Comparison of Three Novelty Approaches to Constants (Ks) Handling in Analytic Programming Powered by SHADE

  • Zuzana Kominkova OplatkovaEmail author
  • Adam Viktorin
  • Roman Senkerik
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 837)


This research deals with the comparison of three novelty approaches for constant estimation in analytic programming (AP) powered by Success-history based Differential evolution (SHADE). AP is a tool for symbolic regression tasks which enables to synthesise an analytical solution based on the required behaviour of the system. This paper offers another strategy to already known and used by the AP from the very beginning and approaches published recently in 2016. This paper compares these procedures and the discussion also includes nonlinear fitting and metaevolutionary approach. As the main evolutionary algorithm, a differential algorithm in the version SHADE for the main process of AP is used. The proposed comparison is performed out on quintic, sextic, Sine 3 and Sine 4 benchmark problems.


SHADE Analytic programming Constant handling 



This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme project No. LO1303 (MSMT-7778/2014) and also by the European Regional Development Fund under the project CEBIA-Tech No. CZ.1.05/2.1.00/03.0089, further it was supported by Grant Agency of the Czech Republic—GACR P103/15/06700S and by Internal Grant Agency of Tomas Bata University in Zlin under the project No. IGA/CebiaTech/2017/004.


  1. 1.
    Back, T., Fogel, D.B., Michalewicz, Z.: Handbook of Evolutionary Algorithms. Oxford University Press, Oxford (1997). ISBN 0750303921zbMATHGoogle Scholar
  2. 2.
    Eiben, A.E., Michalewicz, Z., Schoenauer, M., Smith J.E.: Parameter control in evolutionary algorithms, pp. 19–46. Springer (2007)Google Scholar
  3. 3.
    Oplatkova, Z.K., Senkerik, R.: Evolutionary synthesis of complex structures - pseudo neural networks for the task of iris dataset classification. In: Nostradamus 2013: Prediction, Modeling and Analysis of Complex Systems, pp. 211–220. Springer, Heidelberg (2013). ISSN 2194-5357, 978-3-319-00541-6Google Scholar
  4. 4.
    Oplatkova, Z.K., Senkerik, R.: Control law and pseudo neural networks synthesized by evolutionary symbolic regression technique. In: Al-Begain, K., Bargiela, A.: Seminal Contributions to Modelling and Simulation - Part of the series Simulation Foundations, Methods and Applications, pp. 91–113 (2016). ISBN 978-3-319-33785-2
  5. 5.
    Oplatkova, Z.K., Viktorin, A., Senkerik, R., Urbanek, T.: Different approaches for constant estimation in analytic programming. In: 31st European Conference on Modelling and Simulation, pp. 326–332 (2017). ISBN 978-0-9932440-4-9. ISSN 2522-2422Google Scholar
  6. 6.
    Koza, J.R., et al.: Genetic Programming III: Darwinian Invention and problem Solving. Morgan Kaufmann Publisher, Burlington (1999). ISBN 1-55860-543-6zbMATHGoogle Scholar
  7. 7.
    Koza, J.R.: Genetic Programming. MIT Press, Cambridge (1998). ISBN 0-262-11189-6Google Scholar
  8. 8.
    Lampinen, J., Zelinka, I.: New ideas in optimization – mechanical engineering design optimization by differential evolution, vol. 1. McGraw-hill, London (1999). 20 p, ISBN 007-709506-5Google Scholar
  9. 9.
    O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language. Kluwer Academic Publishers, Dordrecht (2003). ISBN 1402074441CrossRefGoogle Scholar
  10. 10.
    Oplatkova, Z.: Metaevolution: Synthesis of Optimization Algorithms by means of Symbolic Regression and Evolutionary Algorithms. Lambert Academic Publishing, Saarbrücken (2009)Google Scholar
  11. 11.
    Price, K., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Natural Computing Series, 1st edn. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  12. 12.
    Price, K., Storn, R.: Differential evolution homepage (2001). Accessed 29 Feb 2012
  13. 13.
    Tanabe, R., Fukunaga, A.: Success-history based parameter adaptation for differential evolution. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 71–78. IEEE (2013)Google Scholar
  14. 14.
    Urbanek, T., Prokopova, Z., Silhavy, R., Kuncar, A.: New approach of constant resolving of analytical programming. In: 30th European Conference on Modelling and Simulation, pp. 231–236 (2016). ISBN 978-0-9932440-2-5Google Scholar
  15. 15.
    Viktorin, A., Pluhacek, M., Oplatkova, Z.K., Senkerik, R.: Analytical programming with extended individuals. In: 30th European Conference on Modelling and Simulation, pp. 237–244 (2016). ISBN 978-0-9932440-2-5Google Scholar
  16. 16.
    Volna, E., Kotyrba, M., Jarusek, R.: Multi-classifier based on Elliott wave’s recognition. Comput. Math. Appl. 66(2), 213–225 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Zelinka, I., et al.: Analytical programming - a novel approach for evolutionary synthesis of symbolic structures. In: Kita, E. (ed.) Evolutionary Algorithms, InTech (2011). ISBN 978-953-307-171-8Google Scholar
  18. 18.
    Zelinka, I., Varacha, P., Oplatkova, Z.: Evolutionary synthesis of neural network. In: Mendel 2006 – 12th International Conference on Softcomputing, Brno, Czech Republic, 31 May – 2 June 2006, pp. 25– 31 (2006). ISBN 80-214-3195-4Google Scholar
  19. 19.
    Zelinka, I., Oplatkova, Z., Nolle, L.: Boolean symmetry function synthesis by means of arbitrary evolutionary algorithms-comparative study. Int. J. Simul. Syst. Sci. Technol. 6(9), 44–56 (2005). ISSN 1473-8031Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Zuzana Kominkova Oplatkova
    • 1
    Email author
  • Adam Viktorin
    • 1
  • Roman Senkerik
    • 1
  1. 1.Faculty of Applied InformaticsTomas Bata University in ZlinZlinCzech Republic

Personalised recommendations