Skip to main content

Abstract

This chapter presents a high-performance dual-axis (pitch and roll) MEMS vibratory gyroscope readout ASIC which converts angular rate information to digital output. Two signal-processing chains surrounding the MEMS sensor are implemented, namely the drive channel and the sense channel. The drive channel drives the sensor to resonate at its resonant frequency, which produces a velocity of the sensor disc to generate the Coriolis force during angular rotation. The sense channel employs a low noise transimpedance amplifier (TIA) followed by a demodulator (DM), which down converts the angular rate input signal from the resonant frequency to baseband. Two switched-capacitor (SC) 2–1 MASH delta-sigma ADCs convert the input angular rate from the pitch and roll arises to digital output. The reference of the ADC is also demodulated from the sensor output to cancel out supply voltage dependence. The whole ASIC, including the high-voltage MEMS sensor driver, digital filter, on-chip regulator, and temperature sensor, is fabricated in a 0.18 μm CMOS technology with an area of 7.3 mm2. The design achieves a noise floor of 0.0032°/s/√Hz and 0.0061°/s/√Hz in full-scale input ranges of 500°/s and 2000°/s, respectively, over a 480 Hz signal bandwidth. The bias instability is measured as 2.5°/h at input range of 500°/s. The whole ASIC consumes 7 mA from a 3 V supply.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marek J. MEMS for automotive and consumer electronics. In: IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, San Francisco, 2010.

    Google Scholar 

  2. Yazdi N, Ayazi F, Najafi K. Micromachined inertial sensors. Proc IEEE. 1998;86(8):1640–59.

    Article  Google Scholar 

  3. Clark WA. Micromachined vibratory rate gyroscopes, Dissertation, 1997.

    Google Scholar 

  4. Balachandran GK, Petkov VP, Mayer T, Blalslink T. A 3-axis gyroscope for electronic stability control with continuous self-test. IEEE J Solid State Circuits. 2016;50(1):177–86.

    Google Scholar 

  5. Sharma A, Zaman MF, Ayazi F. A Sub-0.2 hr bias drift micromechanical silicon gyroscope with automatic CMOS mode-matching. IEEE J Solid State Circuits. 2009;44(5):1593–608.

    Article  Google Scholar 

  6. Masten MK. Inertially stabilized platforms for optical imaging systems. IEEE Control Syst. 2008;28(1):47–64.

    Article  MathSciNet  Google Scholar 

  7. Hilkert J. Inertially stabilized platform technology concepts and principles. IEEE Control Syst. 2008;28(1):26–46.

    Article  MathSciNet  Google Scholar 

  8. Meijer G. Smart sensor systems. Wiley; 2008.

    Google Scholar 

  9. Meijer G, Makinwa K, Pertijs M. Smart sensor systems: emerging technologies and applications. Wiley; 2014.

    Google Scholar 

  10. Sun H, Jia K, Liu X, Yan G, Hsu Y-W, Fox RM, Xie H. A CMOS-MEMS gyroscope interface circuit design with high gain and low temperature dependence. IEEE Sensors J. 2011;11(11):2740–8.

    Article  Google Scholar 

  11. Ezekwe C, Geiger W, Ohms T. A 3-axis open-loop gyroscope with demodulation phase error correction. In: Proceedings of IEEE international solid-state circuits conference, San Francisco, 2015.

    Google Scholar 

  12. Prandi L, et al. A low-power 3-axis digital-output MEMS gyroscope with single drive and multiplexed angular rate readout. In: Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, 2011.

    Google Scholar 

  13. Aaltonen L, Kalanti A, Pulkkinen M, Paavola M, Kamarainen M, Halonen KAI. A 2.2 mA 4.3 mm ASIC for a 1000°/s 2 – Axis capacitive micro-gyroscope. IEEE J Solid State Circuits. 2011;46(7):1682–92.

    Article  Google Scholar 

  14. Aaltonen L, Halonen KAI. Pseudo-continuous-time readout circuit for a 300°/s capacitive 2-axis micro-gyroscope. IEEE J Solid State Circuits. 2009;44(2):3609–20.

    Article  Google Scholar 

  15. Chen F, Li X, Kraft M. Electromechanical sigma–delta modulators force feedback interfaces for capacitive MEMS inertial sensors: a review. IEEE Sensors J. 2016;16(17):6476–95.

    Article  Google Scholar 

  16. Rombach S, Marx M, Nessler S, Dorigo DD, Maurer M, Manoli Y. An interface ASIC for MEMS vibratory gyroscopes with a power of 1.6 mW, 92 dB DR and 0.007°/s/ vHz noise floor over a 40 Hz band. IEEE J Solid State Circuits. 2016;51(8):1915–27.

    Article  Google Scholar 

  17. Tan Z, Nguyen K, Yan J, Samuels H, Keating S, Crocker P, Clark B. A dual-axis MEMS vibratory gyroscope ASIC with 0.0061°/s/VHz noise floor over 480 Hz bandwidth. In: 2017 IEEE Asian Solid-State Circuits Conference (A-SSCC), Seoul, 2017.

    Google Scholar 

  18. Gozzini F, Ferrari G, Sampietro M. Linear transconductor with rail-to-rail input swing for very large time constant applications. Electron Lett. 2006;42(19):1069–70.

    Article  Google Scholar 

  19. Tan Z, Daamen R, Humbert A, Ponomarev YV, Chae Y, Pertijs MAP. A 1.2-V 8.3-nJ CMOS humidity sensor for RFID applications. IEEE J Solid State Circuits. 2013;48(10):2469–77.

    Article  Google Scholar 

  20. Souri K, Chae Y, Makinwa KAA. A CMOS temperature sensor with a voltage-calibrated inaccuracy of ±0.15°C from −55°C to 125°C. IEEE J Solid State Circuits. 2013;48(1):292–301.

    Article  Google Scholar 

  21. Schreier R, Temes GC. Understanding delta-sigma data converters. Wiley-IEEE Press; 2004.

    Google Scholar 

  22. Silva J, Moon U, Steensgaard J, Temes G. Wideband low distortion delta-sigma ADC topology. Electron Lett. 2001;37(12):737–8.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank their colleagues from the High-Performance Inertial sensor group at Analog Devices Inc. (both in Wilmington and Greensboro) for their help during design, layout, and chip evaluations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhichao Tan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tan, Z., Nguyen, K., Clark, B. (2019). High-Performance Dual-Axis Gyroscope ASIC Design. In: Makinwa, K., Baschirotto, A., Harpe, P. (eds) Low-Power Analog Techniques, Sensors for Mobile Devices, and Energy Efficient Amplifiers . Springer, Cham. https://doi.org/10.1007/978-3-319-97870-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97870-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97869-7

  • Online ISBN: 978-3-319-97870-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics