Skip to main content

Logics for Order-of-Magnitude Qualitative Reasoning: Formalizing Negligibility

  • Chapter
  • First Online:
Ewa Orłowska on Relational Methods in Logic and Computer Science

Part of the book series: Outstanding Contributions to Logic ((OCTR,volume 17))

  • 219 Accesses

Abstract

Qualitative reasoning deals with information expressed in terms of qualitative classes and relations among them, such as comparability, negligibility or closeness. In this work, we focus on the different logic-based approaches to the notions of negligibility developed by our group.

Partially supported by the Spanish Ministry of Economy and Competitiveness and the European Fund for Regional Development through project TIN15-70266-C2-P-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Notice that this is a generalization of the intended structure used to define the qualitative classes.

  2. 2.

    \({\overrightarrow{d_\alpha }}^n\) is defined by \({\overrightarrow{d_\alpha }}^1={\overrightarrow{d_\alpha }}\) and \({\overrightarrow{d_\alpha }}^n={\overrightarrow{d_\alpha }}\circ {\overrightarrow{d_\alpha }}^{n-1}\), for \(n\in \mathbb N, n\ge 2\), being \(\circ \) the usual composition of relations.

  3. 3.

    This is the only axiom which is affected by our previous assumption that \(n=1\).

  4. 4.

    We could use any strict linearly ordered set with two internal operations \(+\) and \(\cdot \)

  5. 5.

    This is a well-known effect in marketing.

  6. 6.

    There are at least as many elements in \({\mathscr {C}}\) as qualitative classes.

  7. 7.

    Notice the use of \(\mathbb {OS}\) to denote the union of \(\mathbb {OV}\) and \(\mathbb {OC}\).

References

  • Areces, C. & ten Cate, B. (2007). Hybrid logics. In P. Blackburn, F. Wolter, & J. van Benthem (Eds.), Handbook of Modal Logics (Chap. 14, Vol. 3, pp. 821–868). Elsevier.

    Google Scholar 

  • Balbiani, P. (2016). Reasoning about negligibility and proximity in the set of all hyperreals. Journal of Applied Logic, 16, 14–36.

    Article  Google Scholar 

  • Bennett, B. (1995). Modal logics for qualitative spatial reasoning. Logic Journal of the IGPL, 3, 1–22.

    Google Scholar 

  • Bennett, B., Cohn, A. G., Wolter, F., & Zakharyaschev, M. (2002). Multi-dimensional modal logic as a framework for spatio-temporal reasoning. Applied Intelligence, 17(3), 239–251.

    Article  Google Scholar 

  • Blackburn, P. & van Benthem, J. (2007). Modal logic: A semantic perspective. In P. Blackburn, F. Wolter, & J. van Benthem (Eds.), Handbook of Modal Logics (Chap. 1, Vol. 3, pp. 58–61). Elsevier.

    Google Scholar 

  • Burrieza, A. & Ojeda-Aciego, M. (2004). A multimodal logic approach to order of magnitude qualitative reasoning. In R. Conejo, M. Urretavizcaya, & J. -L. Pérez-de-la-Cruz (Eds.), Current Topics in Artificial Intelligence, 10th Conference of the Spanish Association for Artificial Intelligence, CAEPIA 2003, and 5th Conference on Technology Transfer, TTIA 2003, Revised Selected Papers (Vol. 3040, pp. 66–75). Lecture Notes in Computer Science. San Sebastian, Spain: Springer.

    Chapter  Google Scholar 

  • Burrieza, A., Muñoz-Velasco, E., & Ojeda-Aciego, M. (2006). Order of magnitude qualitative reasoning with bidirectional negligibility. In R. Marín, E. Onaindia, A. Bugarín, & J. S. Reyes (Eds.), Current Topics in Artificial Intelligence, 11th Conference of the Spanish Association for Artificial Intelligence, CAEPIA 2005, Revised Selected Papers (Vol. 4177, pp. 370–378). Lecture Notes in Computer Science. Santiago de Compostela, Spain: Springer.

    Chapter  Google Scholar 

  • Burrieza, A., Muñoz-Velasco, E., & Ojeda-Aciego, M. (2007). A logic for order of magnitude reasoning with negligibility, non-closeness and distance. In D. Borrajo, L. A. Castillo, & J. M. Corchado (Eds.), Current Topics in Artificial Intelligence, 12th Conference of the Spanish Association for Artificial Intelligence, CAEPIA 2007, Selected Papers (Vol. 4788, pp. 210–219). Lecture Notes in Computer Science. Salamanca, Spain: Springer.

    Google Scholar 

  • Burrieza, A., Muñoz-Velasco, E., & Ojeda-Aciego, M. (2008). A propositional dynamic logic approach for order of magnitude reasoning. In H. Geffner, R. Prada, I. M. Alexandre, & N. David (Eds.), Proceedings of Advances in Artificial Intelligence – IBERAMIA, 11th Ibero-American Conference on AI (Vol. 5290, pp. 11–20). Lecture Notes in Computer Science. Lisbon, Portugal: Springer.

    Google Scholar 

  • Burrieza, A., Muñoz-Velasco, E., & Ojeda-Aciego, M. (2016). A hybrid approach to closeness in the framework of order of magnitude qualitative reasoning. In F. Martínez-Álvarez, A. Troncoso, H. Quintián, & E. Corchado (Eds.), Proceedings of Hybrid Artificial Intelligent Systems – 11th International Conference, HAIS (Vol. 9648, pp. 721–729). Lecture Notes in Computer Science. Seville, Spain: Springer.

    Google Scholar 

  • Burrieza, A., Ojeda-Aciego, M., & Orłowska, E. (2006). Relational approach to order-of-magnitude reasoning. In H. de Swart, E. Orłowska, M. Roubens, & G. Schmidt (Eds.), Theory and Applications of Relational Structures as Knowledge Instruments II: International Workshops of COST Action 274, TARSKI, 2002–2005, Selected Revised Papers (Vol. 4342, pp. 105–124). Lecture Notes in Artificial Intelligence. Berlin: Springer.

    Chapter  Google Scholar 

  • Burrieza, A. & Ojeda-Aciego, M. (2005). A multimodal logic approach to order of magnitude qualitative reasoning with comparability and negligibility relations. Fundamenta Informaticae, 68(1–2), 21–46.

    Google Scholar 

  • Burrieza, A., Muñoz-Velasco, E., & Ojeda-Aciego, M. (2011). A PDL approach for qualitative velocity. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 19(1), 11–26.

    Article  Google Scholar 

  • Chan, C. S., Coghill, G. M., & Liu, H. (2011). Recent advances in fuzzy qualitative reasoning. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 19(3), 417–422.

    Article  Google Scholar 

  • Chavez, G., Zerkle, D., Key, B., & Shevitz, D. (2011). Relating confidence to measured information uncertainty in qualitative reasoning. In Proceedings of 2011 Annual Meeting of the North American Fuzzy Information Processing Society (nafips) (pp. 1–6). El Paso, USA: IEEE.

    Google Scholar 

  • Dague, P. (1993a). Numeric reasoning with relative orders of magnitude. In R. Fikes & W. G. Lehnert (Eds.), Proceedings of the 11th National Conference on Artificial Intelligence (pp. 541–547). Washington D.C., USA: AAAI Press/The MIT Press.

    Google Scholar 

  • Dague, P. (1993b). Symbolic reasoning with relative orders of magnitude. In R. Bajcsy (Ed.), Proceedings of the 13th International Joint Conference on Artificial Intelligence (pp. 1509–1515). Chambéry, France: Morgan Kaufmann.

    Google Scholar 

  • Davis, E. (1999). Order of magnitude comparisons of distance. Journal of Artificial Intelligence Research, 10, 1–38.

    Article  Google Scholar 

  • Dubois, D., Hadj-Ali, A., & Prade, H. (2002). Granular computing with closeness and negligibility relations. In T. Lin, Y. Yao, & L. Zadeh (Eds.), Data Mining, Rough Sets and Granular Computing (pp. 290–307). Heidelberg: Physica- Verlag GmbH.

    Chapter  Google Scholar 

  • Falcó, E., García-Lapresta, J. L., & Rosellé, L. (2014). Allowing agents to be imprecise: A proposal using multiple linguistic terms. Information Sciences, 258, 249–265.

    Article  Google Scholar 

  • Golińska-Pilarek, J., Mora, A., & Muñoz-Velasco, E. (2008). An ATP of a relational proof system for order of magnitude reasoning with negligibility, noncloseness and distance. In T. B. Ho & Z. Zhou (Eds.), Proceedings of PRICAI 2008: Trends in Artificial Intelligence, 10th Pacific Rim International Conference on Artificial Intelligence (Vol. 5351, pp. 128–139). Lecture Notes in Computer Science. Hanoi, Vietnam: Springer.

    Chapter  Google Scholar 

  • Golińska-Pilarek, J. & Muñoz-Velasco, E. (2009a). Dual tableau for a multimodal logic for order of magnitude qualitative reasoning with bidirectional negligibility. International Journal of Computer Mathematics, 86(10&11), 1707–1718.

    Article  Google Scholar 

  • Golińska-Pilarek, J. & Muñoz-Velasco, E. (2009b). Relational approach for a logic for order of magnitude qualitative reasoning with negligibility, non-closeness and distance. Logic Journal of the IGPL, 17(4), 375–394.

    Article  Google Scholar 

  • Golińska-Pilarek, J. & Orłowska, E. (2007). Tableaux and dual tableaux: Transformation of proofs. Studia Logica, 85(3), 283–302.

    Article  Google Scholar 

  • Golińska-Pilarek, J., Muñoz-Velasco, E., & Mora, A. (2011). A new deduction system for deciding validity in modal logic K. Logic Journal of the IGPL, 19(2), 425–434.

    Article  Google Scholar 

  • Golińska-Pilarek, J., Muñoz-Velasco, E., & Bonilla, A. M. (2012). Relational dual tableau decision procedure for modal logic K. Logic Journal of the IGPL, 20(4), 747–756.

    Article  Google Scholar 

  • Golińska-Pilarek, J., Huuskonen, T., & Muñoz-Velasco, E. (2014). Relational dual tableau decision procedures and their applications to modal and intuitionistic logics. Annals of Pure and Applied Logic, 165(2), 409–427.

    Article  Google Scholar 

  • Golińska-Pilarek, J., Muñoz-Velasco, E., & Mora, A. (2016). Tableau reductions: Towards an optimal decision procedure for the modal necessity. Journal of Applied Logic, 17, 14–24.

    Article  Google Scholar 

  • HadjAli, A., Dubois, D., & Prade, H. (2003). Qualitative reasoning based on fuzzy relative orders of magnitude. IEEE Transactions on Fuzzy Systems, 11(1), 9–23.

    Article  Google Scholar 

  • Harel, D., Kozen, D., & Tiuryn, J. (2000). Dynamic Logic. Cambridge: MIT Press.

    Google Scholar 

  • Hustadt, U., Orłowska, E., & Schmidt, R. (2004). Two proof systems for Peirce algebras. In R. Berghammer, B. Möller, & G. Struth (Eds.), Proceedings of the 7th International Workshop on Relational Methods in Computer Science (Vol. 3051, pp. 197–203). Lecture Notes in Computer Science. Malente, Germany: Springer.

    Google Scholar 

  • Konikowska, B. (2002). Rasiowa-Sikorski deduction systems in computer science applications. Theoretical Computer Science, 286(2), 323–366.

    Article  Google Scholar 

  • Kuipers, B. (1986). Qualitative simulation. Artificial Intelligence, 29(3), 289–338.

    Article  Google Scholar 

  • Liu, H., Brown, D. J., & Coghill, G. M. (2008). Fuzzy qualitative robot kinematics. IEEE Transactions on Fuzzy Systems, 16(3), 808–822.

    Article  Google Scholar 

  • Mavrovouniotis, M. L., & Stephanopoulos, G. (1987). Reasoning with orders of magnitude and approximate relations. In K. D. Forbus & H. E. Shrobe (Eds.), Proceedings of the 6th National Conference on Artificial Intelligence (pp. 626–630). Seattle, USA.

    Google Scholar 

  • Mirkowska, C. & Salwicki, A. (1987). Algorithmic Logic. Kluwer Academic Publishers.

    Google Scholar 

  • Mora, A., Muñoz-Velasco, E., & Golińska-Pilarek, J. (2011). Implementing a relational theorem prover for modal logic. International Journal of Computer Mathematics, 88(9), 1869–1884.

    Article  Google Scholar 

  • Mossakowski, T. & Moratz, R. (2012). Qualitative reasoning about relative direction of oriented points. Artificial Intelligence, 180–181, 34–45.

    Article  Google Scholar 

  • Muñoz-Velasco, E., Burrieza, A., & Ojeda-Aciego, M. (2014). A logic framework for reasoning with movement based on fuzzy qualitative representation. Fuzzy Sets and Systems, 242, 114–131.

    Article  Google Scholar 

  • Orłowska, E. (1988). Relational interpretation of modal logics. In H. Andreka, D. Monk, & I. Nemeti (Eds.), Algebraic Logic. Colloquia Mathematica Societatis Janos Bolyai (Vol. 54, pp. 443–471). Amsterdam: North Holland.

    Google Scholar 

  • Orłowska, E. (1994). Relational semantics for non-classical logics: Formulas are relations. In J. Woleński (Ed.), Philosophical Logic in Poland (pp. 167–186). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Orłowska, E. & Golińska-Pilarek, J. (2011). Dual Tableaux: Foundations, Methodology, Case Studies. Trends in Logic. Dordrecht-Heidelberg-London-New York: Springer.

    Book  Google Scholar 

  • Passay, S. & Tinchev, T. (1991). An essay in combinatory dynamic logic. Information and Computation, 93(2), 263–332.

    Article  Google Scholar 

  • Piera, N. & Agell, N. (1992). Binary relations for qualitative reasoning. In Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (Vol. 1, pp. 267–271). Charlottesville, USA: IEEE.

    Google Scholar 

  • Piera, N., Sánchez, M., & Travé-Massuyès, L. (1991). Qualitative operators for order of magnitude calculers: Robustness and precision. In Proceedings of the 43rd IMACS World Congress on Computation and Applied Mathematics (pp. 1–6). Dublin, Ireland.

    Google Scholar 

  • Prats, F., Roselló, L., Sánchez, M., & Agell, N. (2014). Using l-fuzzy sets to introduce information theory into qualitative reasoning. Fuzzy Sets and Systems, 236, 73–90.

    Article  Google Scholar 

  • Raiman, O. (1991). Order of magnitude reasoning. Artificial Intelligence, 51(1–3), 11–38.

    Article  Google Scholar 

  • Randell, D. A., Cui, Z., & Cohn, A. G. (1992). A spatial logic based on regions and connection. In B. Nebel, C. Rich, & W. R. Swartout (Eds.), Proceedings of the 3rd International Conference on Principles of Knowledge Representation and Reasoning (kr’92) (pp. 165–176). Cambridge, USA: Morgan Kaufmann.

    Google Scholar 

  • Rasiowa, H. & Sikorski, R. (1963). The Mathematics of Metamathematics. Polish Scientific Publishers.

    Google Scholar 

  • Sánchez, M., Prats, F., & Piera, N. (1996). Una formalización de relaciones de comparabilidad en modelos cualitativos. Bulletin of the Spanish Association for AI, 6, 15–22.

    Google Scholar 

  • Shults, B. & Kuipers, B. (1997). Proving properties of continuous systems: Qualitative simulation and temporal logic. Artificial Intelligence, 92(1–2), 91–129.

    Article  Google Scholar 

  • Tarski, A. (1941). On the calculus of relations. Journal of Symbolic Logic, 6(3), 73–89.

    Article  Google Scholar 

  • Travé-Massuyès, L., Prats, F., Sánchez, M., & Agell, N. (2002). Consistent relative and absolute order-of-magnitude models. In J. Ortega & N. Agell (Eds.), Proceedings of the 16th International Workshop on Qualitative Reasoning. Sitges/Barcelona, Spain.

    Google Scholar 

  • Travé-Massuyès, L., Ironi, L., & Dague, P. (2004). Mathematical foundations of qualitative reasoning. AI Magazine, 24(4), 91–106.

    Google Scholar 

  • Travé-Massuyès, L., Prats, F., Sánchez, M., & Agell, N. (2005). Relative and absolute order-of-magnitude models unified. Annals of Mathematics and Artificial Intelligence, 45(3–4), 323–341.

    Article  Google Scholar 

  • Wolter, F. & Zakharyaschev, M. (2002). Qualitative spatio-temporal representation and reasoning: A computational perspective. In G. Lakemeyer & B. Nebel (Eds.), Exploring Artificial Intelligence in the New Millenium (pp. 175–216). Amsterdam: Morgan Kaufmann.

    Google Scholar 

Download references

Acknowledgements

Some excerpts of the following works have been reprinted with permission:

\(\bullet \) A. Burrieza et al. Order of Magnitude Qualitative Reasoning with Bidirectional Negligibility. Current Topics in Artificial Intelligence, Lecture Notes in Computer Science, Vol. 4177, pp. 370–378, Springer (2006). With permission of Springer.

\(\bullet \) A. Burrieza et al. A Logic for Order of Magnitude Reasoning with Negligibility, Non-closeness and Distance. Current Topics in Artificial Intelligence, Lecture Notes in Computer Science, Vol. 4788, pp. 210–219, Springer (2007). With permission of Springer.

\(\bullet \) A. Burrieza et al. A Propositional Dynamic Logic Approach for Order of Magnitude Reasoning. Advances in Artificial Intelligence—IBERAMIA 2008, Lecture Notes in Computer Science, Vol. 5290, pp. 11–20, Springer (2008). With permission of Springer.

\(\bullet \) A. Burrieza, M. Ojeda-Aciego. A Multimodal Logic Approach to Order of Magnitude Qualitative Reasoning with Comparability and Negligibility Relations. Fundamenta Informaticae 68(1-2), 21–46, IOS Press (2005). With permission of IOS Press.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Ojeda-Aciego .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Burrieza, A., Muñoz-Velasco, E., Ojeda-Aciego, M. (2018). Logics for Order-of-Magnitude Qualitative Reasoning: Formalizing Negligibility. In: Golińska-Pilarek, J., Zawidzki, M. (eds) Ewa Orłowska on Relational Methods in Logic and Computer Science. Outstanding Contributions to Logic, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-97879-6_8

Download citation

Publish with us

Policies and ethics