eibach R, Hastrich H, Töpfer R (2003) Inheritance of aroma compunds. Acta Hort 603:337–344

    CAS  Google Scholar 

  • Eibach R, Zyprian E, Welter L, Töpfer R (2007) The use of molecular markers for pyramiding resistance genes in grapevine breeding. Vitis 46:120–124

    CAS  Google Scholar 

  • Elshire R, Glaubitz J, Sun Q, Poland J, Kawamoto K, Buckler E, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Emanuelli F, Lorenzi S, Grzeskowiak L, Catalano V, Stefanini M, Troggio M, Myles S, Martinez-Zapater JM, Zyprian E, Moreira FM, Grando MS (2013) Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape. BMC Plant Biol 13:39

    CAS  PubMed  PubMed Central  Google Scholar 

  • Emanuelli F, Sordo M, Lorenzi S, Battilana J, Grando MS (2014) Development of user-friendly functional molecular markers for VvDXS gene conferring muscat flavor in grapevine. Mol Breed 33:235–241

    CAS  PubMed  Google Scholar 

  • Erisman JW, Brasseur G, Ciais P, van Eekeren N, Theis TL (2015) Put people at the centre of global risk management. Nature 519:151–153

    CAS  PubMed  Google Scholar 

  • Escudier JL (2009) Vins de qualité à teneur réduite en alcool. In: Colloque de clôture du programme national de recherche en alimentation et nutrition humaine, Paris, 10–12 Mar 2009, Agence Nationale de la Recherche, pp 55–59

    Google Scholar 

  • Etienne A, Genard M, Lobit P, Mbeguie-A-Mbeguie D, Bugaud C (2013) What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. J Exp Bot 64:1451–1469

    CAS  PubMed  Google Scholar 

  • Falcao LD, de Revel G, Perello MC, Moutsiou A, Zanus MC, Bordignon-Luiz MT (2007) A survey of seasonal temperatures and vineyard altitude influences on 2-methoxy-3-isobutylpyrazine, C-13-norisoprenoids, and the sensory profile of Brazilian Cabernet Sauvignon wines. J Agri Food Chem 55:3605

    CAS  Google Scholar 

  • Fan C, Pu N, Wang X, Wang Y, Fang L, Xu W, Zhang J (2008) Agrobacterium-mediated genetic transformation of grapevine (Vitis vinifera L.) with a novel stilbene synthase gene from Chinese wild Vitis pseudoreticulata. Plant Cell Tiss Org Cult 92:197–206

    CAS  Google Scholar 

  • Fanizza G, Lamaj F, Costantini L, Chaabane R, Grando MS (2005) QTL analysis for fruit yield components in table grapes (Vitis vinifera). Theor Appl Genet 111:658–664

    CAS  PubMed  Google Scholar 

  • Fasoli M, Dal Santo S, Zenoni S, Tornielli GB, Farina L, Zamboni A, Porceddu A, Venturini L, Bicego M, Murino V, Ferrarini A, Delledonne M, Pezzotti M (2012) The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant into a maturation program. Plant Cell 24:3489–3505

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fechter I, Hausmann L, Daum M, Rosleff Sörensen TR, Viehöver P, Weisshaar B, Töpfer R (2012) Candidate genes within a 143 kb region of the flower sex locus in Vitis. Mol Genet Genomics 287:247–259

    CAS  PubMed  Google Scholar 

  • Fechter I, Hausmann L, Zyprian E, Daum M, Holtgräwe D, Weisshaar B, Töpfer R (2014) QTL analysis of flowering time and ripening traits suggests an impact of a genomic region on linkage group 1 in Vitis. Theor Appl Genet 127:1857–1872

    PubMed  PubMed Central  Google Scholar 

  • Feechan A, Anderson C, Torregrosa L, Jermakow A, Mestre P, Wiedemann-Merdinoglu S, Merdinoglu D, Walker AR, Cadle-Davidson L, Reisch B, Aubourg S, Bentahar N, Shrestha B, Bouquet A, Adam-Blondon AF, Thomas MR, Dry IB (2013) Genetic dissection of a TIR-NB-LRR locus from the wild North American grapevine species Muscadinia rotundifolia identifies paralogous genes conferring resistance to major fungal and oomycete pathogens in cultivated grapevine. Plant J 76:661–674

    CAS  PubMed  Google Scholar 

  • Fernandez L, Doligez A, Lopez G, Thomas MR, Bouquet A, Torregrosa L (2006) Somatic chimerism, genetic inheritance, and mapping of the fleshless berry (flb) mutation in grapevine (Vitis vinifera L.). Genome 49:721–728

    CAS  PubMed  Google Scholar 

  • Fernandez L, Torregrosa L, Segura V, Bouquet A, Martinez-Zapater JM (2010) Transposon-induced gene activation as a mechanism generating cluster shape somatic variation in grapevine. Plant J 61:545–557

    CAS  PubMed  Google Scholar 

  • Fernandez L, Chaib J, Martinez-Zapater JM, Thomas MR, Torregrosa L (2013) Mis-expression of a PISTILLATA-like MADS box gene prevents fruit development in grapevine. Plant J 73:918–928

    CAS  PubMed  Google Scholar 

  • Fidelibus MW, Christensen LP, Katayama DG, Ramming DW (2008) Early-ripening grapevine cultivars for dry-on-vine raisins on an open-gable trellis. Horttechnology 18:740–745

    Google Scholar 

  • Fila G, Gardiman M, Belvini P, Meggio F, Pitacco A (2014) A comparison of different modelling solutions for studying grapevine phenology under present and future climate scenarios. Agri Forest Meteorol 195–196:192–205

    Google Scholar 

  • Fischer BM, Salakhutdinov I, Akkurt M, Eibach R, Edwards KJ, Töpfer R, Zyprian EM (2004) Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theor Appl Genet 108:501–515

    CAS  PubMed  Google Scholar 

  • Flexas J, Galmès A, Gallé J, Gulias J, Pou A, Ribas-Carbo M, Tomas M, Medrano H (2010) Improving water use efficiency in grapevines: potential physiological targets for biotechnological improvement. Aust J Grape Wine Res 16:106–121

    CAS  Google Scholar 

  • Fodor A, Segura V, Denis M, Neuenschwander S, Fournier-Level A, Chatelet P, Homa FAA, Lacombe T, This P, Le Cunff L (2014) Genome-wide prediction methods in highly diverse and heterozygous species: proof-of-concept through simulation in grapevine. PLoS ONE 9:e110436

    PubMed  PubMed Central  Google Scholar 

  • Foria S (2015) The Rpv3 locus in grapevine: DNA variation and relevance for conventional breeding. PhD Dissertation, University of Udine

    Google Scholar 

  • Foria S, Magris G, Copetti D, Coleman C, Morgante M, Di Gaspero G (2018) InDel markers for monitoring the introgression of downy mildew resistance from wild relatives into grape varieties. Mol Breed 38:124

    Google Scholar 

  • Fornasiero A (2016) Identification and mapping of loci controlling viability in Vitis vinifera crosses. PhD Dissertation, University of Udine

    Google Scholar 

  • Fort KP, Fraga J, Grossi D, Walker AM (2017) Early measures of drought tolerance in four grape rootstocks. J Am Soc Hort Sci 142:36–46

    Google Scholar 

  • Fournier-Level A, Le Cunff L, Gomez C, Doligez A, Ageorges A, Roux C, Bertrand Y, Souquet JM, Cheynier V, This P (2009) Quantitative genetic bases of anthocyanin variation in grape (Vitis vinifera L. ssp sativa) berry: a quantitative trait locus to quantitative trait nucleotide integrated study. Genetics 183:1127–1139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fournier-Level A, Hugueney P, Verries C, This P, Ageorges A (2011) Genetic mechanisms underlying the methylation level of anthocyanins in grape (Vitis vinifera L.) BMC Plant Biol 1:179

    Google Scholar 

  • Fregoni M, Scienza A, Miravalle R (1978) Evaluation précoce de la résistance à la sécheresse. In: Proceedings of the symposium of grapevine genetics and breeding, Bordeaux, France, 14–18 June 1977. INRA, pp 287–296

    Google Scholar 

  • Friedel M, Frotscher J, Nitsch M, Hofmann M, Bogs J, Stoll M, Dietrich H (2016) Light promotes expression of monoterpene and flavonol metabolic genes and enhances flavour of winegrape berries (Vitis vinifera L. cv. Riesling). Aust J Grape Wine Res 22:409–421

    CAS  Google Scholar 

  • Gambetta GA, Manuck CM, Drucker ST, Shaghasi T, Fort K, Matthews MA, Walker MA, McElrone AJ (2012) The relationship between root hydraulics and scion vigour across Vitis rootstocks: what role do root aquaporins play? J Exp Bot 63:6445–6455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gambino G, Perrone I, Carra A, Chitarra W, Boccacci P, Marinono D, Narberis M, Maghuly F, Laimer M, Gribaudo I (2010) Transgene silencing in grapevines transformed with GFLV resistance genes: analysis of variable expression of transgene, siRNAs production and cytosine methylation. Transgen Res 19:17–27

    CAS  Google Scholar 

  • Gambino G, Dal Molin A, Boccacci P, Minio A, Chitarra W, Avanzato CG, Tononi P, Perrone I, Raimondi S, Schneider A, Pezzotti M, Mannini F, Gribaudo I, Delledonne M (2017) Whole-genome sequencing and SNV genotyping of ‘Nebbiolo’ (Vitis vinifera L.) clones. Sci Rep 7:17294

    Google Scholar 

  • Garcia de Cortazar Atauri I (2006) Adaptation du modèle STICS à la vigne (Vitis vinifera L.). Utilisation dans le cadre d’une étude d’impact du changement climatique à l’échelle de la France. Ph.D. Dissertation, Ecole Nationale Supérieure Agronomique, Montpellier, France

    Google Scholar 

  • Garrido-Cardenas JA, Mesa-Valle C, Manzano-Agugliaro F (2018) Trends in plant research using molecular markers. Planta 247:543–557

    CAS  PubMed  Google Scholar 

  • Gaudillère J-P, Van Leeuwen C, Ollat N (2002) Carbon isotope composition of sugars in grapevine, an integrated indicator of vineyard water status. J Exp Bot 53:757–763

    PubMed  Google Scholar 

  • Gautier A, Cookson SJ, Hevin C, Vivin P, Lauvergeat V, Mollier A (2018a) Phosphorus acquisition efficiency and phosphorus remobilization mediate genotype-specific differences in shoot phosphorus content in grapevine. Tree Physioly 38:1742–1751

    CAS  Google Scholar 

  • Gautier A, Cookson SJ, Lagalle L, Ollat N, Marguerit E (2018b) Petiole phosphorus concentration is controlled by the rootstock genetic background in grapevine. Submitted update

    Google Scholar 

  • Geny L, Ollat N, Soyer JP (1998) Les boutures fructifères de vigne: validation d’un modèle d’étude de la physiologie de la vigne. II. Etude du développement de la grappe. J Intl Sci Vigne Vin 32:83–90

    CAS  Google Scholar 

  • Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63:90–104

    Google Scholar 

  • Giovenzana V, Beghi R, Parisi S, Brancadoro L, Guidetti R (2018) Potential effectiveness of visible and near infrared spectroscopy coupled with wavelength selection for real time grapevine leaf water status measurement. J Sci Food Agri 98:1935–1943

    CAS  Google Scholar 

  • Gong H, Blackmore DH, Clingeleffer PR, Sykes S, Jha D, Tester M, Walker RR (2011) Contrast in chloride exclusion between two grapevine gentoypes and its variation in theur hybrid progeny. J Exp Bot 62:989–999

    CAS  PubMed  Google Scholar 

  • Gladstones JS (1992) Viticulture and environment: a study of the effects of environment on grapegrowing and wine qualities, with emphasis on present and future areas for growing winegrapes in Australia. Winetitles, Adelaide

    Google Scholar 

  • Gong HJ, Blackmore DH, Clingeleffer PR, Sykes SR, Walker RR (2014) Variation for potassium and sodium accumulation in a family from a cross between grapevine rootstocks K 51-40 and 140 Ruggeri. Vitis 53:65–72

    CAS  Google Scholar 

  • González-Techera A, Jubany S, León IPd, Boido E, Dellacassa E, Carrau FM, Hinrichsen P, Gaggero C (2004) Molecular diversity within clones of cv. Tannat (Vitis vinifera). Vitis 43:179–185

    Google Scholar 

  • Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17:333–351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goremykin VV, Salamini F, Velasco R, Viola R (2009) Mitochondrial DNA of Vitis vinifera and the issue of rampant horizontal gene transfer. Mol Biol Evol 26:99–110

    CAS  PubMed  Google Scholar 

  • Grando MS, Bellin D, Edwards KJ, Pozzi C, Stefanini M, Velasco R (2003) Molecular linkage maps of Vitis vinifera L. and Vitis riparia Mchx. Theor Appl Genet 106:1213–1224

    CAS  PubMed  Google Scholar 

  • Grant RS, Matthews MA (1996) The influence of phosphorus availability, scion, and rootstock on grapevine shoot growth, leaf area, and petiol phosphorus concentration. Am J Enol Vitic 47:217–224

    Google Scholar 

  • Grassi F, Labra M, Imazio S, Spada A, Sgorbati S, Scienza A, Sala F (2003) Evidence of a secondary grapevine domestication centre detected by SSR analysis. Theor Appl Genet 107:1315–1320

    CAS  PubMed  Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudotestcross mapping strategy and RAPD markers. Genetics 137:1121–1137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gray DJ, Dhekney SA, Li ZT, Cordts JM (2011) Genetic engineering of grapevine and progress toward commercial deployment. In: Mou B, Scorza R (eds) Transgenic horticultural crops: challenges and opportunities, 1st edn. CRC Press, Boca Raton, pp 317–331. ISBN 9781420093780

    Google Scholar 

  • Greer DH, Weedon MM (2012) Modelling photosynthetic responses to temperature of grapevine (Vitis vinifera cv. Semillon) leaves on vines grown in a hot climate. Plant Cell Environ 35:1050–1064

    PubMed  Google Scholar 

  • Greer DH, Weedon MM (2013) The impact of high temperatures on Vitis vinifera cv. Semillon grapevine performance and berry ripening. Front Plant Sci 4:491

    Google Scholar 

  • Gregan SM, Wargent JJ, Liu L, Shinkle J, Hofmann R, Winefield C, Trought M, Jordan B (2012) Effects of solar ultraviolet radiation and canopy manipulation on the biochemical composition of Sauvignon blanc grapes. Austr J Grape Wine Res 18:227–238

    CAS  Google Scholar 

  • Grimplet J, Van Hemert J, Carbonell-Bejerano P, Diaz-Riquelme J, Dickerson J, Fennell A, Pezzotti M, Martinez-Zapater JM (2012) Comparative analysis of grapevine whole-genome gene predictions, functional annotation, categorization and integration of the predicted gene sequences. BMC Res Notes 5:213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grimplet J, Adam-Blondon AF, Bert PF, Bitz O, Cantu D, Davies C, Delrot S, Pezzotti M, Rombauts S, Cramer G (2014) The grapevine gene nomenclature system. BMC Genom 15:1077

    Google Scholar 

  • Grosskinsky DK, Svensgaard J, Christensen S, Roitsch T (2015) Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap. J Exp Bot 66:5429–5440

    CAS  PubMed  Google Scholar 

  • Grzeskowiak L, Costantini L, Lorenzi S, Grando MS (2013) Candidate loci for phenology and fruitfulness contributing to the phenotypic variability observed in grapevine. Theor Appl Genet 126:2763–2776

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guillaumie S, Ilg A, Réty S, Brette M, Trossat-Magnin C, Decroocq S, Léon C, Keime C, Ye T, Baltenweck-Guyot R, Claudel P, Bordenave L, Vanbrabant S, Duchêne E, Delrot S, Darriet P, Hugueney P, Gomès E (2013) Genetic analysis of the biosynthesis of 2-methoxy-3-isobutylpyrazine, a major grape-derived aroma compound impacting wine quality. Plant Physiol 162:604–615

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guilpart N, Metay A, Gary C (2014) Grapevine bud fertility and number of berries per bunch are determined by water and nitrogen stress around flowering in the previous year. Eur J Agron 54:9–20

    Google Scholar 

  • Guimier S, Delmotte F, Miclot AS, Fabre F, MazetI, Couture C, SchneiderC, Delière L (2019), OSCAR, a national observatory to support the durable deployment of disease-resistant grapevine varieties. In: Proceedings of the XII international conference on grapevine breeding and genetics, Bordeaux, France, 15–20 July 2018. Acta Hortic, in press

    Google Scholar 

  • Habran A, Commisso M, Helwi P, Hilbert G, Negri S, Ollat N, Gomes E, van Leeuwen C, Guzzo F, Delrot S (2016) Roostocks/scion/nitrogen interactions affect secondary metabolism in the grape berry. Front Plant Sci 7:1134

    PubMed  PubMed Central  Google Scholar 

  • Hammer GL, Chapman S, Van Oosterom E, Podlich DW (2005) Trait physiology and crop modeling as a framework to link phenotypic complexity to underlying genetic systems. Aust J Agri Res 56:947–960

    Google Scholar 

  • Hannah L, Roehrdanz PR, Ikegami M, Shepard AV, Shaw MR, Tabor G, Zhi L, Marquet PA, Hijmans RJ (2013) Climate change, wine, and conservation. Proc Natl Acad Sci USA110:6907–6912

    Google Scholar 

  • Hausmann L, Neumann K, Eibach R, Zyprian E, Töpfer R (2009) Development of a molecular marker for an anthocyanin 5-O-glucosyltransferase homologous gene of Vitis ssp. correlated with anthocyanin 3,5-diglucoside formation in berry skin. Acta Hort 827:457–460

    CAS  Google Scholar 

  • He R, Wu J, Aguero CB, Li X, Liu S, Wang C, Walker MA, Lu J (2017) Overexpression of a thaumatin-like protein gene from Vitis amurensis improves downy mildew resistance in Vitis vinifera grapevine. Protoplasma 254:1579–1589

    CAS  PubMed  Google Scholar 

  • He R, Zhuang Y, Cai Y, Agüero CB, Liu S, Wu J, Deng S, Walker MA, Lu J, Zhang Y (2018) Overexpression of 9-cis-epoxycarotenoid dioxygenase cisgene in grapevine increases drought tolerance and results in pleiotropic effects. Front Plant Sci 9:970

    PubMed  PubMed Central  Google Scholar 

  • Hemstad PR, Reisch BI (1985) In vitro production of galls induced by Agrobacterium tumefaciens and Agrobacterium rhizogenes on Vitis and Rubus. J Plant Physiol 120:9–17

    Google Scholar 

  • Henderson SW, Baumann U, Blackmore DH, Walker AM, Walker AM, Gilliham M (2014) Shoot chloride exclusion and salt tolerance in grapevine is associated with differential ion transporter expression in roots. BMC Plant Biol 14:273–291

    PubMed  PubMed Central  Google Scholar 

  • Henderson SW, Wege S, Qiu J, Blackmore DH, Walker AR, Tyerman SD, Walker RR, Gilliham M (2015) Grapevine and Arabidopsis cation-chloride cotransporters localize to the Golgi and trans-Golgi network and indirectly influence long-distance ion transport and plant salt tolerance. Plant Physiol 169:2215–2229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henderson SW, Dunlevy JD, Wu Y, Blackmore DH, Walker RR, Edwards EJ, Gilliham M, Walker AR (2018) Functional differences in transport properties of natural HKT1;1 variants influence shoot Na+ exclusion in grapevine rootstocks. New Phytol 217:1113–1127

    CAS  PubMed  Google Scholar 

  • Hoffmann S, Di Gaspero G, Kovács L, Howard S, Kiss E, Galbács Z, Testolin R, Kozma P (2008) Resistance to Erysiphe necator in the grapevine ‘Kishmish vatkana’ is controlled by a single locus through restriction of hyphal growth. Theor Appl Genet 116:427–438

    CAS  PubMed  Google Scholar 

  • Holderegger R, Kamm U, Gugerli F (2006) Adaptive vs. neutral genetic diversity: implications for landscape genetics. Landscape Ecol 21:797–807

    Google Scholar 

  • Houel C, Chatbanyong R, Doligez A, Rienth M, Foria S, Luchaire N, Roux C, Adivèze A, Lopez G, Farnos M, Pellegrino A, This P, Romieu C, Torregrosa L (2015) Identification of stable QTLs for vegetative and reproductive traits in the microvine (Vitis vinifera L.) using the 18 K Infinium chip. BMC Plant Biol 15:205

    Google Scholar 

  • Huang YF, Doligez A, Fournier-Level A, Le Cunff L, Bertrand Y, Canaguier A, Morel C, Miralles V, Veran F, Souquet JM, Cheynier V, Terrier N, This P (2012) Dissecting genetic architecture of grape proanthocyanidin composition through quantitative trait locus mapping. BMC Plant Biol 12:30

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YF, Vilat S, Guiraud JL, Torregrosa L, Bertrand Y, Cheynier V, This P, Terrier N (2014) A negative MYB regulator of proanthocyanidin accumulation, identified through expression quantitative locus mapping in the grape berry New Phytol 201:795–809

    Google Scholar 

  • Huglin P (1978) Nouveau mode d’évaluation des possibilités héliothermiques d’un milieu viticole. CR Acad Agric 64:1117–1126

    Google Scholar 

  • Huglin P, Schneider C (1998) Biologie et écologie de la vigne. Tec et Doc. Lavoisier, Paris. ISBN: 9782743002602

    Google Scholar 

  • Hunt HV, Lawes MC, Bower MA, Haeger JW, Howe CJ (2010) A banned variety was the mother of several major wine grapes. Biol Lett 6:367–369

    CAS  PubMed  Google Scholar 

  • Hvarleva TD, Russanov KE, Bakalova AT, Zhiponova MK, Djakova GJ, Atanassov AI, Atanassov II (2009) Microsatelite linkage map based on F2 population from Bulgarian grapevine cultivar Storgozia. Biotechnol Biotechnologic Equip 23:1126–1130

    CAS  Google Scholar 

  • Hwang CF, Xu K, Hu R, Zhou R, Riaz S, Walker MA (2010) Cloning and characterization of XiR1, a locus responsible for dagger nematode resistance in grape. Theor Appl Genet 121:789–799

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hyma KE, Barba P, Wang M, Londo JP, Acharya CB, Mitchell SE, Sun Q, Reisch B, Cadle-Davidson L (2015) Heterozygous mapping strategy (HetMappS) for high resolution genotyping-by-sequencing markers: a case study in grapevine. PLoS ONE 10:e0134880

    PubMed  PubMed Central  Google Scholar 

  • Iacono F, Buccella A, Peterlunger E (1998) Water stress and rootstock influence on leaf gas exchange of grafted and ungrafted grapevines. Sci Hort 75:27–39

    Google Scholar 

  • Ibáñez J, Vargas AM, Palancar M, Borrego J, de Andrés MT (2009) Genetic relationships among table grape varieties. Am J Enol Vitic 60:35–42

    Google Scholar 

  • Ibáñez S, Grimplet J, Baroja E, Hernaiz S, Ibáñez J (2019) Characterization of the reproductive performance of a collection of grapevine varieties. In: Delrot S, Ollat N, Gallusci N (eds) Proceedings of the XII international conference on grapevine breeding and genetics. Acta Hortic 1248:345–351

    Google Scholar 

  • Intrigliolo DS, Pérez D, Risco D, Yeves A, Castel JR (2012) Yield components and grape composition responses to seasonal water deficits in Tempranillo grapevines. Irrig Sci 30:339–349

    Google Scholar 

  • IPCC (2013) Climate Change 2013: the physical science basis. Contribution of working group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for policy makers. Cambridge University Press, Cambridge

    Google Scholar 

  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pe ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quetier F, Wincker P (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    CAS  PubMed  Google Scholar 

  • Jansen RK, Kaittanis C, Saski C, Lee SB, Tomkins J, Alverson AJ, Daniell H (2006) Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genome sequences: effects of taxon sampling and phylogenetic methods on resolving relationships among rosids. BMC Evol Biol 6:32

    PubMed  PubMed Central  Google Scholar 

  • Jánváry L, Hoffmann T, Pfeiffer J, Hausmann L, Töpfer R, Fischer TC, Schwab W (2009) A double mutation in the anthocyanin 5-O-glucosyltransferase gene disrupts enzymatic activity in Vitis vinifera L. J Agric Food Chem 57:3512–3518

    Google Scholar 

  • Jiao L, Zhang Y, Lu J (2017) Overexpression of a stress-responsive U-box protein gene VaPUB affects the accumulation of resistance related proteins in Vitis vinifera‘Thompson Seedless’. Plant Physiol Biochem 112:53–63

    CAS  PubMed  Google Scholar 

  • Jones GV, Davis RE (2000) Climate influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. Am J Enol Vitic 51:249–261

    Google Scholar 

  • Jones GV, White MA, Cooper OR, Storchmann K (2005) Climate change and global wine quality. Clim Change 73:319–343

    Google Scholar 

  • Joshi R, Nayak S (2010) Gene pyramiding—a broad spectrum technique for developing durable stress resistance in crops. Biotechnol Mol Biol Rev 5:51–60

    CAS  Google Scholar 

  • Juenger TE, McKay JK, Hausmann N, Keurentjes JJB, Sen S, Stowe KA, Dawson TE, Simms EL, Richards JH (2005) Identification and characterization of QTL underlying whole-plant physiology in Arabidopsis thaliana: 13C, stomatal conductance and transpiration efficiency. Plant, Cell Environ 28:697–708

    CAS  Google Scholar 

  • Karaagac E, Vargas A, Andrés M, Carreño I, Ibáñez J, Carreño J, Martínez-Zapater JM, Cabezas JA (2012) Marker-assisted selection for seedlessness in table grape breeding. Tree Genet Genomes 8:1003–1015

    Google Scholar 

  • Keller M (2015) The science of grapevines—anatomy and physiology, 2nd edn. Academic Press, Elsevier, San Diego. ISBN 978-0-12-419987-3

    Google Scholar 

  • Keller M, Tarara JM, Mills LJ (2010) Spring temperatures alter reproductive development in grapevines. Aust J Grape Wine Res 16:445–454

    Google Scholar 

  • Kicherer A, Herzog K, Bendel N, Kluck HC, Backhaus A, Wieland M, Rose JC, Klingbeil L, Labe T, Hohl C, Petry W, Kuhlmann H, Seiffert U, Topfer R (2017) Phenoliner: a new field phenotyping platform for grapevine research. Sensors 17:1625

    PubMed  PubMed Central  Google Scholar 

  • Kim H, Kim JS (2014) A guide to genome engineering with programmable nucleases. Nat Rev Genet 15:321–334

    CAS  PubMed  Google Scholar 

  • Kliewer WM, Torres RE (1972) Effect of controlled day and night temperatures on grape coloration. Am J Enol Vitic 23:71–77

    Google Scholar 

  • Knipfer T, Eustis A, Brodersen C, Walker AM, McElrone AJ (2015) Grapevine species from varied native habitats exhibit differences in embolism formation/repair associated with leaf gas exchange and root pressure. Plant Cell Environ 38:1503–1513

    PubMed  Google Scholar 

  • Kobayashi S, Ishimaru M, Hiraoka K, Honda C (2002) Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis. Planta 215:924–933

    CAS  PubMed  Google Scholar 

  • Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon-induced mutations in grape skin color. Science 304:982

    PubMed  Google Scholar 

  • Kodur S, Tisdall JM, Tang C, Walker RR (2010) Accumulation of potassium in grapevine rootstocks (Vitis) as affected by dry matter partitioning, root traits and transpiration. Aust J Grape Wine Res 16:273–282

    CAS  Google Scholar 

  • Kodur S, Tisdall JM, Clingeleffer PR, Walker RR (2013) Regulation of berry quality parameters in ‘Shiraz’ grapevines through rootstocks (Vitis). Vitis 52:125–128

    Google Scholar 

  • Kofler N, Collins JP, Kuzma J, Marris E, Esvelt K, Nelson MP, Newhouse A, Rothshild LJ, Vigliotti VS, Semenov M, Jacobsen R, Dahlman JE, Prince S, Caccona A, Brown T, Scmitz OJ (2018) Editing nature: local roots of global governance. Science 262:527–529

    Google Scholar 

  • Kosicki M, Tomberg K, Bradley A (2018) Repair of double-strand breaks induced by CrIsPr–Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol 16:763–775

    Google Scholar 

  • Koyama K, Goto-Yamamoto N (2008) Bunch shading during different developmental stages affects the phenolic biosynthesis in berry skins of ‘Cabernet Sauvignon’ grapes. J Am Soc Hort Sci 133:743–753

    Google Scholar 

  • Kruglyak L (1997) The use of a genetic map of biallelic markers in linkage studies. Nat Genet 17:21–24

    CAS  PubMed  Google Scholar 

  • Kuczmog A, Galambos A, Horváth S, Mátai A, Kozma P, Szegedi E, Putnoky P (2012) Mapping of crown gall resistance locus Rcg1 in grapevine. Theor Appl Genet 125:1565–1574

    CAS  PubMed  Google Scholar 

  • Kwasniewski MT, Vanden Heuvel JE, Pan BS, Sacks GL (2010) Timing of cluster light environment manipulation during grape development affects C-13 norisoprenoid and carotenoid concentrations in Riesling J Agri Food Chem 58:6841–6849

    Google Scholar 

  • Lacombe T, Boursiquot JM, Laucou V, Di Vecchi-Staraz M, Peros JP, This P (2013) Large-scale parentage analysis in an extended set of grapevine cultivars (Vitis vinifera L.). Theor Appl Genet 126:401–414

    PubMed  Google Scholar 

  • Laucou V, Lacombe T, Dechesne F, Siret R, Bruno JP, Dessup M, Dessup T, Ortigosa P, Parra P, Roux C, Santoni S, Vares D, Peros JP, Boursiquot JM, This P (2011) High throughput analysis of grape genetic diversity as a tool for germplasm collection management. Theor Appl Genet 122:1233–1245

    CAS  PubMed  Google Scholar 

  • Laucou V, Launay A, Bacilieri R, Lacombe T, Adam-Blondon AF, Berard A, Chauveau A, de Andres MT, Hausmann L, Ibanez J, Le Paslier MC, Maghradze D, Martinez-Zapater JM, Maul E, Ponnaiah M, Topfer R, Peros JP, Boursiquot JM (2018) Extended diversity analysis of cultivated grapevine Vitis vinifera with 10 K genome-wide SNPs. PLoS ONE 13:e0192540

    PubMed  PubMed Central  Google Scholar 

  • Laurens F, Aranzana MJ, Arus P, Bassi D, Bink M, Bonany J, Caprera A, Corelli-Grappadelli L, Costes E, Durel C-E, Mauroux J-B, Muranty H, Nazzicari N, Pascal T, Patocchi A, Peil A, Quilot-Turion B, Rossini L, Stella A, Troggio M, Velasco R, van de Weg E (2018) An integrated approach for increasing breeding efficiency in apple and peach in Europe. Hort Res 5:11

    Google Scholar 

  • Lebon G, Duchene E, Brun O, Clement C (2005) Phenology of flowering and starch accumulation in grape (Vitis vinifera L.) cuttings and vines. Ann Bot 95:943–948

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lecourieux F, Kappel C, Pieri P, Charon J, Pillet J, Hilbert G, Renaud C, Gomès E, Delrot S, Lecourieux D (2017) Dissecting the biochemical and transcriptomic effects of a locally applied heat treatment on developing Cabernet Sauvignon grape berries. Front Plant Sci 8:53

    PubMed  PubMed Central  Google Scholar 

  • Lecourt J, Lauvergeat V, Ollat N, Vivin P, Cookson SJ (2015) Shoot and root ionome responses to nitrate supply in grafted grapevines are rootstock genotype dependent. Aust J Grape Wine Res 21:311–318

    Google Scholar 

  • Le Henanff G, Farine S, Kieffer-Mazet F, Miclot AS, Heitz T, Mestre P, Bertsch C, Chong J (2011) Vitis vinifera VvNPR1.1 is the functional ortholog of AtNPR1 and its overexpression in grapevine triggers constitutive activation of PR genes and enhanced resistance to powdery mildew. Planta 234:405–417

    CAS  PubMed  Google Scholar 

  • Leida C, Dal Ri A, Dalla Costa L, Gomez M. Pompili V, Sonego P, Engelen K, Masuero D, Rios G, Moser C (2017) Insights into the role of the berry-specific ethylene responsive factor VviERF045. Front Plant Sci 7:1793

    Google Scholar 

  • Le Paslier MC, Choisne N, Scalabrin S, Bacilieri R, Berard A, Bounon R, Boursiquot J-M, Bras M, Brunel D, Chauveau A, Di Gaspero G, Hausmann L, Lacombe T, Laucou V, Launay A, Martinez-Zapater J, Morgante M, Berard A, Quesneville H, Töpfer R, Torres-Perez R, Adam-Blondon AF (2013) The GrapeReSeq 18 K Vitis genotyping chip. In: Proceedings of the ninth international symposium on grapevine physiology and biotechnology, La Serena, Chile, 21–26 Apr 2013

    Google Scholar 

  • Li Y, Bardaji I (2017) Adapting the wine industry in China to climate change: challenges and opportunities. OENO One 51:71–89

    Google Scholar 

  • Li ZT, Dhekney SA, Gray DJ (2010) PR-1 gene family of grapevine: a uniquely duplicated PR-1 gene from a Vitis interspecific hybrid confers high resistance level to bacterial disease in transgenic tobacco. Plant Cell Rep 30:1–11

    PubMed  Google Scholar 

  • Li ZT, Hopkins DL, Gray DJ (2015) Overexpression of antimicrobial lytic peptides protects grapevine from Pierce’s disease under greenhouse but not field conditions. Transgen Res 24:821–836

    CAS  Google Scholar 

  • Liang Z, Wu B, Fan P, Yang C, Duan W, Zheng X, Liu C, Li S (2008) Anthocyanin composition and content in grape berry skin in Vitis germplasm. Food Chem 111:837–844

    CAS  Google Scholar 

  • Lijavevsky D, Ruiz-Garcia L, Cabezas JA, De Andrés MT, Bravo G, Ibanez A, Carreno J, Cabello F, Ibanez J, Martinez-Zapater JM (2006) Molecular genetics of berry colour variation in table grape. Mol Genet Genom 276:427–435

    Google Scholar 

  • Lijavetzky D, Cabezas J, Ibanez A, Rodriguez V, Martinez-Zapater J (2007) High-throughput SNP discovery and genotyping in grapevine (Vitis vinifera L.) by combining a re-sequencing approach and SNPlex technology. BMC Genomics 8:424

    Google Scholar 

  • Li-Mallet A, Rabot A, Geny L (2016) Factors controlling inflorescence primordia formation of grapevine: their role in latent bud fruitfulness—a review. Can J Bot 94:147–163

    Google Scholar 

  • Lin H, Leng H, Guo Y, Kondo S, Zhao Y, Shi G, Guo X (2019) QTLs and candidate genes for downy mildew resistance conferred by interspecific grape (V. vinifera L. × V. amurensis Rupr.) crossing. Sci Hort 244:200–207

    CAS  Google Scholar 

  • Liu HF, Wu BH, Fan PG, Li SH, Li LS (2006) Sugar and acid concentrations in 98 grape cultivars analyzed by principal component analysis. J Sci Food Agri 86:1526–1536

    CAS  Google Scholar 

  • Liu Z, Guo X, Guo Y, Lin H, Zhang P, Zhao Y, Li K, Li C (2013) SSR and SRAP marker based linkage map of Vitis amurensis Rupr. Pak J Bot 45:191–195

    Google Scholar 

  • Lodhi MA, Daly MJ, Ye GN, Weeden NF, Reisch BI (1995) A molecular marker based linkage map of Vitis. Genome 38:786–794

    CAS  PubMed  Google Scholar 

  • Lopes MS, Mendonca D, Rodrigues dos Santos M, Eiras-Dias JE, da Camara Machado A (2009) New insights on the genetic basis of Portuguese grapevine and on grapevine domestication. Genome 52:790–800

    CAS  PubMed  Google Scholar 

  • Lovisolo C, Tramontini S, Flexas J, Schubert A (2008) Mercurial inhibition of root hydraulic conductance in Vitis spp. rootstocks under water stress. Environ Exp Bot 63:178–182

    CAS  Google Scholar 

  • Ma H, Xiang G, Li Z, Wang Y, Dou M, Su L, Yin X, Yin X, Liu R, Wang Y, Xu Y (2018) Grapevine VpPR10.1 functions in resistance to Plasmopara viticola through triggering a cell death-like defence response by interacting with VpVDAC3. Plant Biotechnol J 16:1488–1501

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahanil S, Ramming D, Cadle-Davidson M, Owens C, Garris A, Myles S, Cadle-Davidson L (2012) Development of marker sets useful in the early selection of Ren4 powdery mildew resistance and seedlessness for table and raisin grape breeding. Theor Appl Genet 124:23–33

    CAS  PubMed  Google Scholar 

  • Malabarba J, Buffon V, Mariath J, Maraschin FS, Margis-Pinheiro M, Pasquali G, Revers L (2018) Manipulation of VviAGL11 expression changes the seed content in grapevine. Plant Sci 269:126–135

    CAS  PubMed  Google Scholar 

  • Malacarne G, Costantini L, Coller E, Battilana J, Velasco R, Vrhovsek U, Grando MS, Moser C (2015) Regulation of flavonol content and composition in (Syrah × Pinot Noir) mature grapes: integration of transcriptional profiling and metabolic quantitative trait locus analyses. J Exp Bot 66:4441–4453

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malnoy M, Viola R, Jung MH, Koo OJ, Kim S, Kim JS, Velasco R, Kanchiswamy C (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 7:1904

    PubMed  PubMed Central  Google Scholar 

  • Mammadov J, Aggarwal R, Buyyarapu R, Kumpatla S (2012) SNP markers and their impact on plant breeding. Intl J Plant Genom 2012:728398

    Google Scholar 

  • Mandl K, Santiago JL, Hack R, Fardossi A, Regner F (2006) A genetic map of Welschriesling × Sirius for the identification of magnesium-deficiency by QTL analysis. Euphytica 149:133–144

    CAS  Google Scholar 

  • Mannini F (2000) Clonal selection in grapevine: interactions between genetic and sanitary strategies to improve propagation material. Acta Hort 528:703–712

    Google Scholar 

  • Marais J, Van Wyk C, Rapp A (1992a) Effect of sunlight and shade on norisoprenoid levels in maturing Weisser Riesling and Chenin blanc grapes and Weisser Riesling wines. S Afr J Enol Vitic 13:23–32

    CAS  Google Scholar 

  • Marais J, Van Wyk C, Rapp A (1992b) Effect of storage time, temperature and region on the levels of 1,1,6-trimethyl- 1, 2-dihydronaphthalene and other volatiles, and on quality of Weisser Riesling wines. S Afr J Enol Vitic 13:33–44

    CAS  Google Scholar 

  • Marchive C, Léon C, Kappel C, Coutos-Thévenot P, Corio-Costet MF, Delrot S, Lauvergeat V (2013) Over-expression of VvWRKY1 in grapevines induces expression of jasmonic acid pathway-related genes and confers higher tolerance to the downy mildew. PLoS ONE 8:e54185

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marguerit E, Brendel O, Lebon E, Van Leeuwen C, Ollat N (2012) Rootstock control of scion transpiration and its acclimation to water deficit are controlled by different genes. New Phytol 194:416–429

    CAS  PubMed  Google Scholar 

  • Marrano A, Birolo G, Prazzoli ML, Lorenzi S, Valle G, Grando MS (2017) SNP-discovery by RAD-sequencing in a germplasm collection of wild and cultivated grapevines (V. vinifera L.). PLoS One 12:e0170655

    Google Scholar 

  • Marrano A, Micheletti D, Lorenzi S, Neale D, Grando MS (2018) Genomic signatures of different adaptations to environmental stimuli between wild and cultivated Vitis vinifera L. Hort Res 5:34

    Google Scholar 

  • Martinelli L, Gribaudo I (2009) Somatic embryogenesis in grapevine. In: Roubelakis-Angelakis KA (ed) Grapevine Molecular Biology and Biotechnology, 2nd edn. Springer Science & Business Media B.V., Netherlands, pp 277–284. ISBN 978-90-481-2305-6

    Google Scholar 

  • Martinez de Toda F, Sancha JC, Zheng W, Balda P (2014) Leaf area reduction by trimming, a growing technique to restore the anthocyanins: sugars ratio decoupled by the warming climate. Vitis 53:189–192

    CAS  Google Scholar 

  • Martinez-Luscher J, Morales F, Delrot S, Sanchez-Diaz M, Gomes E, Aguirreolea J, Pascual I (2013) Short- and long-term physiological responses of grapevine leaves to UV-B radiation. Plant Sci 213:114–122

    CAS  PubMed  Google Scholar 

  • Martinez-Luscher J, Morales F, Sanchez-Diaz M, Delrot S, Aguirreolea J, Gomes E, Pascual I (2015) Climate change conditions (elevated CO2 and temperature) and UV-B radiation affect grapevine (Vitis vinifera cv. Tempranillo) leaf carbon assimilation, altering fruit ripening rates. Plant Sci 236:168–176

    CAS  PubMed  Google Scholar 

  • Martinez-Lüscher J, Sanchez-Diaz M, Delrot S, Aguirreola J, Pascual I, Gomès E (2016) Ultraviolet-B alleviates the uncoupling effect of elevated CO2 and increased temperature on grape berry (Vitis vinifera cv. Tempranillo) anthocyanin and sugar accumulation. Aust J Grape Wine Res 22:87–95

    Google Scholar 

  • Martins WS, Lucas DCS, Neves KF, Bertioli DJ (2009) WebSat—a web software for microsatellite marker development. Bioinformation 3:282–283

    PubMed  PubMed Central  Google Scholar 

  • Matthews MA, Anderson MM (1989) Reproductive development in grape (Vitis vinifera L.): responses to seasonal water deficit. Am J Enol Vitic 40:52–60

    Google Scholar 

  • Matus JT, Loyola R, Vega A, Peña-Neira A, Bordeu E, Arce- Johnson P, Alcalde JA (2009) Post-veraison sunlight exposure induces MYB-mediated transcriptional regulation of anthocyanin and flavonol synthesis in berry skins of Vitis vinifera. J Exp Bot 60:853–867

    CAS  PubMed  PubMed Central  Google Scholar 

  • May P (1994) Using grapevine rootstocks—the Australian perspective. Winetitles, Adelaide

    Google Scholar 

  • McGovern PE (2003) Ancient wine: the search for the origins of viniculture. Princeton University Press, Princeton. ISBN 9781400849536

    Google Scholar 

  • McGovern P, Jalabadze M, Batiuk S, Callahan MP, Smith KE, Hall GR, Kvavadze E, Maghradze D, Rusishvili N, Bouby L, Failla O, Cola G, Mariani L, Boaretto E, Bacilieri R, This P, Wales N, Lordkipamidze D (2017) Early Neolithic wine of Georgia in South Caucasus. Proc Natl Acad Sci USA 114(48):E10309–E10318

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mejía N, Gebauer M, Muñoz L, Hewstone N, Muñoz C, Hinrichsen P (2007) Identification of QTLs for seedlessness, berry size, and ripening rate in a seedless × seedless table grape progeny. Am J Enol Vitic 58:499–507

    Google Scholar 

  • Mejía N, Soto B, Guerrero M, Casanueva X, Houel C, Ángeles Miccono de los M, Ramos R, Le Cunff L, Boursiquot J-M, Hinrichsen P, Adam-Blondon AF (2011) Molecular, genetic and transcriptional evidence for a role of VvAGL11 in stenospermocarpic seedlessness in grapevine. BMC Plant Biol 11:57

    Google Scholar 

  • Mercenaro L, Nieddu G, Porceddu A, Pezzotti M, Camiolo S (2017) Sequence polymorphisms and structural variations among four grapevine (Vitis vinifera L.) cultivars representing Sardinian agriculture. Front Plant Sci 8:1279

    Google Scholar 

  • Mercati F, De Lorenzis G, Brancadoro L, Lupini A, Abenavoli MR, Barbagallo MG, Di Lorenzo R, Scienza A, Sunseri F (2016) High-throughput 18 K SNP array to assess genetic variability of the main grapevine cultivars from Sicily. Tree Genet Genomes 12:59

    Google Scholar 

  • Mercenaro L, Usai G, Fadda C, Nieddu G, del Caro A (2016) Intra-varietal agronomical variability in Vitis vinifera L. cv. Cannonau investigated by fluorescence, texture and colorimetric analysis. S Afr J Enol Vitic 37:67–78

    CAS  Google Scholar 

  • Merdinoglu D, Butterlin G, Bevilacqua L, Chiquet V, Adam-Blondon AF, Decroocq S (2005) Development and characterization of a large set of microsatellite markers in grapevine (Vitis vinifera L.) suitable for multiplex PCR. Mol Breed 15:349–366

    CAS  Google Scholar 

  • Merdinoglu D, Schneider C, Prado E, Wiedemann-Merdinoglu S, Mestre P (2018) Breeding for durable resistance to downy and powdery mildew in grapevine. OENO One 52:203–209

    Google Scholar 

  • Merz PR, Moser T, Höll J, Kortekamp A, Buchholz G, Zyprian E, Bogs J (2014) The transcription factor VvWRKY33 is involved in the regulation of grapevine (Vitis vinifera) defense against the oomycete pathogen Plasmopara viticola. Physiol Plant 153:365–380

    Google Scholar 

  • Miedaner T (2016) Breeding strategies for improving plant resistance to diseases. In: Al-Khayri JM, Jain SM, Johnson DV (eds) Advances in plant breeding strategies: agronomic, abiotic and biotic stress traits. Springer, UK. ISBN:978-3-319-22517-3

    Google Scholar 

  • Migicovsky Z, Sawler J, Gardner KM, Aradhya MK, Prins BH, Schwaninger HR, Bustamante CD, Buckler ES, Zhong GY, Brown PJ, Myles S (2017) Patterns of genomic and phenomic diversity in wine and table grapes. Hort Res 4:17035

    Google Scholar 

  • Minio A, Lin J, Gaut BS, Cantu D (2017) How single molecule real-time sequencing and haplotype phasing have enabled reference-grade diploid genome assembly of wine grapes. Front Plant Sci 8:826

    PubMed  PubMed Central  Google Scholar 

  • Morel G (1944) Sur le développement des tissus de vigne cultivés in vitro. C R Soc Biol 138:62

    Google Scholar 

  • Moretto M, Sonego P, Pilati S, Malacarne G, Costantini L, Grzeskowiak L, Bagagli G, Grando MS, Moser C, Engelen K (2016) VESPUCCI: exploring patterns of gene expression in grapevine. Front Plant Sci 7:633

    PubMed  PubMed Central  Google Scholar 

  • Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30:194–200

    CAS  PubMed  Google Scholar 

  • Mori K, Goto-Yamamoto N, Kitayama M, Hashizume K (2007) Loss of anthocyanins in red-wine grape under high temperature. J Exp Bot 58:1935–1945

    CAS  PubMed  Google Scholar 

  • Moriondo M, Bindi M, Fagarazzi C, Ferrise R, Trombi G (2011) Framework for high-resolution climate change impact assessment on grapevines at a regional scale. Reg Envir Change 11:553–567

    Google Scholar 

  • Moriondo M, Ferrise R, Trombi G, Brilli L, Dibari C, Bindi M (2015) Modelling olive trees and grapevines in a changing climate. Env Mod Soft 72:387–401

    Google Scholar 

  • Mosedale JR, Abernethy KE, Smart RE, Wilson RJ, Maclean IMD (2016) Climate change impacts and adaptative strategies: lessons from the grapevine. Glob Chan Biol 22:3814–3828

    Google Scholar 

  • Moutinho-Pereira J, Goncalves B, Bacelar E, Boaventura Cunha J, Coutinho J, Correia CM (2009) Effects of elevated CO2 on grapevine (Vitis vinifera L.): physiological and yield attributes Vitis 48:159–165

    Google Scholar 

  • Mullins MG, Rajasekaran K (1981) Fruiting cuttings: revised method for producing test plants of grapevinecultivars. Am J Enol Vitic 32:36–40

    Google Scholar 

  • Mullins MG, Tang FCA, Facciotti D (1990) Agrobacterium-mediated genetic transformation of grapevines: transgenic plants of Vitis rupestris Scheele and buds of Vitis vinifera L. Bio/Technology 8:1041–1045

    CAS  Google Scholar 

  • Mullins MG, Bouquet A, Williams LE (1992) Biology of horticultural crops: biology of the grapevine. Cambridge University Press, Cambridge. ISBN:978-0521038676

    Google Scholar 

  • Muñoz C, Di Genova A, Maass A, Orellana A, Hinrichsen P, Aravena A (2014) Vitis vinifera genome annotation improvement using next-generation sequencing technologies and NCBI public data. Vitis vinifera genome annotation improvement using next-generation sequencing technologies and NCBI public data. In: Proceedings of the X international conference on grapevine breeding and genetics, Geneva, USA, 1–5 Aug 2010. Acta Hort vol 1046, pp 349–356

    Google Scholar 

  • Munoz C, Gomez-Talquenca S, Chialva C, Ibanez J, Martinez-Zapater JM, Pena-Neira A, Lijavetzky D (2014) Relationships among gene expression and anthocyanin composition of Malbec grapevine clones. J Agri Food Chem 62:6716–6725

    CAS  Google Scholar 

  • Musingarabwi DM, Nieuwoudt HH, Young PR, Eyeghe-Bickong HA, Vivier MA (2016) A rapid qualitative and quantitative evaluation of grape berries at various stages of development using Fourier-transform infrared spectroscopy and multivariate data analysis. Food Chem 190:253–262

    CAS  PubMed  Google Scholar 

  • Myles S (2013) Improving fruit and wine: what does genomics have to offer? Trends Genet 29:190–196

    CAS  PubMed  Google Scholar 

  • Myles S, Chia J-M, Hurwitz B, Simon C, Zhong GY, Buckler E, Ware D (2010) Rapid genomic characterization of the genus Vitis. PLoS ONE 51:e8219

    Google Scholar 

  • Myles S, Boyko AR, Owens CL, Brown PJ, Grassi F, Aradhya MK, Prins B, Reynolds A, Chia JM, Ware D, Bustamante CD, Buckler ES (2011) Genetic structure and domestication history of the grape. Proc Natl Acad Sci USA 108:3530–3535

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nadal M (2010) Phenolic maturity in red grapes. In: Delrot S, Medrano H, Or E, Bavaresco L, Grando S (eds) Methodologies and results in grapevine research. Springer, Netherlands, pp 389–409. ISBN 978-90-481-9283-0

    Google Scholar 

  • Naithani S, Raja R, Waddell EN, Elser J, Gouthu S, Deluc LG, Jaiswal P (2014) VitisCyc: a metabolic pathway knowledgebase for grapevine (Vitis vinifera). Front Plant Sci 5:644

    PubMed  PubMed Central  Google Scholar 

  • Nakajima I, Ban Y, Azuma A, Onoue N, Moriguchi T, Yamamoto T, Toki S, Endo M (2017) CRISPR/Cas9-mediated targeted mutagenesis in grape. PLoS ONE 12:e0177966

    PubMed  PubMed Central  Google Scholar 

  • Negrul A (1946) Proischozdenie kulturnogo vinograda i ego klassifikacia. In: Varanov A (ed) Ampleografija SSSR, vol 1. Moscow, pp 159–212

    Google Scholar 

  • Newman HP, Antcliff AJ (1984) Chloride accumulation in some hybrids and backcrosses of Vitis berlandieri and Vitis vinifera. Vitis 23:106–112

    CAS  Google Scholar 

  • Nicolas SD, Peros JP, Lacombe T, Launay A, Le Paslier MC, Berard A, Mangin B, Valiere S, Martins F, Le Cunff L, Laucou V, Bacilieri R, Dereeper A, Chatelet P, This P, Doligez A (2016) Genetic diversity, linkage disequilibrium and power of a large grapevine (Vitis vinifera L) diversity panel newly designed for association studies. BMC Plant Biol 16:74

    PubMed  PubMed Central  Google Scholar 

  • Niculcea M, López J, Sánchez-Díaz M, Carmen Antolín M (2014) Involvement of berry hormonal content in the response to pre- and post-veraison water deficit in different grapevine (Vitis vinifera L.) cultivars. Aust J Grape Wine Res 20:281–291

    CAS  Google Scholar 

  • Nogales-Bueno J, Ayala F, Hernandez-Hierro JM, Rodriguez-Pulido FJ, Echavarri JF, Heredia FJ (2015) Simplified method for the screening of technological maturity of red grape and total phenolic compounds of red grape skin: application of the characteristic vector method to near-infrared spectra. J Agri Food Chem 63:4284–4290

    CAS  Google Scholar 

  • NooKaraju A, Agrawal D (2012) Enhanced tolerance of transgenic grapevines expressing chitinase and b-1,3-glucanase genes to downy mildew. Plant Cell Tiss Org Cult 111:15–28

    CAS  Google Scholar 

  • Oerke EC, Herzog K, Tôpfer R (2016) Hyperspectral phenotyping of the reaction of grapevine genotypes to Plasmopara viticola. J Exp Bot 67:5529–5543

    CAS  PubMed  Google Scholar 

  • OIV (2018) Distribution of the world’s grapevine varieties. Focus OIV 2017. OIV, Paris, France

    Google Scholar 

  • Ollat N, Peccoux A, Papura D, Esmenjaud D, Marguerit E, Tandonnet JP, Bordenave L, Cookson SJ, Barrieu F, Rossdeutsch L, Lecourt J, Lauvergeat V, Vivin P, Bert PF, Delrot S (2016) Rootstocks as a component of adaptation to environment. In: Geros H, Chaves MM, Medrano H, Delrot S (eds) Grapevine in a changing environment: a molecular and ecophysiological perspective, 1st edn. Wiley, Chichester, pp 68–108. ISBN 978-1-118-73605-0

    Google Scholar 

  • Ollat N, Cookson SJ, Destrac-Irvine A, Lauvergeat V, Ouaked-Lecourieux F, Marguerit E, Barrieu F, Dai ZW, Duchêne E, Gambetta GA, Gomès E, Lecourieux D, van Leeuwen C, Simonneau T, Torregrosa L, Vivin P, Delrot S (2019) Grapevine adaptation to abiotic stress: an overview. In: Proceedings of the XII international conference on grapevine breeding and genetics, Bordeaux, France, 15–20 July 2018. Acta Hort (in press)

    Google Scholar 

  • Osakabe Y, Liang Z, Ren C, Nishitani C, Osakabe K, Wada M, Komori S, Malnoy M, Velasco R, Poli M, Jung MH, Ok-JAe K, Viola R, Kanchiswamy CN (2018) CrispR-Cas9-mediated genome editing in apple and grapevine. Nat Protoc 3:2844–2863

    Google Scholar 

  • Padgett-Johnson M, Williams LE, Walker MA (2003) Vine water relations, gas exchange, and vegetative growth of seventeen Vitis species grown under irrigated and non-irrigated conditions in California. J Am Soc Hort Sci 128:269–276

    Google Scholar 

  • Pap D, Riaz S, Dry IB, Jermakow A, Tenscher AC, Cantu D, Oláh R, Walker MA (2016) Identification of two novel powdery mildew resistance loci, Ren6 and Ren7, from the wild Chinese grape species Vitis piasezkii. BMC Plant Biol 16:170

    PubMed  PubMed Central  Google Scholar 

  • Parker AK, de Cortazar Garcia, Atauri I, van Leeuwen C, Chuine I (2011) General phenological model to characterise the timing of flowering and veraison of Vitis vinifera L. Aust J Grape Wine Res 17:206–216

    Google Scholar 

  • Parker A Garcia de Cortazar-Atauri I, Chuine I, Barbeayu G, Bois B, Boursiquot JM, Cahure l JY, Claverie M, Dufourcq T, Gény L, Guimberteau G, Hofmann RW, Jacquet O, LAcombe T, Monamy C, Ojeda H, Panigai L, Payan JC, Van Leeuwen C (2013) Classification of varieties for their timing of flowering and veraison using a modelling approach: A case study for the grapevine species Vitis vinifera L. Agri Forest Meteorol 180:249–264

    Google Scholar 

  • Pastore C, Dal Santo S, Zenoni S, Movahed N, Allegro G, Valentini G, Filippetti I, Tornielli GB (2017) Whole plant temperature manipulation affects flavonoid metabolism and the transcriptome of grapevine berries. Front Plant Sci 8:16

    Google Scholar 

  • Patel S, Lu Z, Jin X, Swaminathan P, Zeng E, Fennell AY (2018) Comparison of three assembly strategies for a heterozygous seedless grapevine genome assembly. BMC Genom 19:57

    Google Scholar 

  • Pauquet J, Bouquet A, This P, Adam-Blondon AF (2001) Establishment of a local map of AFLP markers around the powdery mildew resistance gene Run1 in grapevine and assessment of their usefulness for marker assisted selection. Theor Appl Genet 103:1201–1210

    CAS  Google Scholar 

  • Peccoux A (2011) Molecular and physiological characterization of grapevine rootstock adaptation to drought. Ph.D. Dissertation. University of Bordeaux-Ségalen, Bordeaux

    Google Scholar 

  • Peccoux A, Loveys B, Zhu J, Gambetta GA, Delrot S, Vivin P, Schultz HR, Ollat N, Dai Z (2018) Dissecting the rootstock control of scion transpiration using model-assisted analyses in grapevine. Tree Physiol 38:1026–1040

    CAS  PubMed  Google Scholar 

  • Pelsy F, Dumas V, Bévilacqua L, Hocquigny S, Merdinoglu D (2015) Chromosome replacement and deletion lead to clonal polymorphism of berry color in grapevine. PLoS Genet 11(4):e1005081

    PubMed  PubMed Central  Google Scholar 

  • Penrone I, Gamnino G, Chiterra W, Vitali M, Pagliarani C, Riccomagno N, Balestrini R, Kaldenhoff R, Uehlein N, Gribaudo I, Schubert A, Lovisolo C (2012) The grapevine root-specific aquaporin VvPIP2;4 N controls root hydraulic conductance and leaf gas exchange under well-watered conditions but not under water stress. Plant Physiol 160:965–977

    Google Scholar 

  • Peressotti E, Duchêne E, Merdinoglu D, Mestre P (2011) A semi-automatic non-destructive method to quantify grapevine downy mildew sporulation. J Microbiol Methods 84:265–271

    PubMed  Google Scholar 

  • Péros JP, Nguyen TH, Troulet C, Michel-Romiti C, Notteghem JL (2006) Assessment of powdery mildew resistance of grape and Erysiphe necator pathogenicity using a laboratory assay. Vitis 45:29–36

    Google Scholar 

  • Péros JP, Berger G, Portemont A, Boursiquot JM, Lacombe T (2011) Genetic variation and biogeography of the disjunct Vitis subg. Vitis (Vitaceae). J Biogeography 38:471–486

    Google Scholar 

  • Pessina S, Lenzi L, Perazzolli M, Campa M, Dalla Costa L, Urso S, Valè G, Salamini F, Velasco R, Malnoy M (2016) Knockdown of MLO genes reduces susceptibility to powdery mildew in grapevine. Hort Res 3:16016

    Google Scholar 

  • Peterlunger E (1990) Conductivité hydraulique racinaire du porte-greffe. Vignevini 6:43–46

    Google Scholar 

  • Petrie PR, Clingeleffer PR (2005) Effects of temperature and light (before and after budburst) on inflorescence morphology and flower number of Chardonnay grapevines (Vitis vinifera L.) Aust J Grape Wine Res 11:59–65

    Google Scholar 

  • Petrie PR, Sadras VO (2008) Advancement of grapevine maturity in Australia between 1993 and 2006: putative causes, magnitude of trends and viticultural consequences. Aust J Grape Wine Res 14:33–45

    Google Scholar 

  • Picq S, Santoni S, Lacombe T, Latreille M, Weber A, Ardisson M, Ivorra S, Maghradze D, Arroyo-Garcia R, Chatelet P, This P, Terral J-F, Bacilieri R (2014) A small XY chromosomal region explains sex determination in wild dioecious V. vinifera and the reversal to hermaphroditism in domesticated grapevines. BMC Plant Biol 14:229

    Google Scholar 

  • Pinasseau L, Vallverdu-Queralt A, Verbaere A, Roques M, Meudec E, Le Cunff L, Peros JP, Ageorges A, Sommerer N, Boulet JC, Terrier N, Cheynier V (2017) Cultivar diversity of grape skin polyphenol composition and changes in response to drought investigated by LC-MS based metabolomics. Front Plant Sci 8:1826

    PubMed  PubMed Central  Google Scholar 

  • Pillet J, Egert A, Pieri P, Lecourieux F, Kappel C, Charon J, Gomes E, Keller F, Delrot S, Lecourieux D (2012) VvGOLS1 and VvHsfA2 are involved in the heat stress responses in grapevine berries. Plant Cell Physiol 53:1776–1792

    CAS  PubMed  Google Scholar 

  • Pirrello C, Zeilmaker T, Giacomelli L, Bianco L, Moser C, Vezzulli S (2018) Scouting downy and powdery mildew susceptibility genes: a diversity study in Vitis spp. Proceedings of the XII international conference on grapevine breeding and genetics, Bordeaux, France, 15–20 July 2018. Acta Hort (in press)

    Google Scholar 

  • Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ (2009) Shades of gray: the world of quantitative disease resistance. Trends Plant Sci 14:21–29

    CAS  PubMed  Google Scholar 

  • Pons A, Allamy L, Schüttler A, Rauhut D, Thibon C, Darriet P (2017) What is the expected impact of climate change on wine aroma compounds and their precursors in grape? OENO one 51:141–146

    CAS  Google Scholar 

  • Pouget R (1981) Action de la température sur la différenciation des inflorescences et des fleurs durant les phases de pré-débourrement et de post-débourrement des bourgeons latents de la vigne. Connaiss Vigne Vin 15:65–79

    Google Scholar 

  • Prieto JA, Lebon E, Ojeda H (2010) Stomatal behavior of different grapevine cultivars in response to soil water status and air water vapor pressure deficit. J Intl Sci Vigne Vin 44:9–20

    Google Scholar 

  • Prudent M, Lecomte A, Bouchet JP, Bertin N, Causse M, Génard M (2011) Combining ecophysiological modelling and quantitative trait locus analysis to identify key elementary processes underlying tomato fruit sugar concentration. J Exp Bot 62:907–919

    CAS  PubMed  Google Scholar 

  • Puchta H, Fauser F (2014) Synthetic nucleases for genome engineering in plants: prospects for a bright future. Plant J 78:727–741

    CAS  PubMed  Google Scholar 

  • Quénol H, Grosset M, Barbeau G, Van Leeuwen K, Hofmann M, Foss C, Irimia L, Rochard J, Boulanger JP, Tissot C, Miranda C (2014) Adaptation of viticulture to climate change: high resolution observations of adaptation scenario for viticulture: the Adviclim european project. Bull OIV 87:395–406

    Google Scholar 

  • Quénol H, Garcia de Cortazar Atauri I, Bois B, Sturman A, Bonnardot V, Le Roux R, (2017) Which climatic modeling to assess climate change impacts on vineyards? Oenoone 51:91–97

    Google Scholar 

  • Rambla JL, Trapero-Mozos A, Diretto G, Rubio-Moraga A, Granell A, Gomez-Gomez L, Ahrazem O (2016) Gene-metabolite networks of volatile metabolism in Airen and Tempranillo grape cultivars revealed a distinct mechanism of aroma bouquet production. Front Plant Sci 7:1619

    PubMed  PubMed Central  Google Scholar 

  • Ramos MC, Jones GV, Martinez-Casasnovas JA (2008) Structure and trends in climate parameters affecting winegrape production in northeast Spain. Clim Res 38:1–15

    Google Scholar 

  • Ramos MJN, Coito JL, Fino J, Cunha J, Silva H, de Almeida PG, Costa MMR, Amâncio S, Paulo OS, Rocheta M (2017) Deep analysis of wild Vitis flower transcriptome reveals unexplored genome regions associated with sex specification. Plant Mol Biol 93:151–170

    CAS  PubMed  Google Scholar 

  • Ramsak Z, Baebler S, Rotter A, Korbar M, Mozetic I, Usadel B, Gruden K (2014) GoMapMan: integration, consolidation and visualization of plant gene annotations within the MapMan ontology. Nucl Acids Res 42:D1167–D1175

    CAS  PubMed  Google Scholar 

  • Rashed A, Kwan J, Baraff B, Ling D, Daugherty MP, Killiny N, Almeida RP (2013) Relative susceptibility of Vitis vinifera cultivars to vector-borne Xylella fastidiosa through time. PLoS ONE 8:e55326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ren C, Liu X, Zhang Z, Wang Y, Duan W, Li S, Liang Z (2016) CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.). Sci Rep 6:32289

    Google Scholar 

  • Rex F, Fechter I, Hausmann L, Töpfer R (2014) QTL mapping of black rot (Guignardia bidwellii) resistance in the grapevine rootstock ‘Börner’ (V. riparia Gm183 × V. cinerea Arnold). Theor Appl Genet 127:1667–1677

    CAS  PubMed  Google Scholar 

  • Reymond M, Muller B, Tardieu F (2004) Dealing with the genotype × environment interaction via a modelling approach: a comparison of QTLs of maize leaf length or width with QTLs of model parameters. J Exp Bot 55:2461–2472

    CAS  PubMed  Google Scholar 

  • Reynolds A (2015) Grapevine breeding programs for the Wine Industry. Elsevier Ldt, Amsterdam. ISBN 78-1-78242-075-0

    Google Scholar 

  • Riaz S, Tenscher AC, Rubin J, Graziani R, Pao SS, Walker MA (2008) Fine-scale genetic mapping of two Pierce’s disease resistance loci and a major segregation distortion region on chromosome 14 of grape. Theor Appl Genet 117:671–681

    CAS  PubMed  Google Scholar 

  • Rist F, Herzog K, Mack J, Richter R, Steinhage V, Töpfer R (2018) High-precision phenotyping of grape bunch architecture using fast 3D sensor and automation. Sensors 18(3). https://doi.org/10.3390/s18030763

  • Roach MJ, Johnson DL, Bohlmann J, van Vuuren HJJ, Jones SJM, Pretorius IS, Schmidt SA, Borneman AR (2018) Population sequencing reveals clonal diversity and ancestral inbreeding in the grapevine cultivar Chardonnay. PLoS Genet 14:e1007807

    PubMed  PubMed Central  Google Scholar 

  • Roby JP, van Leeuwen C, Gonçalves E, Graça A, Martins A (2014) The preservation of genetic resources of the vine requires cohabitation between institutional clonal selection, mass selection and private clonal selection. BIO Web Conf 3:01018

    Google Scholar 

  • Rochfort S, Ezernieks V, Bastian SEP, Downey MO (2010) Sensory attributes of wine influenced by variety and berry shading discriminated by NMR metabolomics. Food Chem 121:1296–1304

    CAS  Google Scholar 

  • Roderick ML, Hobbins MT, Farquhar GD (2009) Pan evaporation trends and the terrestrial water balance. II. Energy balance and interpretation. Geography Compass 761–780

    Google Scholar 

  • Rogiers SY, Hardie WJ, Smith JP (2011) Stomatal density of grapevine leaves (Vitis vinifera L.) responds to soil temperature and atmospheric carbon dioxide: environmental influences on stomatal density. Aust J Grape Wine Res 17:147–152

    Google Scholar 

  • Rossdeutsch L (2015) Contribution du métabolisme de l’ABA et de la conductivité hydraullique à la réponse de la transpiration en situation de contrainte hydrique chez la Vigne - Variabilité génétique et effets du greffage. PhD Dissertation, University of Bordeaux

    Google Scholar 

  • Rossdeutsch L, Edwards E, Cookson SJ, Barrieu F, Gambetta GA, Delrot S, Ollat N (2016) ABA-mediated responses to water deficit separate grapevine genotypes by their genetic background. BMC Plant Biol 16:91–106

    PubMed  PubMed Central  Google Scholar 

  • Roush TL, Granett J, Walker MA (2007) Inheritance of gall formation relative to phylloxera resistance levels in hybrid grapevines. Am J Enol Vitic 58:234–241

    Google Scholar 

  • Royo C, Torres-Pérez R, Mauri N, Diestro N, Cabezas JA, Marchal C, Lacombe T, Ibáñez J, Tornel M, Carreño J, Martínez-Zapater JM, Carbonell-Bejerano P (2018) The major origin of seedless grapes is associated with a missense mutation in the MADS-box gene VviAGL11. Plant Physiol 177:1234–1253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rubio J, Montes C, Castro A, Alvarez C, Olmedo B, Munoz M, Tapia E, Reyes F, Ortega M, Sanchez E, Miccono M, Dalla Costa L, Martinelli L, Malnoy M, Prieto H (2015) Genetically engineered Thompson Seedless grapevine plants designed for fungal tolerance: selection and characterization of the best performing individuals in a field trial. Transgen Res 24:43–60

    CAS  Google Scholar 

  • Ruhl E (1989) Effect of potassium and nitrogen supply on the distribution of minerals and organic acids and the composition of grape juice of Sultana vines. Aust J Exp Agri 29:133–137

    CAS  Google Scholar 

  • Rustioni L, Milani C, Parisi S, Failla O (2015) Chlorophyll role in berry sunburn symptoms studied in different grape (Vitis vinifera L.) cultivars. Sci Hort 185:145–150

    CAS  Google Scholar 

  • Ryona I, Pan BS, Intrigliolo DS, Lakso AN, Sacks GL (2008) Effects of cluster light exposure on 3-isobutyl-2- methoxypyrazine accumulation and degradation patterns in red wine grapes (Vitis vinifera L. cv. Cabernet franc). J Agri Food Chem 56:10838–10846

    CAS  Google Scholar 

  • Sadok W, Naudin P, Boussugue B, Muller B, Welcker C, Tardieu F (2007) Leaf growth rate per unit thermal time follows QTL-dependent daily patterns in hundreds of maize lines under naturally fluctuating conditions. PlantCell Environ 30:135–146

    Google Scholar 

  • Sadras VO, Moran MA (2012) Elevated temperature decouples anthocyanins and sugars in berries of Shiraz and Cabernet Franc. Aust J Grape Wine Res 18:115–122

    CAS  Google Scholar 

  • Sadras VO, Stevens R, Pech J, Taylor E, Nicholas P, McCarthy M (2007) Quantifying phenotypic plasticity of berry traits using an allometric- type approach: a case study on anthocyanins and sugars in berries of Cabernet Sauvignon. Aust J Grape Wine Res 13:72–80

    CAS  Google Scholar 

  • Sadras V, Petrie P, Moran M (2013) Effects of elevated temperature in grapevine. II. Juice pH, titratable acidity and wine sensory attributes. Aust J Grape Wine Res 19:107–115

    CAS  Google Scholar 

  • Saigne-Soulard C, Richard T, Mérillon J-M, Monti J-P (2006) 13C NMR analysis of polyphenol biosynthesis in grape cells: impact of various inducing factors. Anal Chim Acta 563:137–144

    CAS  Google Scholar 

  • Salazar-Parra C, Aranjuelo I, Pascual I, Erice G, Sanz-Saez A, Aguirreolea J, Sanchez-Diaz M, Irigoyen JJ, Araus JL, Morales F (2015) Carbon balance, partitioning and photosynthetic acclimation in fruit-bearing grapevine (Vitis vinifera L. cv. Tempranillo) grown under simulated climate change (elevated CO2, elevated temperature and moderate drought) scenarios in temperature gradient greenhouses. J Plant Physiol 174:10–97

    Google Scholar 

  • Salazar-Parra C, Aranjuelo I, Pascual I, Aguirreolea J, Sanchez-Diaz M, Irigoyen JJ, Araus JL, Morales F (2018) Is vegetative area, photosynthesis, or grape C uploading involved in the climate change-related grape sugar/anthocyanin decoupling in Tempranillo? Photosynth Res. https://doi.org/10.1007/s11120-018-0552-6

    Article  PubMed  Google Scholar 

  • Salinari F, Giosuè S, Tubiello FN, Rettori A, Rossi V, Spanna F, Rosenzweig C, Gullino ML (2006) Downy mildew (Plasmopara viticola) epidemics on grapevine under climate change. Glob Change Biol 12:1299–1307

    Google Scholar 

  • Salmaso M, Faes G, Segala C, Stefanini M, Salakhutdinov I, Zyprian E, Toepfer R, Grando MS, Velasco R (2004) Genome diversity and gene haplotypes in the grapevine (Vitis vinifera L.), as revealed by single nucleotide polymorphisms. Mol Breed 14:385–395

    CAS  Google Scholar 

  • Salmaso M, Malacarne G, Troggio M, Faes G, Stefanini M, Grando MS, Velasco R (2008) A grapevine (Vitis vinifera L.) genetic map integrating the position of 139 expressed genes. Theor Appl Genet 116:1129–1143

    CAS  PubMed  Google Scholar 

  • Salvagnin U, Malnoy M, Thöming G, Tasin M, Carlin S, Martens S, Vrhovsek U, Angeli S, Anfora G (2018) Adjusting the scent ratio: using genetically modified Vitis vinifera plants to manipulate European grapevine moth behaviour. Plant Biotechnol J 216:264–271

    Google Scholar 

  • Sauer MR (1968) Effect of vine rootstocks on chloride concentrations in Sultana scions. Vitis 7:223–226

    Google Scholar 

  • Scarlett N, Bramley R, Siebert T (2014) Within-vineyard variation in the ‘pepper’ compound rotundone is spatially structured and related to variation in the land underlying the vineyard. Aust J Grape Wine Res 20:214–222

    CAS  Google Scholar 

  • Schlötterer C (2004) The evolution of molecular markers—just a matter of fashion? Nat Rev 5:63–69

    Google Scholar 

  • Schreiner RP (2005) Mycorrhizal colonization of grapevine rootstocks under field conditions. Am J Enol Vitic 54:143–149

    Google Scholar 

  • Schultz HR (2000) Climate change and viticulture: a European perspective on climatology, carbon dioxide and UV-B effects. Aust J Grape Wine Res 6:2–12

    CAS  Google Scholar 

  • Schultz HR (2017) Issues to be considered for strategic adaptation to climate evolution—is atmospheric evaporative demand changing? OENO One 51:107–114

    Google Scholar 

  • Schüttler A. Gruber B, Thibon C, Lafontaine M, Stoll M, Schultz H, Rauhut D, Darriet P (2011) Influence of environmental stress on secondary metabolite composition of Vitis vinifera var. Riesling grapes in a cool climate region—water status and sun exposure. OENO 2011. In: Proceedings of the 9th international symposium enology, Bordeaux, Dunod, pp 65–70

    Google Scholar 

  • Schüttler A, Fritsch S, Hoppe JE, Schüssler C, Jung R, Thibon C, Gruber BR, Lafontaine M, Stoll M, De Revel G, Schultz HR, Rauhut D, Darriet P (2013) Facteurs influençant la typicité aromatique des vins du cépage de Vitis vinifera cv. Riesling - Aspects sensoriels, chimiques et viticoles. Rev Œnol 149S:36–41

    Google Scholar 

  • Schüttler A (2013) Influencing factors on aromatic typicality of wines from Vitis vinifera L. cv. riesling – sensory, chemical and viticultural insights. PhD thesis, Ecole doctorale des Sciences de la vie et de la santé. Université de Bordeaux 2/ Université de Giessen. p 262

    Google Scholar 

  • Schwander F, Eibach R, Fechter I, Hausmann L, Zyprian E, Töpfer R (2012) Rpv10: a new locus from the Asian Vitis gene pool for pyramiding downy mildew resistance loci in grapevine. Theor Appl Genet 124:163–176

    CAS  PubMed  Google Scholar 

  • Sefc KM, Regner F, Turetschek E, Glössl J, Steinkellner H (1999) Identifcation of microsatellite sequences in Vitis riparia and their applicability for genotyping of different Vitis species. Genome 42:367–373

    CAS  PubMed  Google Scholar 

  • Serra I, Strever A, Myburgh PA, Deloire A (2013) Review: the interaction between rootstocks and cultivars (Vitis vinifera L.) to enhance drought tolerance in grapevine. Aust J Grape Wine Res 20:1–14

    Google Scholar 

  • Sgubin G, Swingedouw D, Dayon G, García de Cortázar-Atauri I, Ollat N, Pagé C, van Leeuwen C (2018) The risk of tardive frost damage in French vineyards in a changing climate. Agri Forest Meteorol 250–251

    Google Scholar 

  • Sharma PC, Grover A, Kahl G (2007) Mining microsatellites in eukaryotic Genomes. Trends Biotechnol 25:490–498

    CAS  PubMed  Google Scholar 

  • Shiraishi M (1995) Proposed descriptors for organic acids to evaluate grape germplasm. Euphytica 81:13–20

    Google Scholar 

  • Shiraishi M, Fujishima H, Chijiwa H (2010) Evaluation of table grape genetic resources for sugar, organic acid, and amino acid composition of berries. Euphytica 174:1–13

    CAS  Google Scholar 

  • Simonneau T, Lebon E, Coupel-Ledru A, Marguerit E, Rossdeutsch L, Ollat N (2017) Adapting plant material to face water stress in vineyards: which physiological targets for an optimal control of plant water status? OENO One 51:167–179

    CAS  Google Scholar 

  • Smart DR, Schwass E, Morano L, Lakso AN (2006) Grapevine root distributions: a comprehensive analysis and a review. Am J Enol Vitic 56:157–168

    Google Scholar 

  • Smith BP (2010) Genetic and molecular mapping studies on a population derived from Vitis vinifera × Muscadinia rotundifolia and genetic diversity of wild Muscadinia rotundifolia. Ph.D. Dissertation, University of California Davis, USA

    Google Scholar 

  • Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith BP, Matthew SW, Jones TH, Morales NB, Clingeleffer PR (2013) Heritability of adventitious rooting of grapevine dormant canes. Tree Genet Genomes 9:467–474

    Google Scholar 

  • Smith HM, Smith BP, Morales NB, Moskwa S, Clingeleffer PR, Thomas MR (2018) SNP markers tightly linked to root knot nematode resistance in grapevine (Vitis cinerea) identified by a genotyping-by-sequencing approach followed by Sequenom MassARRAY validation. PLoS ONE 13:e0193121

    PubMed  PubMed Central  Google Scholar 

  • Soar CJ, Dry PR, Loveys BR (2006) Scion photosynthesis and leaf gas exchange in Vitis vinifera L. cv. Shiraz: mediation of rootstock effects via xylem sap ABA. Aust J Grape Wine Res 12:82–96

    CAS  Google Scholar 

  • Soubeyrand E, Colombie S, Beauvoit B, Dai Z, Cluzet S, Hilbert G, Renaud C, Maneta-Peyret L, Dieuaide-Noubhani M, Merillon JM, Gibon Y, Delrot S, Gomes E (2018) Constraint-based modeling highlights cell energy, redox status and alpha-ketoglutarate availability as metabolic drivers for anthocyanin accumulation in grape cells under nitrogen limitation. Front Plant Sci 9:421

    PubMed  PubMed Central  Google Scholar 

  • Soussana JF, Graux AI, Tubiello FN (2010) Improving the use of modelling for projections of climate change impacts on crops and pastures. J Exp Bot 61:2217–2228

    CAS  PubMed  Google Scholar 

  • Southey JM, Archer E (1988) The effect of rootstock cultivar on grapevine root distribution and density. In: Van Zyl JL (ed) The Grapevine Root and its Environment. Department of Agriculture and Water Supply, Pretoria, pp 57–73

    Google Scholar 

  • Southey JM, Jooste JH (1991) The effect of grapevine rootstock on the performance of Vitis vinifera L. (cv Colombard) on a relatively saline soil. S Afr J Enol Vitic 12:32–41

    Google Scholar 

  • St.Clair DA (2010) Quantitative disease resistance and quantitative resistance loci in breeding. Annu Rev Phytopathol 48:247–268

    Google Scholar 

  • Stuthman DD, Leonard KJ, Miller-Garvin J (2007) Breeding crops for durable resistance to disease. Adv Agron 95:319–347

    Google Scholar 

  • Sturman A, Zawar-Reza P, Soltanzadeh I, Katurji M, Bonnardot V, Parker AK, Trought MC, Quénol H, Le Roux R, Gendig E, Schulmann T (2017) The application of high-resolution atmospheric modelling to weather and climate variability in vineyard regions. OENO One 51:99–105

    Google Scholar 

  • Su H, Jiao YT, Wang FF, Liu YE, Niu WL, Liu GT, Xu Y (2018) Overexpression of VpPR10.1 by an efficient transformation method enhances downy mildew resistance in V. vinifera. Plant Cell Rep 37:819–832

    CAS  PubMed  Google Scholar 

  • Sunseri F, Lupini A, Mauceri A, De Lorenzis G, Araniti F, Brancadoro L, Dattola A, Gullo G, Zappia R, Mercati F (2018) Single nucleotide polymorphism profiles reveal an admixture genetic structure of grapevine germplasm from Calabria, Italy, uncovering its key role for the diversification of cultivars in the Mediterranean Basin. Aust J Grape Wine Res 24:345–359

    CAS  Google Scholar 

  • Sun X, Liu D, Zhang X, Li W, Liu H, Hong W, Jiang C, Guan N, Ma C, Zeng H, Xu C, Song J, Huang L, Wang C, Shi J, Wang R, Zheng X, Lu C, Wang X, Zheng H (2013) SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS One 8:e58700

    Google Scholar 

  • Sweetman C, Deluc LG, Cramer GR, Ford CM, Soole KL (2009) Regulation of malate metabolism in grape berry and other developing fruits. Phytochemistry 70:1329–1344

    CAS  PubMed  Google Scholar 

  • Sweetman C, Sadras VO, Hancock RD, Soole KL, Ford CM (2014) Metabolic effects of elevated temperature on organic acid degradation in ripening Vitis vinifera fruit. J Exp Bot 65:5975–5988

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tabidze V, Pipia I, Gogniashvili M, Kunelauri N, Pirtskhalava M, Vishnepolsky B, Hernandez AG, Fields CJ, Beridze T (2017) Whole genome comparative analysis of four Georgian grape cultivars. Mol Genet Genomics 292, 377–1389. https://doi.org/10.1007/s00438-017-1353-x

  • Tandonnet JP, Marguerit E, Cookson SJ, Ollat N (2018) Genetic architecture of aerial and root traits in field-grown grafted grapevines is largely independent. Theor Appl Genet 131:903–915

    CAS  PubMed  Google Scholar 

  • Tanksley SD, Young ND, Paterson AH, Bonierbale MW (1989) RFLP mapping in plant breeding: new tools for an old science. Biotechnology 7:257–264

    CAS  Google Scholar 

  • Tardaguila J, Fernandez-Novales J, Gutierrez S, Diago MP (2017) Non-destructive assessment of grapevine water status in the field using a portable NIR spectrophotometer. J Sci Food Agri 97:3772–3780

    CAS  Google Scholar 

  • Tardieu F (2003) Virtual plants: modelling as a tool for the genomics of tolerance to water deficit. Trends Plant Sci 8:9–14

    CAS  PubMed  Google Scholar 

  • Tardieu F (2012) Any trait or trait-related allele can confer drought tolerance: just design the right drought scenario. J Exp Bot 63:25–31

    CAS  PubMed  Google Scholar 

  • Tarara JM, Lee J, Spayd SE, Scagel CF (2008) Berry temperature and solar radiation alter acylation, proportion, and concentration of anthocyanin in Merlot grapes. Am J Enol Vitic 59: 235–247

    Google Scholar 

  • Tattersall EAR, Grimplet J, Deluc L, Wheatley MD, Vincent D, Osborne C, Ergül A, Lomen E, Blank RR, Schlauch KA, Cushman JC, Cramer GR (2007) Transcript abundance profiles reveal larger and more complex responses of grapevine to chilling compared to osmotic and salinity stress. Funct Integr Genom 7:317–333

    CAS  Google Scholar 

  • Tauz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucl Acids Res 17:6463–6471

    Google Scholar 

  • Teh SL, Fresnedo-Ramírez J, Clark MD, Gadoury DM, Sun Q, Cadle-Davidson L, Luby JJ (2017) Genetic dissection of powdery mildew resistance in interspecific half-sib grapevine families using SNP-based maps. Mol Breed 37:1

    CAS  PubMed  Google Scholar 

  • Tello J, Aguirrezábal R, Hernáiz S, Larreina B, Montemayor MI, Vaquero E, Ibáñez J (2015) Multicultivar and multivariate study of the natural variation for grapevine bunch compactness. Aust J Grape Wine Res 21:277–289

    Google Scholar 

  • Tello J, Cubero S, Blasco J, Tardaguila J, Aleixos N, Ibanez J (2016a) Application of 2D and 3D image technologies to characterise morphological attributes of grapevine clusters. J Sci Food Agri 96:4575–4583

    CAS  Google Scholar 

  • Tello J, Torres-Pérez R, Grimplet J, Ibáñez J (2016b) Association analysis of grapevine bunch traits using a comprehensive approach. Theor Appl Genet 129:227–242

    CAS  PubMed  Google Scholar 

  • Tello J, Montemayor MI, Forneck A, Ibanez J (2018) A new image-based tool for the high throughput phenotyping of pollen viability: evaluation of inter- and intra-cultivar diversity in grapevine. Plant Methods 14:3

    PubMed  PubMed Central  Google Scholar 

  • Terral JF, Tabard E, Bouby L, Ivorra S, Pastor T, Figueiral I, Picq S, Chevance JB, Jung C, Fabre L, Tardy C, Compan M, Bacilieri R, Lacombe T, This P (2010) Evolution and history of grapevine (Vitis vinifera) under domestication: new morphometric perspectives to understand seed domestication syndrome and reveal origins of ancient European cultivars. Ann Bot 105:443–455

    PubMed  Google Scholar 

  • Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, Angiuoli SV, Crabtree J, Jones AL, Durkin AS, Deboy RT, Davidsen TM, Mora M, Scarselli M, Margarit y Ros I, Peterson JD, Hauser CR, Sundaram JP, Nelson WC, Madupu R, Brinkac LM, Dodson RJ, Rosovitz MJ, Sullivan SA, Daugherty SC, Haft DH, Selengut J, Gwinn ML, Zhou L, Zafar N, Khouri H, Radune D, Dimitrov G, Watkins K, O’Connor KJ, Smith S, Utterback TR, White O, Rubens CE, Grandi G, Madoff LC, Kasper DL, Telford JL, Wessels MR, Rappuoli R, Fraser CM (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci USA 102:13950–13955

    Google Scholar 

  • This P, Jung A, Boccacci P, Borrego J, Botta R, Costantini L, Crespan M, Dangl GS, Eisenheld C, Ferreira-Monteiro F, Grando S, Ibanez J, Lacombe T, Laucou V, Magalhaes R, Meredith CP, Milani N, Peterlunger E, Regner F, Zulini L, Maul E (2004) Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theor Appl Genet 109:1448–1458

    CAS  PubMed  Google Scholar 

  • This P, Lacombe T, Thomas MR (2006) Historical origins and genetic diversity of wine grapes. Trends Genet 22:511–519

    CAS  PubMed  Google Scholar 

  • This P, Lacombe T, Cadle-Davidson M, Owens CL (2007) Wine grapes (Vitis vinifera L.) color associates with allelic variation in the domestication gene VvmybA1. Theor Appl Genet 114:723–730

    PubMed  Google Scholar 

  • This P, Martínez Zapater JM, Péros J-P, Lacombe T (2012) Natural variation in Vitis. In: Adam-Blondon AF, Martinez-Zapater JM, Kole C (eds) Genetics, genomics, and breeding of grapes. Science Publishers, Enfield, pp 30–67. ISBN:9781578087174

    Google Scholar 

  • Thomas MR, Cain P, Scott NS (1994) DNA typing of grapevines: a universal methodology and database for describing cultivars and evaluating genetic relatedness. Plant Mol Biol 25:939–949

    CAS  PubMed  Google Scholar 

  • Tomás M, Medrano H, Escalona JM, Martorell S, Pou A, Ribas-Carbó M, Flexas J (2014) Variability of water use efficiency in grapevines. Environ Exp Bot 103:148–157

    Google Scholar 

  • Toffolatti SL, De Lorenzis G, Costa A, Maddalena G, Passera A, Bonza MC, Pindo M, Stefani E, Cestaro A, Casati P, Failla O, Bianco PA, Maghradze D, Quaglino F (2018) Unique resistance traits against downy mildew from the center of origin of grapevine (Vitis vinifera). Sci Rep 8:12523

    PubMed  PubMed Central  Google Scholar 

  • Tonietto J, Carbonneau A (1998) Facteurs mésoclimatiques de la typicité du raisin de table de l’A.O.C. Muscat du Ventoux dans le département de Vaucluse, France. Prog Agri Vitic 115:271–279

    Google Scholar 

  • Tonietto J, Carbonneau A (2004) A multicriteria climatic classification system for grape-growing regions worldwide. Agri Forest Meteorol 124:81–97

    Google Scholar 

  • Töpfer R, Hausmann L, Harst M, Maul E, Zyprian E, Eibach R (2011) New horizons for grapevine breeding. In: Flachowsky H, Hanke MV (eds) Methods in temperate fruit breeding. Fruit, vegetable and cereal science and biotechnology 5. Special Issue 1. Global Science Books, UK, pp 79–100. ISBN:978–4-903313-75-7

    Google Scholar 

  • Torregrosa L, Fernandez L, Bouquet A, Boursiquot JM, Pelsy F, Martínez-Zapater JM (2011) Origins and consequences of somatic variation in grapevine. In: Adam-Blondon A-F, Martinez-Zapater J-M, Kole C (eds) Genetics, genomics, and breeding of grapes. Science Publishers, Enfield, pp 68–92. ISBN:9781578087174

    Google Scholar 

  • Torregrosa L, Vialet S, Adivéze A, Iocco-Corena P, Thomas MR (2015) Grapevine (Vitis vinifera L.). In: Wang K (ed) Agrobacterium protocols, vol 2, 3rd edn. Springer Science + Business Media, New York, pp 177–194. ISBN:978-1588298430

    Google Scholar 

  • Torregrosa L, Rienth M, Luchaire N, Novelli F, Bigard A, Chatbanyong R, Lopez G, Farnos M, Roux C, Adivèze A, Houel C, Doligez A, Peros JP, Romieu C, Pellegrino A, Thomas MR (2016) The microvine, a biological model, very versatile and efficient to boost grapevine research in physiology and genetics. 39th OIV meeting, 24–28 Oct, Bento Gonzalvez, Brazil

    Google Scholar 

  • Torregrosa L, Bigard A, Doligez A, Lecourieux D, Rienth M, Luchaire N, Pieri P, Chatbanyong R, Shahood R, Farnos M, Roux C, Adiveze A, Pillet J, Sire Y, Zumstein E, Veyret M, Le Cunff L, Lecourieux F, Saurin N, Muller B, Ojeda H, Houel C, Péros JP, This P, Pellegrino A, Romieu C (2017) Developmental, molecular and genetic studies on grapevine response to temperature open breeding strategies for adaptation to warming. OENO One 51:155–165

    CAS  Google Scholar 

  • Tortosa I, Escalona JM, Bota J, Tomas M, Hernandez E, Escudero EG, Medrano H (2016) Exploring the genetic variability in water use efficiency: evaluation of inter and intra cultivar genetic diversity in grapevines. Plant Sci 251:35–43

    CAS  PubMed  Google Scholar 

  • Toselli M, Baldi E, Marcolini G, Malaguti D, Quartieri M, Sorrenti G, Marangoni B (2009) Response of potted grapevines to increasing soil copper concentration. Aust J Grape Wine Res 15:85–92

    CAS  Google Scholar 

  • Tramontini S, Lovisolo C (2016) Embolism formation and removal in grapevines: a phenomenon affecting hydraulics and transpiration upon water stress. In: Geros HV, Chaves MM, Medrano H, Delrot S (eds) Grapevine in a changing environment: a molecular and ecophysiological perspective, 1st edn. Wiley, Chichester, pp 135–147. ISBN 978-1-118-73605-0

    Google Scholar 

  • Tramontini S, Vitali M, Centioni L, Schubert A, Lovisolo C (2013) Rootstock control of scion response to water stress in grapevine. Environ Exp Bot 93:20–26

    Google Scholar 

  • Tregeagle JM, Tisdall JM, Tester M, Walker RR (2010) Cl uptake, transport and accumulation in grapevine rootstocks of differing capacity for Cl exclusion. Funct Plant Biol 37:665–673

    CAS  Google Scholar 

  • Troggio M, Malacarne G, Coppola G, Segala C, Cartwright DA, Pindo M, Stefanini M, Mank R, Moroldo M, Morgante M, Grando MS, Velasco R (2007) A dense single-nucleotide-polymorphism-based genetic linkage map of grapevine (Vitis vinifera L.) anchoring Pinot Noir bacterial artifcial chromosome contigs. Genetics 176:2637–2650

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trondle D, Schroder S, Kassemeyer HH, Kiefer C, Koch MA, Nick P (2010) Molecular phylogeny of the genus Vitis (Vitaceae) based on plastid markers. Am J Bot 97:1168–1178

    PubMed  Google Scholar 

  • Trouvelot S, Bonneau L, Redecker D, van Tuinen D, Adrian M, Wipf D (2015) Arbuscular mycorrhiza symbiosis in viticulture: a review. Agron Sustain Dev 35:1449

    Google Scholar 

  • Upadhyay A, Upadhyay AK, Bhirangi RA (2012) Expression of Na+/H+ antiporter gene in response to water and salinity stress in grapevine rootstocks. Biol Plant 56:762–766

    CAS  Google Scholar 

  • Upadhyay A, Gaonkar T, Upadhyay AK, Jogaiah S, Shinde MP, Kadoo NY, Gupta VS (2018) Global transcriptome analysis of grapevine (Vitis vinifera L.) leaves under salt stress reveals differential response at early and late stages of stress in table grape cv. Thompson Seedless. Plant Physiol Biochem 129:168–179

    CAS  PubMed  Google Scholar 

  • Urrestarazu J, Muranty H, Denancé C, Leforestier D, Ravon E, Guyader A, Guisnel R, Feugey L, Aubourg S, Celton JM, Daccord N, Dondini L, Gregori R, Lateur M, Houben P, Ordidge M, Paprstein F, Sedlak J, Nybom H, Garkava-Gustavsson L, Troggio M, Bianco L, Velasco R, Poncet C, Théron A, Moriya S, Bink MCAM, Laurens F, Tartarini S, Durel CE (2017) Genome-wide association mapping of flowering and ripening periods in apple. Front Plant Sci 8:1923

    PubMed  PubMed Central  Google Scholar 

  • van der Oost J, Westra ER, Jackson RN, Wiedenheft B (2014) Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat Rev Microbiol 12:479–492

    PubMed  PubMed Central  Google Scholar 

  • Van Leeuwen C, Destrac A (2017) Modified grape composition under climate change conditions requires adaptations in the vineyard. OENO One 51:147–154

    Google Scholar 

  • van Leeuwen C, Friant P, Choné X, Tregoat O, Koundouras S, Dubourdieu D (2004) Influence of climate, soil, and cultivar on terroir. Am J Enol Vitic 55:207–217

    Google Scholar 

  • Van Leeuwen C, Schultz HR, Garcia de Cortazar-Atauri I, Duchêne E, Ollat N, Pieri P, Bois B, Goutouly JP, Quenol H, Touzard JM, Malheiro AC, Bavaresco L, Delrot S (2013) Why climate change will not dramatically decrease viticultural suitability in main wine-producing areas by 2050. Proc Natl Acad Sci USA 110:E3051–E3052

    Google Scholar 

  • Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, Fitzgerald LM, Vezzulli S, Reid J, Malacarne G, Iliev D, Coppola G, Wardell B, Micheletti D, Macalma T, Facci M, Mitchell JT, Perazzolli M, Eldredge G, Gatto P, Oyzerski R, Moretto M, Gutin N, Stefanini M, Chen Y, Segala C, Davenport C, Dematte L, Mraz A, Battilana J, Stormo K, Costa F, Tao Q, Si-Ammour A, Harkins T, Lackey A, Perbost C, Taillon B, Stella A, Solovyev V, Fawcett JA, Sterck L, Vandepoele K, Grando SM, Toppo S, Moser C, Lanchbury J, Bogden R, Skolnick M, Sgaramella V, Bhatnagar SK, Fontana P, Gutin A, Van de Peer Y, Salamini F, Viola R (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 2:e1326

    PubMed  PubMed Central  Google Scholar 

  • Vezzulli S, Troggio M, Coppola G, Jermakow A, Cartwright D, Stefanini M, Grando MS, Adam-Blondon AF, Thomas MR, This P, Velasco R (2008a) A functional integrated map for cultivated grapevine (Vitis vinifera L.) from three pedigrees, based on 283 SSR and 501 SNP markers. Theor Appl Genet 117:499–511

    CAS  PubMed  Google Scholar 

  • Vezzulli S, Micheletti D, Riaz S, Pindo M, Viola R, This P, Walker MA, Troggio M, Velasco R (2008b) A SNP transferability survey within the genus Vitis. BMC Plant Biol 8:128

    PubMed  PubMed Central  Google Scholar 

  • Vezzulli S, Dolzani C, Migliaro D, Banchi E, Stedile T, Zatelli A, Dallaserra M, Clementi S, Dorigatti C, Velasco R, Zulini L, Peressotti E, Stefanini M (2019) The FEM grapevine breeding program for downy and powdery mildew resistances: towards a green viticulture. In: Proceedings of the XII international conference on grapevine breeding and genetics, Bordeaux, France, 15–20 July 2018. Acta Hort (in press)

    Google Scholar 

  • Vidal JR, Gomez C, Cutanda MC, Shrestha B, Bouquet A, Thomas MR, Torregrosa L (2010) Use of gene transfer technology for functional studies in grapevine. Aust J Grape Wine Res 16:138–151

    CAS  Google Scholar 

  • Vivin P, Castelan M, Gaudillère JP (2002) A source/sink model to simulate seasonal allocation of carbon in grapevine. Acta Hort 584:43–56

    CAS  Google Scholar 

  • Vivin P, Lebon E, Dai ZW, Duchêne E, Marguerit E, Garcia de Cortazar-Atauri I, Zhu J, Simonneau T, van Leeuwen C, Delrot S, Ollat N (2017) Combining ecophysiological models and genetic analysis: a promising way to dissect complex adaptive traits in grapevine. OENO One 51:181–189

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walker RR, Blackmore DH, Clingeleffer PR, Iacono F (1997) Effect of salinity and rootstock on ion concentrations and carbon dioxide assimilation in leaves of drip-irrigated field grown grapevines (Vitis vinifera L. cv. Sultana). Aust J Grape Wine Res 3:66–74

    CAS  Google Scholar 

  • Walker AR, Lee E, Bogs J, McDavid DA, Thomas MR, Robinson SP (2007) White grapes arose through the mutation of two similar and adjacent regulatory genes. Plant J 49:772–785

    CAS  PubMed  Google Scholar 

  • Walker RR, Blackmore DH, Clingeleffer PR (2010) Impact of rootstock on yield and ion concentrations in pétioles, juice and wine of Shiraz and Chardonnay in different viticultural environments with différent irrigation water salinity. Aust J Grape Wine Res 16:243–257

    CAS  Google Scholar 

  • Wan Y, Schwaninger HR, Baldo AM, Labate JA, Zhong GY, Simon CJ (2013) A phylogenetic analysis of the grape genus (Vitis L.) reveals broad reticulation and concurrent diversification during neogene and quaternary climate change. BMC Evol Biol 13:141

    Google Scholar 

  • Wang J, Yao W, Wang L, Ma F, Tong W, Wang C, Bao R, Jaing C, Yang Y, Zhang J, Xu Y, Waag X, Zhang C, Wang Y (2017a) Overexpression of VpEIFP1, a novel F-box/Kelch-repeat protein from wild Chinese Vitis pseudoreticulata, confers higher tolerance to powdery mildew by inducing thioredoxin z proteolysis. Plant Sci 263:142–155

    CAS  PubMed  Google Scholar 

  • Wang L, Xie X, Yao W, Wang J, Ma F, Wang C, Yang Y, Tong W, Zhang J, Xu Y, Wang X, Zhang C, Wang Y (2017b) RING-H2-type E3 gene VpRH2 from Vitis pseudoreticulata improves resistance to powdery mildew by interacting with VpGRP2A. J Exp Bot 68:1669–1687

    CAS  PubMed  Google Scholar 

  • Wang N, Fang L, Xin H, Wang L, Li S (2012) Construction of a high-density genetic map for grape using next generation restriction-site associated DNA sequencing. BMC Plant Biol 12:148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Tu M, Wang D, Liu J, Li Y, Li Z, Wang Y, Wang X (2018) CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation. Plant Biotechnol J 16:844–855

    CAS  PubMed  Google Scholar 

  • Warschefsky EJ, Klein LL, Frank MH, Chitwood DH, Londo JP, von Wettberg EJ, Miller AJ (2016) Rootstocks: diversity, domestication, and impacts on shoot phenotypes. Trends Plant Sci 21:418–437

    CAS  PubMed  Google Scholar 

  • Webb LB, Whetton PH, Barlow EWR (2007) Modelled impact of future climate change on the phenology of winegrapes in Australia. Aust J Grape Wine Res 13:165–175

    Google Scholar 

  • Webb LB, Whetton PH, Bhend J, Darbyshire R, Briggs PR, Barlow EWR (2012) Earlier wine-grape ripening driven by climatic warming and drying and management practices. Nat Clim Change 2:259–264

    Google Scholar 

  • Wei X, Sykes SR, Clingeleffer PR (2002) An investigation to estimate genetic parameters in CSIRO’s table grape breeding program. 2. Quality characteristics. Euphytica 128:343–351

    CAS  Google Scholar 

  • Welter LJ, Göktürk-Baydar N, Akkurt M, Maul E, Eibach R, Töpfer R, Zyprian EM (2007) Genetic mapping and localization of quantitative trait loci affecting fungal disease resistance and leaf morphology in grapevine (Vitis vinifera L). Mol Breed 20:359–374

    CAS  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acids Res 18:6531–6535

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, Blomberg N, Boiten JW, da Silva Santos LB, Bourne PE, Bouwman J, Brookes AJ, Clark T, Crosas M, Dillo I, Dumon O, Edmunds S, Evelo CT, Finkers R, Gonzalez-Beltran A, Gray AJ, Groth P, Goble C, Grethe JS, Heringa J, t Hoen PA, Hooft R, Kuhn T, Kok R, Kok J, Lusher SJ, Martone ME, Mons A, Packer AL, Persson B, Rocca-Serra P, Roos M, van Schaik R, Sansone SA, Schultes E, Sengstag T, Slater T, Strawn G, Swertz MA, Thompson M, van der Lei J, van Mulligen E, Velterop J, Waagmeester A, Wittenburg P, Wolstencroft K, Zhao J, Mons B (2016) The FAIR Guiding Principles for scientific data management and stewardship. Sci Data 3:160018

    Google Scholar 

  • Wong DC, Sweetman C, Drew DP, Ford CM (2013) VTCdb: a transcriptomics & co-expression database for the crop species Vitis vinifera (grapevine). ArXiv e-prints 1305:2083

    Google Scholar 

  • Wu Y, Zhang W, Duan S, Song S, Xu W, Zhang C, Bondada B, Ma C, Wang S (2018) In-depth aroma and sensory profiling of unfamiliar table grape cultivars. Molecules 23:7

    Google Scholar 

  • Xie X, Wang Y (2016) VqDUF642, a gene isolated from the Chinese grape Vitis quinquangularis, is involved in berry development and pathogen resistance. Planta 244:1075–1094

    CAS  PubMed  Google Scholar 

  • Xu Y (2010) Molecular plant breeding. CAB International, Wallingford, UK. ISBN:9781845933920

    Google Scholar 

  • Xu K, Riaz S, Roncoroni NC, Jin Y, Hu R, Zhou R, Walker MA (2008) Genetic and QTL analysis of resistance to Xiphinema index in a grapevine cross. Theor Appl Genet 116:305–311

    CAS  PubMed  Google Scholar 

  • Xu Y, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407

    Google Scholar 

  • Xu Y, Gao Z, Tao J, Jiang W, Zhang S, Wang Q, Qu S (2016) Genome-wide detection of SNP and SV variations to reveal early ripening-related genes in grape. PLoS ONE 11:e0147749

    PubMed  PubMed Central  Google Scholar 

  • Yang S, Fresnedo-Ramírez J, Sun Q, Manns DC, Sacks GL, Mansfield AK, Luby JJ, Londo JP, Reisch BI, Cadle-Davidson LE, Fennell AY (2016a) Next generation mapping of enological traits in an F2 interspecific grapevine hybrid family. PLoS ONE 11:1–19

    Google Scholar 

  • Yang S, Fresnedo-Ramirez J, Wang M, Cote L, Schweitzer P, Barba P, Takacs EM, Clark M, Luby J, Manns DC, Sacks G, Mansfield AK, Londo J, Fennell A, Gadoury D, Reisch B, Cadle-Davidson L, Sun Q (2016b) A next-generation marker genotyping platform (AmpSeq) in heterozygous crops: a case study for marker-assisted selection in grapevine. Hort Res 3:16002

    Google Scholar 

  • Yin X, Struik PC (2008) Applying modeling experiences from the past to shape crop systems biology: the need to converge crop physiology and functional genomics. New Phytol 179:629–642

    CAS  PubMed  Google Scholar 

  • Yin X, Struik PC, Kropff MJ (2004) Role of crop physiology in predicting gene-to-phenotype relationships. Trends Plant Sci 9:426–432

    CAS  PubMed  Google Scholar 

  • Yun HK, Park KS (2007) Grape and grapevine rootstock breeding program in Korea. Intl J Plant Biotechnol 1:22–26

    Google Scholar 

  • Zendler D, Schneider P, Töpfer R, Zyprian E (2017) Fine mapping of Ren3 reveals two loci mediating hypersensitive response against Erysiphe necator in grapevine. Euphytica 213:68

    Google Scholar 

  • Zhang H, Fan X, Zhang Y, Jiang J, Liu C (2017) Identification of favorable SNP alleles and candidate genes for seedlessness in Vitis vinifera L. using genome-wide association mapping. Euphytica 213:136

    Google Scholar 

  • Zhang J, Hausmann L, Eibach R, Welter LJ, Töpfer R, Zyprian E (2009) A framework map from grapevine V3125 (Vitis vinifera‘Schiava grossa’ × ‘Riesling’) × rootstock cultivar ‘Börner’ (Vitis riparia × Vitis cinerea) to localize genetic determinants of phylloxera root resistance. Theor Appl Genet 119:1039–1051

    CAS  PubMed  Google Scholar 

  • Zhang L, Marguerit E, Rossdeutsch L, Ollat N, Gambetta GA (2016) The influence of grapevine rootstocks on scion growth and drought resistance. Theor Exp Plant Physiol 28:143–157

    Google Scholar 

  • Zhou Q, Dai L, Cheng S, He J, Wang D, Zhang J, Wang Y (2014) A circulatory system useful both for long-term somatic embryogenesis and genetic transformation in Vitis vinifera L. cv. Thompson Seedless. Plant Cell Tiss Org Cult 118:157–168

    CAS  Google Scholar 

  • Zhou Y, Massonnet M, Sanjak JS, Cantu D, Gaut BS (2017) Evolutionary genomics of grape (Vitis vinifera ssp. vinifera) domestication. Proc Natl Acad Sci USA 114:11715–11720

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Génard M, Poni S, Gambetta G, Vivin P, Vercambre G, Trought MCT, Ollat N, Delrot S, Dai ZW (2018) Modelling grape growth in a 3D virtual plant: integrating biophysical fruit growth with whole-plant carbon and water fluxes. J Exp Bot in press. https://doi.org/10.1093/jxb/ery367

    Article  Google Scholar 

  • Zinelabidine LH, Haddioui A, Rodríguez V, Cabello F, Eiras-Dias JE, Zapater JMM, Ibáñez J (2012) Identification by SNP analysis of a major role for Cayetana Blanca in the genetic network of Iberian peninsula grapevine varieties. Am J Enol Vitic 63:121–126

    CAS  Google Scholar 

  • Zinelabidine LH, Cunha J, Eiras-Dias JE, Cabello F, Martinez-Zapater JM, Ibanez J (2015) Pedigree analysis of the Spanish grapevine cultivar ‘Heben’. Vitis 54:81–86

    Google Scholar 

  • Zyprian E, Šimon S, Schwander F, Töpfer R (2015) Efficiency of single nucleotide polymorphisms to improve a genetic map of complex pedigree grapevines. Vitis 54:29–32

    CAS  Google Scholar 

  • Zyprian E, Ochssner I, Schwander F, Šimon S, Hausmann L, Bonow-Rex M, Moreno-Sanz P, Grando MS, Wiedermann-Merdinoglu S, Merdinoglu D, Eibach R, Töpfer R (2016) Quantitative trait loci affecting pathogen resistance and ripening of grapevines. Mol Genet Genom 291:1573–1594

    CAS  Google Scholar 

  • Zyprian E, Eibach R, Trapp O, Schwander F, Töpfer R (2018) Grapevine breeding under climate change: Applicability of a molecular marker linked to véraison. Vitis—J Grapevine Res 57

    Google Scholar 

  • Zyprian E, Richter R, Rossmann S, Theres K, Töpfer R (2019) Molecular analysis of bunch architecture in grapevine. In: Proceedings of the XII international conference on grapevine breeding and genetics, Bordeaux, France, 15–20 July 2018. Acta Hort (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Delrot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Delrot, S. et al. (2020). Genetic and Genomic Approaches for Adaptation of Grapevine to Climate Change. In: Kole, C. (eds) Genomic Designing of Climate-Smart Fruit Crops. Springer, Cham. https://doi.org/10.1007/978-3-319-97946-5_7

Download citation

Publish with us

Policies and ethics