Skip to main content

MobileFaceNets: Efficient CNNs for Accurate Real-Time Face Verification on Mobile Devices

  • Conference paper
  • First Online:
Biometric Recognition (CCBR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10996))

Included in the following conference series:

Abstract

We present a class of extremely efficient CNN models, MobileFaceNets, which use less than 1 million parameters and are specifically tailored for high-accuracy real-time face verification on mobile and embedded devices. We first make a simple analysis on the weakness of common mobile networks for face verification. The weakness has been well overcome by our specifically designed MobileFaceNets. Under the same experimental conditions, our MobileFaceNets achieve significantly superior accuracy as well as more than 2 times actual speedup over MobileNetV2. After trained by ArcFace loss on the refined MS-Celeb-1 M, our single MobileFaceNet of 4.0 MB size achieves 99.55% accuracy on LFW and 92.59% TAR@FAR1e-6 on MegaFace, which is even comparable to state-of-the-art big CNN models of hundreds MB size. The fastest one of MobileFaceNets has an actual inference time of 18 ms on a mobile phone. For face verification, MobileFaceNets achieve significantly improved efficiency over previous state-of-the-art mobile CNNs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., et al.: Mobilenets: Efficient convolutional neural networks for mobile vision applications. CoRR, abs/1704.04861 (2017)

    Google Scholar 

  2. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: An extremely efficient convolutional neural network for mobile devices. CoRR, abs/1707.01083 (2017)

    Google Scholar 

  3. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: Inverted Residuals and Linear Bottlenecks. CoRR, abs/1801.04381 (2018)

    Google Scholar 

  4. Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: Ms-celeb-1 m: A dataset and benchmark for large-scale face recognition, arXiv preprint (2016). arXiv:1607.08221

  5. Deng, J., Guo, J., Zafeiriou, S.: ArcFace: Additive Angular Margin Loss for Deep Face Recognition. arXiv preprint (2018). arXiv:1801.07698

  6. Huang, G.B., Ramesh, M., Berg, T., et al.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments (2007)

    Google Scholar 

  7. Kemelmacher-Shlizerman, I., Seitz, S.M., Miller, D., Brossard, E.: The megaface benchmark: 1 million faces for recognition at scale. In: CVPR (2016)

    Google Scholar 

  8. Moschoglou, S., Papaioannou, A., Sagonas, C., Deng, J., Kotsia, I., Zafeiriou, S.: AgeDB: The first manually collected in-the-wild age database. In: CVPRW (2017)

    Google Scholar 

  9. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: Squeezenet: Alexnet-level accuracy with 50x fewer parameters and 0.5 MB model size, arXiv preprint (2016). arXiv:1602.07360

  10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS (2012)

    Google Scholar 

  11. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR. IEEE (2009)

    Google Scholar 

  12. Russakovsky, O., Deng, J., Su, H., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  13. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition, arXiv preprint (2017). arXiv:1707.07012

  14. Wu, X., He, R., Sun, Z., Tan, T.: A light cnn for deep face representation with noisy labels, arXiv preprint (2016). arXiv:1511.02683

  15. Wu, B., Wan, A., Yue, X., Jin, P., Zhao, S., Golmant, N., et al.: Shift: A Zero FLOP, Zero Parameter Alternative to Spatial Convolutions, arXiv preprint (2017). arXiv:1711.08141

  16. Hinton, G. E., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network (2015). arXiv:1503.02531

  17. Luo, P., Zhu, Z., Liu, Z., Wang, X., Tang, X., Luo, P., et al.: Face Model Compression by Distilling Knowledge from Neurons. In: AAAI (2016)

    Google Scholar 

  18. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face recognition and clustering. In: CVPR (2015)

    Google Scholar 

  19. Long, J., Zhang, N., Darrell, T.: Do convnets learn correspondence? Adv. Neural. Inf. Process. Syst. 2, 1601–1609 (2014)

    Google Scholar 

  20. Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: Sphereface: deep hypersphere embedding for face recognition. In: CVPR (2017)

    Google Scholar 

  21. Wang, F., Cheng, J., Liu, W., Liu, H.: Additive margin softmax for face verification. IEEE Signal Proc. Lett. 25(7), 926–930 (2018)

    Article  Google Scholar 

  22. Wang, H., Wang, Y., Zhou, Z., Ji, X., Gong, D., Zhou, J., et al.: CosFace: Large Margin Cosine Loss for Deep Face Recognition (2018). arXiv:1801.0941

  23. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multi-task cascaded convolutional networks. IEEE Signal Proc. Lett. 23(10), 1499–1503 (2016)

    Article  Google Scholar 

  24. Luo, W., Li, Y., Urtasun, R., Zemel, R.: Understanding the effective receptive field in deep convolutional neural networks. In: NIPS (2016)

    Google Scholar 

  25. Chollet, F.: Xception: Deep learning with depthwise separable convolutions, arXiv preprint (2016). arXiv:1610.02357

  26. Yi, D., Lei, Z., Liao, S., Li, S.Z.: Learning face representation from scratch, arXiv preprint (2014). arXiv:1411.7923

  27. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: CVPR (2015)

    Google Scholar 

  28. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning (2015)

    Google Scholar 

  29. Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., et al.: Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference, arXiv preprint (2017). arXiv:1712.05877

  30. NCNN: a high-performance neural network inference framework optimized for the mobile platform, Apr 20 2018. https://github.com/Tencent/ncnn

  31. Taigman, Y., Yang, M., Ranzato, M., et al.: DeepFace: closing the gap to human-level performance in face verification. In: CVPR (2014)

    Google Scholar 

  32. Parkhi, O.M., Vedaldi, A., Zisserman, A., et al.: Deep face recognition. In: BMVC, vol. 1, p. 6 (2015)

    Google Scholar 

  33. Sun, Y., Wang, X., Tang, X.: Deeply learned face representations are sparse, selective, and robust. In: Computer Vision and Pattern Recognition, pp. 2892–2900 (2015)

    Google Scholar 

  34. Wen, Y., Zhang, K., Li, Z., Qiao, Y.: A discriminative feature learning approach for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 499–515. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_31

    Chapter  Google Scholar 

  35. Deng, W., Chen, B., Fang, Y., Hu, J.: Deep Correlation Feature Learning for Face Verification in the Wild. IEEE Signal Proc. Lett. 24(12), 1877–1881 (2017)

    Article  Google Scholar 

  36. Ng, H.W., Winkler, S.: A data-driven approach to cleaning large face datasets. In: IEEE International Conference on Image Processing (ICIP), pp. 343–347 (2014)

    Google Scholar 

  37. Han, S., Mao, H., Dally, W.J.: Deep compression: Compressing deep neural network with pruning, trained quantization and Huffman coding, CoRR, abs/1510.00149 (2015)

    Google Scholar 

  38. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

Download references

Acknowledgements

We thank Jia Guo for helpful discussion, and thank Yang Wang, Lian Li, Licang Qin, Yan Gao, Hua Chen, and Min Zhao for application development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, S., Liu, Y., Gao, X., Han, Z. (2018). MobileFaceNets: Efficient CNNs for Accurate Real-Time Face Verification on Mobile Devices. In: Zhou, J., et al. Biometric Recognition. CCBR 2018. Lecture Notes in Computer Science(), vol 10996. Springer, Cham. https://doi.org/10.1007/978-3-319-97909-0_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97909-0_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97908-3

  • Online ISBN: 978-3-319-97909-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics