Advertisement

Indoor and Outdoor Air Quality Monitoring on the Base of Intelligent Sensors for Smart City

  • Andrii Shelestov
  • Leonid Sumilo
  • Mykola Lavreniuk
  • Vladimir Vasiliev
  • Tatyana Bulanaya
  • Igor Gomilko
  • Andrii Kolotii
  • Kyrylo Medianovskyi
  • Sergii Skakun
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 836)

Abstract

People experience the problems of air quality every day, either inside or outdoors. The best solution to mitigate the problem inside the buildings is to open opening the windows. It is not just the most efficient, but also the cheapest solution. However, opening windows might only worsen the situation in the room in the case of excess air pollutants in the big cities. Consequently, one should use another method of improving air quality inside. Often people cannot recognize whether air quality is good enough inside, therefore, there is a need for a system which could monitor the air conditions inside and outside the buildings, analyze it and give recommendations for improving the air quality. Air quality monitoring is one of the important topics of the SMURBS/ERA-PLANET project within the European Commission’s Horizon-2020 program. This study addresses the problem of using remote sensing data and Copernicus ecological biophysical models for air quality assessment in the city, and proposes the intelligent solution based on indoor and outdoor sensors for air quality monitoring controlled by a fuzzy logic decision block. We are planning to implement the distributed system in the framework of the Smart City concept in Kyiv (Ukraine) within the SMURBS project.

Keywords

Air quality index Sensors Amazon Web Service Fuzzy logic Adaptive neuro-fuzzy inference system Smart City SMURBS 

Notes

Acknowledgment

The authors acknowledge the funding received by ERA-PLANET (www.era-planet.eu), trans-national project SMURBS (www.smurbs.eu) (Grant Agreement No. 689443), funded under the EU Horizon 2020 Framework Program.

References

  1. 1.
    Abraham, S., Li, X.: A cost-effective wireless sensor network system for indoor air quality monitoring applications. Procedia Comput. Sci. 34, 165–171 (2014)CrossRefGoogle Scholar
  2. 2.
    Muhamad Salleh, N., Kamaruzzaman, S., Sulaiman, R., Mahbob, N.: Indoor air quality at school: ventilation rates and it impacts towards children. A review. In: 2nd International Conference on Environmental Science and Technology 2011, IPCBEE, vol. 6, pp. 418–422 (2011)Google Scholar
  3. 3.
    Pan, Y., Zhou, H., Huang, Z., Zeng, Y., Long, W.: Measurement and simulation of indoor air quality and energy consumption in two Shanghai office buildings with variable air volume systems. Energy Build. 35, 877–891 (2003)CrossRefGoogle Scholar
  4. 4.
    Orwell, R., Wood, R., Burchett, M., Tarran, J., Torpy, F.: The potted-plant microcosm substantially reduces indoor air VOC pollution: II. Laboratory study. Water Air Soil Pollut. 177, 59–80 (2006)CrossRefGoogle Scholar
  5. 5.
    Shelestov, A.Y.: Using the fuzzy-ellipsoid method for robust estimation of the state of a grid system node. Cybern. Syst. Anal. 44(6), 847–854 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Kussul, N., Shelestov, A., Skakun, S., Kravchenko, O.: Data assimilation technique for flood monitoring and prediction. Institute of Information Theories and Applications FOI ITHEA (2008)Google Scholar
  7. 7.
    Skakun, S., Kussul, N., Shelestov, A., Kussul, O.: The use of satellite data for agriculture drought risk quantification in Ukraine. Geomat. Nat. Hazards Risk 7(3), 901–917 (2016)CrossRefGoogle Scholar
  8. 8.
    Mandl, D., Frye, S., Cappelaere, P., Handy, M., Policelli, F., Katjizeu, M.: Use of the earth observing one (EO-1) satellite for the namibia sensorweb flood early warning pilot. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 6(2), 298–308 (2013)CrossRefGoogle Scholar
  9. 9.
    Kussul, N., Lavreniuk, M., Skakun, S., Shelestov, A.: Deep learning classification of land cover and crop types using remote sensing data. IEEE Geosci. Remote Sens. Lett. 14(5), 778–782 (2017)CrossRefGoogle Scholar
  10. 10.
    Lavreniuk, M., Skakun, S., Shelestov, A., Yalimov, B., Yanchevskii, S., Yaschuk, D., Kosteckiy, A.: Large-scale classification of land cover using retrospective satellite data. Cybern. Syst. Anal. 52(1), 127–138 (2016)CrossRefGoogle Scholar
  11. 11.
    Skakun, S., Kussul, N., Shelestov, A., Lavreniuk, M., Kussul, O.: Efficiency assessment of multitemporal C-band Radarsat-2 intensity and Landsat-8 surface reflectance satellite imagery for crop classification in Ukraine. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(8), 3712–3719 (2016)CrossRefGoogle Scholar
  12. 12.
    Kussul, N., Lemoine, G., Gallego, F., Skakun, S., Lavreniuk, M., Shelestov, A.: Parcel-based crop classification in Ukraine using Landsat-8 data and Sentinel-1A data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9(6), 2500–2508 (2016)CrossRefGoogle Scholar
  13. 13.
    Lavreniuk, M., Kussul, N., Meretsky, M., Lukin, V., Abramov, S., Rubel, O.: Impact of SAR data filtering on crop classification accuracy. In: 2017 First Ukraine Conference on Electrical and Computer Engineering, pp. 912–916 (2017)Google Scholar
  14. 14.
    Kussul, N., Sokolov, B., Zyelyk, Y., Zelentsov, V., Skakun, S., Shelestov, A.: Disaster risk assessment based on heterogeneous geospatial information. J. Autom. Inf. Sci. 42(12), 32–45 (2010)CrossRefGoogle Scholar
  15. 15.
    Gallego, J., Kravchenko, A., Kussul, N., Skakun, S., Shelestov, A., Grypych, Y.: Efficiency assessment of different approaches to crop classification based on satellite and ground observations. J. Autom. Inf. Sci. 44(5), 67–80 (2012)CrossRefGoogle Scholar
  16. 16.
    Kussul, N., Skakun, S., Shelestov, A., Kussul, O.: The use of satellite SAR imagery to crop classification in Ukraine within JECAM project. In: IGARSS 2014, pp. 1497–1500 (2014)Google Scholar
  17. 17.
    Shelestov, A., Kravchenko, A., Skakun, S., Voloshin, S., Kussul, N.: Geospatial information system for agricultural monitoring. Cybern. Syst. Anal. 49(1), 124–132 (2013)CrossRefGoogle Scholar
  18. 18.
    Kogan, F., Kussul, N., Adamenko, T., Skakun, S., Kravchenko, O., Kryvobok, O., Shelestov, A., Kolotii, A., Kussul, O., Lavrenyuk, A.: Winter wheat yield forecasting in Ukraine based on Earth observation, meteorological data and biophysical models. Int. J. Appl. Earth Obs. Geoinf. 23, 192–203 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Andrii Shelestov
    • 1
    • 2
    • 3
  • Leonid Sumilo
    • 2
    • 3
  • Mykola Lavreniuk
    • 1
    • 2
    • 3
  • Vladimir Vasiliev
    • 3
  • Tatyana Bulanaya
    • 4
    • 5
  • Igor Gomilko
    • 4
    • 5
  • Andrii Kolotii
    • 1
    • 2
    • 3
  • Kyrylo Medianovskyi
    • 1
    • 2
  • Sergii Skakun
    • 6
  1. 1.Space Research Institute NASU-SSAUKyivUkraine
  2. 2.Igor Sikorsky Kyiv Polytechnic InstituteKyivUkraine
  3. 3.EOS Data AnalyticsKyivUkraine
  4. 4.Noosphere Engineering SchoolDniproUkraine
  5. 5.Oles Honchar Dnipro National UniversityDniproUkraine
  6. 6.University of MarylandCollege ParkUSA

Personalised recommendations