Skip to main content

Nanotechnology and Entomopathogenic Microorganisms in Modern Agriculture

  • Chapter
  • First Online:
Book cover Nanoscience for Sustainable Agriculture

Abstract

The term entomopathogen refers to a microorganism capable of causing a disease to arthropods, leading to its death after a short incubation period. Nowadays few species of these microorganisms are known and being used to control a great variety of plague insects that affect the crops. At present, they turn out to be a quite profitable alternative in integrated pest management programs. But traditional IPM strategies are not enough in today’s modern-day agriculture due to high rising world population. Therefore, along with the biocontrol, nanotechnology would provide a better option for sustainable management of insect pest. This chapter is focused on traditional strategies with entomopathogenic fungi and entomopathogenic nematodes that are used for the management of insect pests, their limitations, and potential of nanomaterials in improving its efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AbdelGany TM (2015) Entomopathogenic fungi and their role in biological control. OMICS Group eBooks, Foster City. https://doi.org/10.4172/978-1-63278-065-2-66

    Book  Google Scholar 

  • Abolins S, Thind B, Jackson V, Luke B, Moore D, Wall R, Taylor MA (2007) Control of the sheep scab mite Psoroptes ovis in vivo and in vitro using fungal pathogens. Vet Parasitol 148(3/4):310–317

    Article  CAS  PubMed  Google Scholar 

  • Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan IM, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124(41):12108–12109

    Article  CAS  PubMed  Google Scholar 

  • Amatuzzi RF, Cardoso N, Poltronieri AS, Poitevin CG, Dalzoto P, Zawadeneak MA, Pimentel IC (2018) Potential of endophytic fungi as biocontrol agents of Duponchelia fovealis (Zeller) (Lepidoptera:Crambidae). Braz J Biol 78(3):429–435

    Article  Google Scholar 

  • Ardakani AS (2013) Toxicity of silver, titanium and silicon nanoparticles on the root-knot nematode, Meloidogyne incognita, and growth parameters of tomato. Nematology 15:671–677

    Article  CAS  Google Scholar 

  • Asaff TA, Reyes VY, Lopez LVE, De la Torre MM (2002) Guerra entre insectos y microorganismos: una estrategia natural para el control de plagas. Avance y Perspectiva 21:291–295

    Google Scholar 

  • AviDzba NS (1983) Bioecology of citrus whitefly and its integrated management. In: 10th international congress of plant protection. Proceedings of a conference held at Brigthon, England, 20–25 November, 1983. Plant protection for human welfare, vol 3, p 1031

    Google Scholar 

  • Bailey BA, Strem MD, Wood D (2009) Trichoderma species form endophytic associations within Theobroma cacao trichomes. Mycol Res 113(12):1365–1376

    Article  PubMed  Google Scholar 

  • Banu A, Rathod V (2011) Synthesis and characterization of silver nanoparticles by Rhizopus stolonier. Int J Biomed Adv Res 2:148–158

    Article  Google Scholar 

  • Barranco-Florido JE, Alatorre-Rosas R, Gutiérrez-Rojas M, Viniegra-González G, Saucedo-Castañeda G (2002) Criteria for the selection of strains of entomopathogenic fungi Verticillium lecanii for solid state cultivation. Enz Microb Technol 30:910–915

    Article  CAS  Google Scholar 

  • Belloa GD, Padina S, Lastrab CL, Fabrizio M (2000) Laboratory evaluation of chemical biological control of rice weevil (Sitophilus oryzae L.) in store grain. J Std Product Res 37:77–84

    Article  Google Scholar 

  • Bhagat Y, Gangadhara K, Rabinal Ch, Chaudhari G, Ugale P (2015) Nanotechnology in agriculture: a review. J Pure Appl Microbiol 9(1):1–12

    Google Scholar 

  • Bing S, Yu H, Chen A, Liu X (2008) Insect-associated fungi in soils of field crops and orchards. Crop Prot 27:1421–1426

    Article  Google Scholar 

  • Bird AF, Akhurst RJ (1983) The nature of the intestinal vesicle in nematodes of the family Steinernematidae. Int J Parasitol 13:599–606

    Article  Google Scholar 

  • Bird AF, Bird J (1991a) The exoskeleton. The structure of nematodes, 2nd edn. Academic Press, San Diego, pp 44–74

    Book  Google Scholar 

  • Bird AF, Bird J (1991b) The nervous system. The structure of nematodes, 2nd edn. Academic Press, San Diego, pp 129–156

    Book  Google Scholar 

  • Bird AF, Bird J (1991c) Digestive system. The structure of nematodes, 2nd edn. Academic Press, San Diego, pp 183–229

    Book  Google Scholar 

  • Blaxter ML (2011) Nematodes: the worm and its relatives. PLoS Biol 9:e1001050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carreño AI (2003) Evaluación de la patogenicidad de diferentes hongos entomopatógenos para el control de la mosca blanca de la yuca Aleurotrachelus sociales Bondar (Homoptera: Aleyrodidae) bajo condiciones de invernadero. Trabajo de grado (Microbióloga Agrícola y Veterinaria)—Facultad de Ciencias Básicas, Pontificia Universidad Javeriana, Bogotá, 2003

    Google Scholar 

  • Chandra JH, Raj LFAA, Namasivayam SKR, Bharani RSA (2013) Improved pesticidal activity of fungal metabolite from Nomureae rileyi with chitosan nanoparticles. In: Proceedings of the international conference on advanced nanomaterials and emerging engineering technologies, July 24–26, Chennai, pp 387–390

    Google Scholar 

  • Charnley AK, Collins SA (2007) Entomopathogenic fungi and their role in pest control. In: Kubicek CP, Druzhinina IS (eds) The mycota. Vol IV: Environmental and microbial relationships, 2nd edn. Springer, Heidelberg, pp 159–187

    Google Scholar 

  • Ciche TA, Ensign JC (2003) For the insect pathogen Photorhabdus luminescens, which end of a nematode is out? Appl Environ Microbiol 69:1890–1897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Commonwealth Mycological Institute (1979) CMI descriptions of pathogenic fungi and bacteria. N°602: Beauveria bassiana

    Google Scholar 

  • Devi U, Mohan C, PadmavathI J, Ramesh K (2003) Susceptibility to fungi of cotton bollworms before and after a natural epizootic of the entomopathogenic fungus Nomuraea rileyi (Hyphomycetes). Biocontrol Sci Technol 13(3):367–371

    Article  Google Scholar 

  • Devi Sh, Thangamathi P, Ananth S, Soundari GA, Lavanya M (2017) A review on nanoparticles synthesis using entomopathogenic fungi. Int J Curr Innov Res 3(11):887–891

    Google Scholar 

  • Dirlbek J, Dirlbekova O, Veldova I, Dobrovodsky I (1989) Management of Gerbera protection against glasshouse whitefly (Trialeurodes vapo rariorum Westw). Sbornik-UVTIZ, Ochrana Rostlin 25(4):289–298

    Google Scholar 

  • FAO (2003) Resistencia a los antiparasitarios: estado actual con énfasis en américa latina. Dirección de Producción y Sanidad Animal de la FAO, Roma, pp 33–35

    Google Scholar 

  • Faria M, Wraight SP (2007) Mycoinsecticides and Mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 43:237–256

    Article  CAS  Google Scholar 

  • Fitt GP (1989) The ecology of Heliothis species in relation to agroecosystems. Ann Rev Entomol 34(1):17–52

    Article  Google Scholar 

  • França I, Marques E, Torres J, Oliveira J (2006) Efeitos de Metarhizium anisopliae (Metsch.) Sorok. e Beauveria bassiana (Bals.) Vuill. sobre o Percevejo Predador Podisus nigrispinus (Dallas) (Hemiptera: Pentatomidae). Neotropical Entomol 35(3):349–356

    Article  Google Scholar 

  • García I, del Pozo E, Méndez A, Céspedes Y (2006) Producción de biomasa de Nomuraea rileyi (Farlow) Samson, aislamiento Nr-003, en diferentes medios de cultivos líquidos, con agitación. Rev Protección Veg 21(3):173–177

    Google Scholar 

  • García-Gutiérrez C, González-Maldonado MB (2010) Uso de bioinsecticidas para el control de plagas de hortalizas en comunidades rurales. Ra Ximhai 6(1):17–22

    Article  Google Scholar 

  • Gazis R, Chaverri P (2010) Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru. Fungal Ecol 3(3):240–254

    Article  Google Scholar 

  • Georgis R, Gaugler R (1991) Predictability in biological control using entomopathogenic nematodes. J Econ Entomol 84:713–720

    Article  Google Scholar 

  • Georgis R, Koppenhofer AM, Lacey LA, Belair G, Duncan LW, Grewal PS, Samish M, Tan L, Torr P, Tol RW, Van HM (2006) Successes and failures in the use of parasitic nematodes for pest control. Biol Control 38:103–123

    Article  Google Scholar 

  • Gillespie AT, Claydon N (1989) The use of entomogenous fungi for pest control and the role of toxins in pathogenesis. Pesticide Sci 27:203–215

    Article  CAS  Google Scholar 

  • Goettel MS, Poprawski TJ, Vandenberg JD, Li Z, Roberts DW (1990) Safety to nontarget invertebrates of fungal biocontrol agents. In: Laird M, Lacey LA, Dawison EW (eds) Safety of microbial insecticides safety to nontarget invertebrates of fungal biocontrol agents. CRC Press, Boca Raton, p 259

    Google Scholar 

  • Griffin CT, Boemare NE, Lewis EE (2005) Biology and behaviour. In: Grewal PS, Ehlers R-U, Shapiro-Ilan D (eds) Nematodes as biocontrol agents. CAB International, Wallingford, pp 47–64

    Chapter  Google Scholar 

  • Hajek AE (1997) Ecology of terrestrial fungal entomopathogens. Adv Microb Ecol 15:193–249

    Article  Google Scholar 

  • Haraprasad N, Niranjana S, Prakash H, Shetty H, Wahab S (2001) Beauveria bassiana a potencial mycopesticide for the efficient control of coffe berry borer, Hypothenemus hampei (Ferrari) in India. Biocontrol Sci Technol 11:251–260

    Article  Google Scholar 

  • Hasan S (2014) Entomopathogenic fungi as potent agents of biological control. Int J Eng Tech Res (IJETR) 2(3):221–229

    Google Scholar 

  • Hussein HM, Zemek R, Habuštová SO, Prenerová E, Adel MM (2013) Laboratory evaluation of a new strain CCM 8367 of Isaria fumosorosea (syn. Paecilomyces fumosoroseus) on Spodoptera littoralis (Boisd.). Archiv Phytopathol Pflanzenschutz 46(11):1307–1319

    Article  Google Scholar 

  • Ibarra JE, Del Rincón MCC, Galindo E, Patiño M, Serrano L, García R, Carrillo Pereyra-Alférez B, Alcázar-Pizaña A, Luna-Olvera H, Galán-Wong L, Pardo L, Muñoz-Garay C, Gómez I, Soberón M, Bravo A (2006) Los microorganismos en el control biológico de insectos y fitopatógenos. Rev Latinoamericana Microb 48(2):113–120

    Google Scholar 

  • Jeffs LB, Xavier IJ, Matai RE, Khachatourians GG (1997) Relationships between fungal spore morphologies and surface properties for entomopathogenic members of the genera Beauveria, Metarhizium, Paecilomyces, Tolypocladium, and Verticillium. Can J Microbiol 45:936–948

    Article  Google Scholar 

  • Jo YK, Starr JL, Deng Y (2013) Use of silver nanoparticles for nematode control on the Bermuda grass putting green. Turf Grass Environ Res Online 12(2):22–24

    Google Scholar 

  • Jouda JB, Kusari S, Lamshöft M, Talontsi FM, Meli CD, Wandji J, Spiteller M (2014) Penialidins A-C with strong antibacterial activities from Penicillium sp., an endophytic fungus harboring leaves of Garcinia nobilis. Fitoterapia 98:209–214

    Article  CAS  PubMed  Google Scholar 

  • Kamaraj Ch, Balasubramani G, Deepak P, Aiswarya D, Arul D, Amutha V, Karthi S, Perumal P (2018) Bio-pesticidal effects of Trichoderma viride formulated titanium dioxide nanoparticle and their physiological and biochemical changes on Helicoverpa armigera (Hub.) (accepted). https://doi.org/10.1016/j.pestbp.2018.05.005

    Article  CAS  PubMed  Google Scholar 

  • Kamil D, Prameeladev T, Ganesh S, Prabhakaran N, Nareshkumar R, Thomas SP (2017) Efficacy of AgNPs from Beauveria bassiana against mustard aphid. Indian J Exp Biol 55:555–561

    CAS  Google Scholar 

  • Kent NL (1983) Technology of cereals. Pergamon press, Oxford, pp 221–237

    Google Scholar 

  • Kershaw MJ, Talbot NJ (1998) Hydrophobins and repellents: proteins with fundamental roles in fungal morphogenesis. Fungal Genet Biol 23:18–33

    Article  CAS  PubMed  Google Scholar 

  • Khosravi R, Jalal J, Arash Z, Mohammad A, Shokrgozar A (2015) Virulence of four Beauveria bassiana (Balsamo) (Asc. Hypocreales) isolates on rose sawfly, Arge rosae under laboratory condition. J King Saud Univ Sci 27:49–53

    Article  Google Scholar 

  • Kim SW, Jung HJ, Lamsal K, Kim YS, Min JS, Lee YU (2012) Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 40:53–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitching M, Ramani M, Marsili E (2015) Fungal biosynthesis of gold nanoparticles: mechanism and scale up. Microbial Biotech 8(6):904–917

    Article  CAS  Google Scholar 

  • Kitherian S (2017) Nano and bio-nanoparticles for insect control. Res J Nanosci Nanotechnol 7:1–9

    Google Scholar 

  • Kucharska K, Pezowicz E (2009) The effect of silver nanoparticles on mortality and patho-genicity of entomopathogenic nematodes Heterorhabditis bacteriophora (Poinar, 1976) from Nematop biopreparation. Artykuły IV MiędzynarodowejKonferencji Doktorantów i Młodych Naukowców “Young scientists towards the challenges of modern technology”, Warszawa, Wrzesień 21–23

    Google Scholar 

  • Kucharska K, Tumialis D, Pezowicz E, Skrzecz I (2011a) The effect of gold nanoparticles on the mortality and pathogenicity of entomopathogenic nematodes from Owinema biopreparation. Insect Pathogens Entomopathogenic Nematodes IOBC/wprs Bull 66:347–349

    Google Scholar 

  • Kucharska K, Pezowicz E, Tumialis D, Barkowska M (2011b) Effect of silver nanoparticles on the mortality and pathogenicity of entomopathogenic nematodes. Ecol Chem Eng A 18:1065–1070

    CAS  Google Scholar 

  • Kucharska K, Pezowicz E, Tumialis D, Kucharski D, Zajdel B (2014) Nanoparticles of copper and entomopathogenic nematodes Steinernema feltiae (Filipjev, 1934) in reducing the number of the lesser mealworm beetle Alphitobius diaperinus (Panzer, 1797). Ann Warsaw Univ Life Sci SGGW Anim Sci 53:29–35

    CAS  Google Scholar 

  • Kucharska K, Zajdel B, Pezowicz E, Jarmuł-Pietraszczyk J, Mazurkiewicz A, Tumialis D (2016) Control of the lesser mealworm Alphitobius diaperinus using entomopathogenic nematodes (EPNs) combined with nanoparticles. Ann Warsaw Univ Life Sci SGGW Anim Sci 55(1):57–67

    CAS  Google Scholar 

  • Kurogi S, Kurogi F, Kawasaki Y, Nonaka K (1993) Studies on a fungus, Beauveria bassiana, isolated from Thrips parmi (T. palmi) Karny. 1. Pathogenicity to Thrips parmi and Bemisia tabaci and effect of pesticides (including dichlorvos, fenobucarb and methidathion) on hyphal growth. Proc Assoc Plant Protect Kyushu 39:111–113

    Article  CAS  Google Scholar 

  • Kurose D, Furuya N, Tsuchiya K, Tsushima S, Evans HC (2012) Endophytic fungi associated with Fallopia japonica (Polygonaceae) in Japan and their interactions with Puccinia polygoni-amphibii var. tovariae, a candidate for classical biological control. Fungal Biol 116(7):785–791

    Article  PubMed  Google Scholar 

  • Landa Z, Jiranova R (1989) Entomopathogenic fungi as an additional selective pest suppressing agents of greenhouse whitefly populations on greenhouse cucumber. In: Proceedings of interenatiional conference on biopesticides, theory and practice, 25–28 Sept 1989 Czechoslovakia, pp 120–129

    Google Scholar 

  • Laznik Z, Trdan S (2013) An investigation on the chemotactic responses of different entomopathogenic nematode strains to mechanically damaged maize root volatile compounds. Exp Parasitol 134:349–355

    Article  CAS  PubMed  Google Scholar 

  • Li HQ, Li XJ, Wang YL, Zhang Q, Zhang AL, Gao JM, Zhang XC (2011) Antifungal metabolites from Chaetomium globosum, an endophytic fungus in Ginkgo biloba. Biochem Syst Ecol 39(4–6):876–879

    Article  CAS  Google Scholar 

  • López-Llorca LV, Hans-Börje J (2001) Biodiversidad del suelo: control biológico de Nematodos fitopatógenos por hongos nematófagos. Cuaderno biodiversidad 3(6):12–15

    Article  Google Scholar 

  • Mata M, Barquero M (2010) Evaluación de la fermentación sumergida del hongo entomopatógeno Beauveria bassiana como parte de un proceso de escalamiento y producción de bioplaguicidas. PROMECAFE 122:8–19

    Google Scholar 

  • Méndez A, del Pozo E, García I (2007) Producción de biomasa del aislamiento (Nr-r003) de Nomuraea rileyi (Farlow) Samson en diferentes medios de cultivos líquidos con agitación y su virulencia sobre Spodoptera frugiperda (J. E. Smith). Rev Protección Veg 22(1):118–123

    Google Scholar 

  • Mendoza AR, Sikora RA (2009) Biological control of Radopholus similis in banana by combined application of the mutualistic endophyte Fusarium oxysporum strain 162, the egg pathogen Paecilomyces lilacinus strain 251 and the antagonistic bacteria Bacillus firmus. Biocontrol 54(2):263–272

    Article  Google Scholar 

  • Merino L, France A, Gerding M (2007) Selection of native fungi strains pathogenic to Vespula germanica (Hymenoptera: Vespidae). Agric Téc 67(4):335–342

    Article  Google Scholar 

  • Mylonakis E (2008) Galleria mellonella and the study of fungal pathogenesis: making the case for another genetically tractable model host. Mycopathologia 165:1–3

    Article  PubMed  Google Scholar 

  • Namasivayam KR, Bharani RSA, Ansari MR (2013) Natural occurrence of potential fungal biopesticide Nomuraea rileyi (Farlow) Samson associated with agriculture fields of Tamil Nadu, India and it’s compatibility with metallic nanoparticles. J Biofertil Biopestici 4:132

    Article  Google Scholar 

  • Naranjo SE, Ellsworth PC, Frisvold GB (2015) economic value of biological control in integrated pest management of managed plant systems. Annu Rev Entomol 60:621–645

    Article  CAS  PubMed  Google Scholar 

  • Nguyen KB, Smart GC Jr (1994) Neosteirnema longicurvicauda n. gen., n. sp. (Rhabditida: Steinernematidae), a parasite of the termite Reticulitermes flavipes (Koller). J Nematol 26:162–174

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parsa S, García-Lemos AM, Castillo K, Ortiz V, López-Lavalle LAB, Braun J, Vega FE (2016) Fungal endophytes in germinated seeds of the common bean, Phaseolus vulgaris. Fungal Biology 120(5):783–790

    Article  PubMed  PubMed Central  Google Scholar 

  • Perry RN, Moens M (2011) Introduction to plant-parasitic nematodes; modes of parasitism. In: Jones J, Gheysen G, Fenoll C (eds) Genomics and molecular genetics of plant-nematode interactions. Springer Netherlands, pp 3–20

    Google Scholar 

  • Petersen JJ (1985) Nematodes as biological control agents: part I. Mermithidae. Adv Parasit 24:307–346

    Article  CAS  Google Scholar 

  • Pluskota A, Horzowski E, Bossinger O, von Mikecz A (2009) Caenorhabditis elegans nanoparticle-bio-interactions become transparent: silica-nanoparticles induce reproductive senescence. PLoS ONE 4:e6622

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pogue MG (2004) A new synonym of Helicoverpa zea (Boddie) and differentiation of adult males of H. zea and H. armigera (Hübner) (Lepidoptera: Noctuidae: Heliothinae). Ann Entomol Soc Am 97(6):1222–1226

    Article  Google Scholar 

  • Poinar GO Jr (1976) Description and biology of a new insect parasitic rhabditoid. In: Gaugler R, Kaya HK (eds) Entomopathogenic nematodes in biological control. CRC Press, Boca Raton, pp 23–60

    Google Scholar 

  • Poinar GO (1979) Nematodes for biological control of insects. CRC Press, Boca Raton

    Google Scholar 

  • Posada JB, Lecuona RE (2009) Selection of native isolates of Beauveria bassiana (Ascomycetes: Clavicipitaceae) for the microbial control of Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). J Medical Entomol 46(2):284–291

    Article  Google Scholar 

  • Potter DA (1998) Destructive turfgrass insects. Biology, diagnosis, and control. Wiley, New York

    Google Scholar 

  • Pucheta-Díaz M, Flores-Macías A, Rodríguez-Navarro S, De La Torre M (2006) Mecanismo de acción de los hongos entomopatógenos. INCI 31(12):856–860

    Google Scholar 

  • Qamandar MA, Shafeeq MAA (2017) Biosynthesis and properties of silver nanoparticles of fungus Beauveria bassiana. Int J ChemTech Res 10(9):1073–1083

    CAS  Google Scholar 

  • Quist CW, Smant G, Helder J (2015) Evolution of plant parasitism in the phylum nematoda. Annu Rev Phytopathol 53:289–310

    Article  CAS  PubMed  Google Scholar 

  • Raheman F, Deshmukh S, Ingle A, Gade A, Rai M (2011) Silver nanoparticles: novel antimicrobial agent synthesized from an endophytic fungus Pestalotia sp. isolated from leaves of Syzygium cumini (L). Nano Biomed Eng 3(3):174–178

    Article  CAS  Google Scholar 

  • Rai M, Ingle AP, Gupta IR, Birla SS, Yadav AP, Abd-Elsalam KA (2013) Potential role of biological systems in formation of nanoparticles: mechanism of synthesis and biomedical applications. Curr Nanosci 9:576–587

    Article  CAS  Google Scholar 

  • Rao PN, Tanweer A (2011) Concepts and components of integrated pest management. In: Pests and pathogens: management strategies, p 543

    Google Scholar 

  • Rautaray D, Sanyal A, Adyanthaya SD, Ahmad A, Sastry M (2004) Biological synthesis of strontium carbonate crystals using the fungus Fusarium oxysporum. Langmuir 20(16):6827–6833

    Article  CAS  PubMed  Google Scholar 

  • Renwick J, Daly P, Reeves EP, Kavanagh K (2006) Susceptibility of larvae of Galleria mellonella to infection by Aspergillus fumigatus is dependent upon stage of conidial germination. Mycopathologia 161:377–384

    Article  PubMed  Google Scholar 

  • Rivera-Méndez W (2015) Control microbiológico como experiencia de sostenibilidad local en la agricultura centroamericana. Tecnología en Marcha. Edición Especial Biocontrol, pp 31–40

    Article  Google Scholar 

  • Rodríguez SM, Gerding PM, France IA (2006) Selección de aislamientos de hongos entomopatógenos para el control de huevos de La polilla del tomate, Tutta absoluta Meyrick (Lepidoptera: Gelechiidae). Chil J Agric Res 66(2):151–158

    Google Scholar 

  • Roh Y, Sim SJ, Yi J, Park K, Chung KH, Ryu DY, Choi J (2009) Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. J Environ Sci Technol 43:3933–3940

    Article  CAS  Google Scholar 

  • Sabbour MM, Solieman NY (2015) Usage of nanotechnology of the fungi Nomuraea rileyi against the potato tuber moth Phthorimaea operculella (zeller) under laboratory field and store conditions. Int J Inf Res Rev 2(09):1131–1136

    Google Scholar 

  • Sahab AF, Waly AI, Sabbour MM, Lubna SN (2015) Synthesis, antifungal and insecticidal potential of chitosan (CS)-g-poly (acrylic acid) (PAA) nanoparticles against some seed borne fungi and insects of soybean. Int J ChemTech Res 8:589–598

    CAS  Google Scholar 

  • Samson RA, Evans HC, Latge JP (1988) Atlas of entomopathogenic fungi. Springer, Berlin, pp 5–16

    Book  Google Scholar 

  • Sarfraz RM, Cervantes V, Myers JH (2011) The effect of host plant species on performance and movement behaviour of the cabbage looper Trichoplusia ni and their potential influences of infection by Autographa californica multiple nucleopolyhedral virus. Agric For Entomol 13:157–164

    Article  Google Scholar 

  • Sayed AMM, Kim S, Behle RW (2017) Characterization of silver nanoparticles synthesized by Bacillus thuringiensis as a nanobiopesticide for insect pest control. Biocontrol Sci Technol 27(11):1308–1326

    Article  Google Scholar 

  • Sepulveda-Cano PA, Lopez-Nunez JC, Soto-Giraldo A (2008) Effect of two entomopathogenic nematodes on Cosmopolites sordidus (Coleoptera: Dryophthoridae). Rev Colomb Entomol 34:62–67

    Google Scholar 

  • Shahid AA, Rao AQ, Bakhsh A, Husnain T (2012) Entomopathogenic fungi as biological controllers: new insight into their virulence and pathogenicity. Arch Biol Sci Belgrade 64(1):21–42

    Article  Google Scholar 

  • Srivastava KP (2004) A textbook of applied entomology (methods of insect pest control), vol I. Kalayani Publishers, New Delhi

    Google Scholar 

  • SüKhova TI (1987) The biological method in the greenhouse. Zashchita Rastenii 2:37–38

    Google Scholar 

  • Taha EH, Abo-Shady NM (2016) Effect of silver nanoparticles on the mortality pathogenicity and reproductivity of entomopathogenic nematodes. Int J Zool Res 12:47–50

    Article  CAS  Google Scholar 

  • Travassos L (1927) Sobre O genera oxystomatium. Boletim Biologico (Sao Paulo) 5:20–21

    Google Scholar 

  • Vahabi K, Ali Mansoori G, Karimi S (2011) Biosynthesis of silver nanoparticles by fungus Trichoderma reesei (a route for large scale production of AgNPs). Insci J 1(1):65–79

    Article  CAS  Google Scholar 

  • Verma M, Brar SK, Tyagi RD, Surampalli RY, Valéro JR (2007) Antagonistic fungi, Trichoderma spp.: panoply of biological control. Biochem Eng J 37(1):1–20

    Article  Google Scholar 

  • Viglierchio DR (1991) The world of nematodes. David R. Viglierchio, Davis

    Google Scholar 

  • Wang H, Wick RL, Xing B (2009) Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ Pollut 157:1171–1177

    Article  CAS  PubMed  Google Scholar 

  • Wang LW, Xu BG, Wang JY, Su ZZ, Lin FC, Zhang CL, Kubicek CP (2012) Bioactive metabolites from Phoma species, an endophytic fungus from the Chinese medicinal plant Arisaema erubescens. Appl Microbiol Biotechnol 93(3):1231–1239

    Article  CAS  PubMed  Google Scholar 

  • Wraight SP, Inglis GD, Goettel MS (2007) Fungi. In: Lacey LA, Kaya HK (eds) Field manual of techniques in invertebrate pathology, 2nd edn. Springer, Dordrecht, pp 223–248, ISBN 978-1-4020-5931-5

    Chapter  Google Scholar 

  • Wright JE, Knauf TA (1994) Evaluation of naturalis-L for control of cotton insects. In: Brighton crop protection conference: pests & diseases, pp 45–52

    Google Scholar 

  • Wyckhuys KA, O’Neil RJ (2006) Population dynamics of Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) and associated arthropod natural enemies in Honduran subsistence maize. Crop Prot 25:1180–1190

    Article  Google Scholar 

  • Xue F, Li W, Wubie AJ, Hu Y, Guo Z, Zhou T, Xu S (2015) Biological control of Ascosphaera apis in honey bees using restricted enzyme mediated integration (REMI) transformed Trichoderma atroviride mutants. Biol Control 83:46–50

    Article  Google Scholar 

  • Yosri M, Abdel-Aziz MM, Sayed RM (2018) Larvicidal potential of irradiated myco-insecticide from Metarhizium anisopliae and larvicidal synergistic effect with its mycosynthesized titanium nanoparticles (TiNPs). J Radiat Res Appl Sci 11(4):328–334

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Pérez Álvarez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Álvarez, S.P., Tapia, M.A.M., Ardisana, E.F.H. (2019). Nanotechnology and Entomopathogenic Microorganisms in Modern Agriculture. In: Pudake, R., Chauhan, N., Kole, C. (eds) Nanoscience for Sustainable Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-319-97852-9_8

Download citation

Publish with us

Policies and ethics