Skip to main content

Recent Advances in Plant Pathogen Control by Nanocides

  • Chapter
  • First Online:
Book cover Nanoscience for Sustainable Agriculture

Abstract

Nanotechnology is a transformative technology and has the great potential to play an important role in world food production and its safety. The engineered nanomaterials possess novel properties due to their size, shape and morphology. These novel properties increase their ability to interact with living organisms. Recently, the use of nanoparticles in agriculture is exponentially increased in the form of nanopesticides, nanofertilizers and nanosensors. The main advantages of the nanoparticles over the conventional formulations, that are required in lesser quantity, which ultimately may reduce the losses in term of money and protect the environment. In this chapter, we have discussed the current use of nanoparticles and formulations for controlling the plant pathogens. The use of nanoparticles has the potential to enhance the suppression of crop diseases and subsequently enhance the sustainability in agriculture. We have also discussed the probable mechanism through which these nanoparticles act as nanocides. Last, we offer comments on the future aspects of these applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Hafez SI, Nafady NA, Abdel-Rahim IR, Shaltout AM, Daròs J-A, Mohamed MA (2016) Assessment of protein silver nanoparticles toxicity against pathogenic Alternaria solani. 3 Biotech 6:199

    Google Scholar 

  • Ansari MJ, Ahmed MM, Anwer MK, Jamil S, Shdefat R, Harthi O, Ibnouf MO, Nour YS, Alam P, Abdel-Kader MS (2016) Evaluation of antifungal activity of Olive oil based nanoemulsions. Bull Environ Pharmacol Life Sci 5:1–4

    CAS  Google Scholar 

  • Abd-Elsalam K, Alghuthaymi M (2015) Nanobiofungicides: is it the next-generation of fungicides? J Nanotech Mater Sci 2:1–3

    Google Scholar 

  • Abd-Elsalam KA, Khokhlov AR (2015) Eugenol oil nanoemulsion: antifungal activity against Fusarium oxysporum f. sp. vasinfectum and phytotoxicity on cottonseeds. Appl Nanosci 5:255–265

    Article  CAS  Google Scholar 

  • Aktar W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdisc Toxicol 2:1–12

    Article  Google Scholar 

  • Ali EOM, Shakil NA, Rana VS, Sarkar DJ, Majumder S, Kaushik P, Singh BB, Kumar J (2017) Antifungal activity of nano emulsions of neem and citronella oils against phytopathogenic fungi, Rhizoctonia solani and Sclerotium rolfsii. Ind Crops Prod 108:379–387

    Google Scholar 

  • Ali K, Ahmed B, Dwivedi S, Saquib Q, Al-Khedhairy AA, Musarrat J (2015a) Microwave accelerated green synthesis of stable silver nanoparticles with eucalyptus globulus leaf extract and their antibacterial and antibiofilm activity on clinical isolates. PLoS ONE 10:e0131178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ali SM, Yousef NM, Nafady NA (2015b) Application of biosynthesized silver nanoparticles for the control of land snail Eobania vermiculata and some plant pathogenic fungi. J Nanomater 2015:3

    Google Scholar 

  • Al-Othman M, El-Aziz A, Mahmoud M, Eifan S, El-Shikh M, Majrashi M (2014) Application of silver nanoparticles as antifungal and antiaflatoxin B1 produced by Aspergillus flavus. Digest J Nanomater Biostruct 9:151–157

    Google Scholar 

  • Amiri A, Morakabati N (2017) Encapsulation of Satureja khuzestanica essential oil in Chitosan nanoparticles with enhanced antifungal activity. World Acad Sci Eng Technol Int J Biol Biomol Agric Food Biotechnol Eng 11:331–336

    Google Scholar 

  • Amiri A, Dugas R, Pichot AL, Bompeix G (2008) In vitro and in vitro activity of eugenol oil (Eugenia caryophylata) against four important postharvest apple pathogens. Int J Food Microbiol 126:13–19

    Article  CAS  PubMed  Google Scholar 

  • Anitha R, Ramesh K, Ravishankar T, Kumar KS, Ramakrishnappa T (2018) Cytotoxicity, antibacterial and antifungal activities of ZnO nanoparticles prepared by the Artocarpus gomezianus fruit mediated facile green combustion method. J Sci Adv Mater Devices 3:440–451

    Google Scholar 

  • Anusuya S, Sathiyabama M (2015) Foliar application of β-D-glucan nanoparticles to control rhizome rot disease of turmeric. Int J Biol Macromol 72:1205–1212

    Article  CAS  PubMed  Google Scholar 

  • Aponiene K, Luksiene Z (2015) Effective combination of LED-based visible light, photosensitizer and photocatalyst to combat Gram (−) bacteria. J Photochem Photobiol B Biol 142:257–263

    Article  CAS  Google Scholar 

  • Arasoglu T, Mansuroglu B, Derman S, Gumus B, Kocyigit B, Acar T, Kocacaliskan I (2016) Enhancement of antifungal activity of Juglone (5-Hydroxy-1, 4-naphthoquinone) using a Poly (d, l-lactic-co-glycolic acid) (PLGA) nanoparticle system. J Agric Food Chem 64:7087–7094

    Article  CAS  PubMed  Google Scholar 

  • Azizi Z, Pourseyedi S, Khatami M, Mohammadi H (2016) Stachys lavandulifolia and Lathyrus sp. mediated for green synthesis of silver nanoparticles and evaluation its antifungal activity against Dothiorella sarmentorum. J Cluster Sci 27:1613–1628

    Article  CAS  Google Scholar 

  • Bahrami-Teimoori B, Nikparast Y, Hojatianfar M, Akhlaghi M, Ghorbani R, Pourianfar HR (2017) Characterisation and antifungal activity of silver nanoparticles biologically synthesised by Amaranthus retroflexus leaf extract. J Exp Nanosci 12:129–139

    Article  CAS  Google Scholar 

  • Balcázar JL, Subirats J, Borrego CM (2015) The role of biofilms as environmental reservoirs of antibiotic resistance. Front Microbiol 6:1216

    Google Scholar 

  • BBC Research (2014) Global markets for nanocomposites, nanoparticles, nanoclays and nanotubes. https://www.bccresearch.com/market-research/nanotechnology/nanocomposites-markety-nan021fhtml?vsmaid=203. Accessed 19 Oct 2017

  • Beyki M et al (2014) Encapsulation of Mentha piperita essential oils in chitosan–cinnamic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. Ind Crops Prod 54:310–319

    Article  CAS  Google Scholar 

  • Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R (2015) Alternative antimicrobial approach: nano-antimicrobial materials. Evidence-based complementary and alternative medicine 2015

    Google Scholar 

  • Bhagat D, Samanta SK, Bhattacharya S (2013) Efficient management of fruit pests by pheromone nanogels. Sci Rep 3:1294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Borkow G, Gabbay J (2005) Copper as a biocidal tool. Curr Med Chem 12:2163–2175

    Article  CAS  PubMed  Google Scholar 

  • Boxi SS, Mukherjee K, Paria S (2016) Ag doped hollow TiO2 nanoparticles as an effective green fungicide against Fusarium solani and Venturia inaequalis phytopathogens. Nanotechnology 27:085103

    Article  PubMed  CAS  Google Scholar 

  • Braga P, Dal Sasso M, Culici M, Alfieri M (2007) Eugenol and thymol, alone or in combination, induce morphological alterations in the envelope of Candida albicans. Fitoterapia 78:396–400

    Article  CAS  PubMed  Google Scholar 

  • Bramhanwade K, Shende S, Bonde S, Gade A, Rai M (2016) Fungicidal activity of Cu nanoparticles against Fusarium causing crop diseases. Environ Chem Lett 14:229–235

    Article  CAS  Google Scholar 

  • Brent KJ, Hollomon DW (1998) Fungicide resistance: the assessment of risk. Global Crop Protection Federation Brussels

    Google Scholar 

  • Brunel F, El Gueddari NE, Moerschbacher BM (2013) Complexation of copper (II) with chitosan nanogels: toward control of microbial growth. Carbohyd Polym 92:1348–1356

    Article  CAS  Google Scholar 

  • Cai L, Chen J, Liu Z, Wang H, Yang H, Ding W (2018) Magnesium oxide nanoparticles: effective agricultural antibacterial agent against Ralstonia solanacearum. Front Microbiol 9:790

    Google Scholar 

  • Camargo PHC, Satyanarayana KG, Wypych F (2009) Nanocomposites: synthesis, structure, properties and new application opportunities. Mater Res 12:1–39

    Article  CAS  Google Scholar 

  • Castellano JJ et al (2007) Comparative evaluation of silver-containing antimicrobial dressings and drugs. Int Wound J 4:114–122

    Article  PubMed  PubMed Central  Google Scholar 

  • Chhipa H (2017) Nanopesticide: current status and future possibilities. Agric Res Technol 5(1):1–4

    Google Scholar 

  • Choudhury SR, Ghosh M, Mandal A, Chakravorty D, Pal M, Pradhan S, Goswami A (2011) Surface-modified sulfur nanoparticles: an effective antifungal agent against Aspergillus niger and Fusarium oxysporum. Appl Microbiol Biotechnol 90:733–743

    Article  PubMed  CAS  Google Scholar 

  • Chwalibog A, Sawosz E, Hotowy A, Szeliga J, Mitura S, Mitura K, Grodzik M, Orlowski P, Sokolowska A (2010) Visualization of interaction between inorganic nanoparticles and bacteria or fungi. Int. J Nanomed 5:1085

    Google Scholar 

  • Cota-Arriola O, Cortez-Rocha MO, Ezquerra-Brauer JM, Lizardi-Mendoza J, Burgos-Hernández A, Robles-Sánchez RM, Plascencia-Jatomea M (2013) Ultrastructural, morphological, and antifungal properties of micro and nanoparticles of chitosan crosslinked with sodium tripolyphosphate. J Polym Environ 21:971–980

    Article  CAS  Google Scholar 

  • Danilczuk M, Lund A, Sadlo J, Yamada H, Michalik J (2006) Conduction electron spin resonance of small silver particles. Spectrochim Acta Part A Mol Biomol Spectrosc 63:189–191

    Article  CAS  Google Scholar 

  • Das R, Gang S, Nath SS, Bhattacharjee R (2010) Linoleic acid capped copper nanoparticles for antibacterial activity. J Bionanosci 4:82–86

    Article  CAS  Google Scholar 

  • Dastjerdi R, Montazer M (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf B Biointerfaces 79:5–18

    Article  CAS  PubMed  Google Scholar 

  • Deryabin D, Aleshina E, Vasilchenko A, Deryabina T, Efremova L, Karimov I, Korolevskaya L (2013) Investigation of copper nanoparticles antibacterial mechanisms tested by luminescent Escherichia coli strains. Nanotechnol Russ 8:402–408

    Article  Google Scholar 

  • Dharni S, Sanchita, Unni SM, Kurungot S, Samad A, Sharma A, Patra DD (2016) In vitro and in silico antifungal efficacy of nitrogen-doped carbon nanohorn (NCNH) against Rhizoctonia solani. J Biomol Struct Dyn 34:152–162

    Article  CAS  PubMed  Google Scholar 

  • Dhoble SM, Kulkarni NS (2016) Antimycotic activity of zinc and manganese nanoparticles on commercially important phytopathogens of soybean (Glycine max (L.) Merril). Sch Acad J Biosci 4:1032–1037

    CAS  Google Scholar 

  • Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2013) Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. Biometals 26:913–924

    Article  CAS  PubMed  Google Scholar 

  • Dizaj SM, Mennati A, Jafari S, Khezri K, Adibkia K (2015) Antimicrobial activity of carbon-based nanoparticles. Adv Pharm Bull 5:19

    CAS  Google Scholar 

  • El-Argawy E, Rahhal M, El-Korany A, Elshabrawy E, Eltahan R (2017) Efficacy of some nanoparticles to control damping-off and root rot of sugar beet in El-Behiera Governorate. Asian J Plant Pathol 11:35–47

    Article  Google Scholar 

  • Espitia PJP, Soares NdFF, dos Reis Coimbra JS, de Andrade NJ, Cruz RS, Medeiros EAA (2012) Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol 5:1447–1464

    Article  CAS  Google Scholar 

  • Farag RK, Mohamed RR (2012) Synthesis and characterization of carboxymethyl chitosan nanogels for swelling studies and antimicrobial activity. Molecules 18:190–203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fernández JG, Fernández-Baldo MA, Berni E, Camí G, Durán N, Raba J, Sanz MI (2016) Production of silver nanoparticles using yeasts and evaluation of their antifungal activity against phytopathogenic fungi. Process Biochem 51:1306–1313

    Article  CAS  Google Scholar 

  • Fosso-Kankeu E, De Klerk C, Botha T, Waanders F, Phoku J, Pandey S (2016) The antifungal activities of multi-walled carbon nanotubes decorated with silver, copper and zinc oxide particles. In: International conference on advances in science, engineering, technology and natural resources (ICASETNR-16) Nov 2016, pp 24–25

    Google Scholar 

  • Foster HA, Ditta IB, Varghese S, Steele A (2011) Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Appl Microbiol Biotechnol 90:1847–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M (2015) Silver nanoparticles as potential antibacterial agents. Molecules 20:8856–8874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed Nanotechnol Biol Med 5:382–386

    Article  CAS  Google Scholar 

  • Ghasemian E, Naghoni A, Tabaraie B, Tabaraie T (2012) In vitro susceptibility of filamentous fungi to copper nanoparticles assessed by rapid XTT colorimetry and agar dilution method. J Mycol Médi 22:322–328

    Article  CAS  Google Scholar 

  • Giannousi K, Avramidis I, Dendrinou-Samara C (2013) Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv 3:21743–21752

    Article  CAS  Google Scholar 

  • Gilbert P, Maira-Litran T, McBain AJ, Rickard AH, Whyte FW (2002) The physiology and collective recalcitrance of microbial biofilm communities. Adv Microb Physiol 46:203–256

    Article  CAS  Google Scholar 

  • Gill A, Holley R (2006) Inhibition of membrane bound ATPases of Escherichia coli and Listeria monocytogenes by plant oil aromatics. Int J Food Microbiol 111:170–174

    Article  CAS  PubMed  Google Scholar 

  • Gnanamangai BM, Ponmurugan P, Jeeva SE, Manjukarunambika K, Elango V, Hemalatha K, Kakati JP, Mohanraj R, Prathap S (2017) Biosynthesised silver and copper nanoformulation as foliar spray to control bird’s eye spot disease in tea plantations. IET Nanobiotechnol 11:917–928

    Google Scholar 

  • González-Fernández R, Prats E, Jorrín-Novo JV (2010) Proteomics of plant pathogenic fungi. BioMed Res Int, Article ID 932527, 36 p

    Google Scholar 

  • Gopinath V, Velusamy P (2013) Extracellular biosynthesis of silver nanoparticles using Bacillus sp. GP-23 and evaluation of their antifungal activity towards Fusarium oxysporum. Spectrochim Acta Part A Mol Biomol Spectrosc 106:170–174

    Article  CAS  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222

    Article  CAS  Google Scholar 

  • Gunalan S, Sivaraj R, Rajendran V (2012) Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Prog Nat Sci Mater Int 22:693–700

    Article  Google Scholar 

  • Halliwell B, Gutteridge JM (2015) Free radicals in biology and medicine. Oxford University Press, USA

    Book  Google Scholar 

  • Hatchett DW, White HS (1996) Electrochemistry of sulfur adlayers on the low-index faces of silver. J Phys Chem 100:9854–9859

    Article  CAS  Google Scholar 

  • He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166:207–215

    Article  CAS  PubMed  Google Scholar 

  • Holubnycha V, Pogorielov M, Korniienko V, Kalinkevych O, Ivashchenko O, Peplinska B, Jarek M (2017) Antibacterial activity of the new copper nanoparticles and Cu NPs/chitosan solution. In: 2017 IEEE 7th international conference on nanomaterials: application & properties (NAP), 2017. IEEE, pp 04NB10-01–04NB10-04

    Google Scholar 

  • Hoseinzadeh A, Habibi-Yangjeh A, Davari M (2016) Antifungal activity of magnetically separable Fe3O4/ZnO/AgBr nanocomposites prepared by a facile microwave-assisted method. Prog Nat Sci Mater Int 26:334–340

    Article  CAS  Google Scholar 

  • Huang W, Fang X, Wang H, Chen F, Duan H, Bi Y, Yu H (2018) Biosynthesis of AgNPs by B. maydis and its antifungal effect against Exserohilum turcicum. IET Nanobiotechnol 12:585–590

    Article  PubMed  PubMed Central  Google Scholar 

  • Hwang YY, Ramalingam K, Bienek DR, Lee V, You T, Alvarez R (2013) Antimicrobial activity of nanoemulsion in combination with cetylpyridinium chloride on multi-drug resistant Acinetobacter baumannii. Antimicrob Agents Chemother 57(8) : 3568–3575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikram F, Qayoom A, Ikram N, Shah MR (2017) Synergistic effect of epicatechin coated silver nanoparticles on antimicrobial activity of gentamicin against Aspergillus niger. J New Technol Mater 7:100–105

    Article  CAS  Google Scholar 

  • Ikram F, Qayoom A, Shah MR (2018) Synthesis of epicatechin coated silver nanoparticles for selective recognition of gentamicin. Sens Actuators B Chem 257:897–905

    Article  CAS  Google Scholar 

  • Jayaseelan C, Rahuman AA, Kirthi AV, Marimuthu S, Santhoshkumar T, Bagavan A, Gaurav K, Karthik L, Rao KB (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta Part A Mol Biomol Spectrosc 90:78–84

    Article  CAS  Google Scholar 

  • Jiang W, Mashayekhi H, Xing B (2009) Bacterial toxicity comparison between nano-and micro-scaled oxide particles. Environ Pollut 157:1619–1625

    Article  CAS  PubMed  Google Scholar 

  • Jogee PS, Ingle AP, Rai M (2017) Isolation and identification of toxigenic fungi from infected peanuts and efficacy of silver nanoparticles against them. Food Control 71:143–151

    Article  CAS  Google Scholar 

  • Johnsen K, Jacobsen CS, Torsvik V, Sørensen J (2001) Pesticide effects on bacterial diversity in agricultural soils—a review. Biol Fertil Soils 33:443–453

    Article  CAS  Google Scholar 

  • Kairyte K, Kadys A, Luksiene Z (2013) Antibacterial and antifungal activity of photoactivated ZnO nanoparticles in suspension. J Photochem Photobiol B 128:78–84

    Article  CAS  PubMed  Google Scholar 

  • Kanhed P, Birla S, Gaikwad S, Gade A, Seabra AB, Rubilar O, Duran N, Rai M (2014) In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater Lett 115:13–17

    Article  CAS  Google Scholar 

  • Khalili ST, Mohsenifar A, Beyki M, Zhaveh S, Rahmani-Cherati T, Abdollahi A, Bayat M, Tabatabaei M (2015) Encapsulation of thyme essential oils in chitosan-benzoic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. LWT-Food Sci Technol 60:502–508

    Article  CAS  Google Scholar 

  • Khatami M, Mehnipor R, Poor MHS, Jouzani GS (2016a) Facile biosynthesis of silver nanoparticles using Descurainia sophia and evaluation of their antibacterial and antifungal properties. J Cluster Sci 27:1601–1612

    Article  CAS  Google Scholar 

  • Khatami M, Nejad MS, Salari S, Almani PGN (2016b) Plant-mediated green synthesis of silver nanoparticles using Trifolium resupinatum seed exudate and their antifungal efficacy on Neofusicoccum parvum and Rhizoctonia solani. IET Nanobiotechnol 10:237–243

    Article  PubMed  PubMed Central  Google Scholar 

  • Khatami M, Mortazavi SM, Kishani-Farahani Z, Amini A, Amini E, Heli H (2017) Biosynthesis of silver nanoparticles using pine pollen and evaluation of the antifungal efficiency. Iran J Biotechnol 15:95

    Article  PubMed  PubMed Central  Google Scholar 

  • Kheiri A, Jorf SM, Malihipour A, Saremi H, Nikkhah M (2016) Application of chitosan and chitosan nanoparticles for the control of Fusarium head blight of wheat (Fusarium graminearum) in vitro and greenhouse. Int J Biol Macromol 93:1261–1272

    Article  CAS  PubMed  Google Scholar 

  • Kim J-H, Cho H, Ryu S-E, Choi M-U (2000) Effects of metal ions on the activity of protein tyrosine phosphatase VHR: highly potent and reversible oxidative inactivation by Cu2+ ion. Arch Biochem Biophys 382:72–80

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3:95–101

    Google Scholar 

  • Kim SW, Jung JH, Lamsal K, Kim YS, Min JS, Lee YS (2012) Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 40:53–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinney CA, Mandernack KW, Mosier AR (2005) Laboratory investigations into the effects of the pesticides mancozeb, chlorothalonil, and prosulfuron on nitrous oxide and nitric oxide production in fertilized soil. Soil Biol Biochem 37:837–850

    Article  CAS  Google Scholar 

  • Knetsch ML, Koole LH (2011) New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles. Polymers 3:340–366

    Article  CAS  Google Scholar 

  • Koli P, Singh BB, Shakil NA, Kumar J, Kamil D (2015) Development of controlled release nanoformulations of carbendazim employing amphiphilic polymers and their bioefficacy evaluation against Rhizoctonia solani. J Environ Sci Health Part B 50:674–681

    CAS  Google Scholar 

  • Kon K, Rai M (2013) Metallic nanoparticles: mechanism of antibacterial action and influencing factors. J Comp Clin Path Res 2:160–174

    Google Scholar 

  • Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144:51–63

    Article  CAS  PubMed  Google Scholar 

  • Krężel A, Maret W (2016) The biological inorganic chemistry of zinc ions. Arch Biochem Biophys 611:3–19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krishnaraj C, Ramachandran R, Mohan K, Kalaichelvan P (2012) Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim Acta Part A Mol Biomol Spectrosc 93:95–99

    Article  CAS  Google Scholar 

  • Lamsal K, Kim S-W, Jung JH, Kim YS, Kim KS, Lee YS (2011a) Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology 39:26–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011b) Application of silver nanoparticles for the control of Colletotrichum species in vitro and pepper anthracnose disease in field. Mycobiology 39:194–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee K-J, Park SH, Govarthanan M, Hwang PH, Seo YS, Cho M, Lee WH, Lee JY, Kamala-Kannan S, Oh BT (2013) Synthesis of silver nanoparticles using cow milk and their antifungal activity against phytopathogens. Mater Lett 105:128–131

    Article  CAS  Google Scholar 

  • Li X, Xing Y, Jiang Y, Ding Y, Li W (2009) Antimicrobial activities of ZnO powder-coated PVC film to inactivate food pathogens. Int J Food Sci Technol 44:2161–2168

    Article  CAS  Google Scholar 

  • Li J, Sang H, Guo H, Popko JT, He L, White JC, Dhankher OP, Jung G, Xing B (2017) Antifungal mechanisms of ZnO and Ag nanoparticles to Sclerotinia homoeocarpa. Nanotechnology 28:155101

    Article  PubMed  CAS  Google Scholar 

  • Luksiene Z (2017) Nanoparticles and their potential application as antimicrobials in the food industry. In: Food preservation. Elsevier, Amsterdam, pp 567–601

    Chapter  Google Scholar 

  • Lukšienė Ž, Danilčenko H, Tarasevičienė Ž, Anusevičius Ž, Marozienė A, Nivinskas H (2007) New approach to the fungal decontamination of wheat used for wheat sprouts: effects of aminolevulinic acid. Int J Food Microbiol 116:153–158

    Article  PubMed  CAS  Google Scholar 

  • Luque-Alcaraz AG, Cortez-Rocha MO, Velázquez-Contreras CA, Acosta-Silva AL, Santacruz-Ortega HD, Burgos-Hernández A, Argüelles-Monal WM, Plascencia-Jatomea M (2016) Enhanced antifungal effect of chitosan/pepper tree (Schinus molle) essential oil bionanocomposites on the viability of Aspergillus parasiticus spores. J Nanomater 2016:38

    Google Scholar 

  • Mahdizadeh V, Safaie N, Khelghatibana F (2015) Evaluation of antifungal activity of silver nanoparticles against some phytopathogenic fungi and Trichoderma harzianum. J Crop Prot 4:291–300

    Google Scholar 

  • Majumder S, Shakil NA, Kumar J, Banerjee T, Sinha P, Singh BB, Garg P (2016) Eco-friendly PEG-based controlled release nano-formulations of Mancozeb: synthesis and bioefficacy evaluation against phytopathogenic fungi Alternaria solani and Sclerotium rolfsii. J Environ Sci Health Part B 51:873–880

    Article  CAS  Google Scholar 

  • Mason T, Wilking J, Meleson K, Chang C, Graves S (2006) Nanoemulsions: formation, structure, and physical properties. J Phys Condens Matter 18:R635

    Article  CAS  Google Scholar 

  • Matsumura Y, Yoshikata K, Kunisaki S-i, Tsuchido T (2003) Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 69:4278–4281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milenkovski S, Bååth E, Lindgren P-E, Berglund O (2010) Toxicity of fungicides to natural bacterial communities in wetland water and sediment measured using leucine incorporation and potential denitrification. Ecotoxicology 19:285–294

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Singh BR, Singh A, Keswani C, Naqvi AH, Singh H (2014) Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat. PLoS ONE 9:e97881

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mitra S, Patra P, Pradhan S, Debnath N, Dey KK, Sarkar S, Chattopadhyay D, Goswami A (2015) Microwave synthesis of ZnO@ mSiO2 for detailed antifungal mode of action study: understanding the insights into oxidative stress. J Colloid Interface Sci 444:97–108

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi A, Hashemi M, Hosseini SM (2015) Nanoencapsulation of Zataria multiflora essential oil preparation and characterization with enhanced antifungal activity for controlling Botrytis cinerea, the causal agent of gray mould disease. Innov Food Sci Emerg Technol 28:73–80

    Article  CAS  Google Scholar 

  • Morcia C, Malnati M, Terzi V (2012) In vitro antifungal activity of terpinen-4-ol, eugenol, carvone, 1, 8-cineole (eucalyptol) and thymol against mycotoxigenic plant pathogens. Food Addit Contam Part A 29:415–422

    CAS  Google Scholar 

  • Mukha IP, Eremenko A, Smirnova N, Mikhienkova A, Korchak G, Gorchev V, Chunikhin AY (2013) Antimicrobial activity of stable silver nanoparticles of a certain size. Appl Biochem Microbiol 49:199–206

    Article  CAS  Google Scholar 

  • Myc A, Vanhecke T, Landers JJ, Hamouda T, Baker JR (2003) The fungicidal activity of novel nanoemulsion (X8W 60 PC) against clinically important yeast and filamentous fungi. Mycopathologia 155:195–201

    Article  Google Scholar 

  • Narayanan KB, Park HH (2014) Antifungal activity of silver nanoparticles synthesized using turnip leaf extract (Brassica rapa L.) against wood rotting pathogens. Eur J Plant Pathol 140:185–192

    Article  CAS  Google Scholar 

  • Navale GR, Thripuranthaka M, Late DJ, Shinde SS (2015) Antimicrobial activity of ZnO nanoparticles against pathogenic bacteria and fungi. JSM Nanotechnol Nanomed 3:1033–1041

    Google Scholar 

  • Negi M (2016) Bio-efficacy of silver nanoparticles of botanicals against Alternaria zinniae causing leaf spot disease in marigold. PhD Thesis, http://krishikosh.egranth.ac.in/handle/1/92938

  • Nejad MS, Bonjar GHS, Khatami M, Amini A, Aghighi S (2016) In vitro and in vivo antifungal properties of silver nanoparticles against Rhizoctonia solani, a common agent of rice sheath blight disease. IET Nanobiotechnol 11:236–240

    Article  Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ocsoy I, Paret ML, Ocsoy MA, Kunwar S, Chen T, You M, Tan W (2013) Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 7:8972–8980

    Article  CAS  PubMed  Google Scholar 

  • Ouda SM (2014) Antifungal activity of silver and copper nanoparticles on two plant pathogens, Alternaria alternata and Botrytis cinerea. Res J Microbiol 9:34

    Article  CAS  Google Scholar 

  • Pandoli O, Martins RD, Romani EC, Paciornik S, Maurício MH, Alves HD, Pereira-Meirelles FV, Luz EL, Koller SM, Valiente H, Ghavami K (2016a) Colloidal silver nanoparticles: an effective nano-filler material to prevent fungal proliferation in bamboo. RSC Adv 6:98325–98336

    Article  CAS  Google Scholar 

  • Pandoli O, Ventura Pereira-Meirelles F, Monteiro Lobo Lobo Luz E, Assumpção A, dos Santos Martins R, del Rosso T, Ghavami K (2016b) Synthesis of silver nanoparticles with potential antifungical activity for Bamboo treatment. In: Key engineering materials. Trans Tech Publ, pp 86–91

    Google Scholar 

  • Pannu J, McCarthy A, Martin A, Hamouda T, Ciotti S, Fothergill A, Sutcliffe J (2009) NB-002, a novel nanoemulsion with broad antifungal activity against dermatophytes, other filamentous fungi, and Candida albicans. Antimicrob Agents Chemother 53:3273–3279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papkina A, Perfileva AI, Zhivet’yev MA, Borovskii GB, Graskova IA, Klimenkov IV, Lesnichaya MV, Sukhov BG, Trofimov BA (2015) Complex effects of selenium-arabinogalactan nanocomposite on both phytopathogen Clavibacter michiganensis subsp. sepedonicus and potato plants. Nanotechnol Russ 10:484–491

    Google Scholar 

  • Parizi MA, Moradpour Y, Roostaei A, Khani M, Negahdari M, Rahimi G (2014) Evaluation of the antifungal effect of magnesium oxide nanoparticles on Fusarium oxysporum F. Sp. lycopersici, pathogenic agent of tomato. Eur J Expt Biol 4:151–156

    CAS  Google Scholar 

  • Park H-J, Kim S-H, Kim H-J, Choi S-H (2006) A new composition of nanosized silica-silver for control of various plant. Plant Pathol J 22:295–302

    Article  Google Scholar 

  • Patel RP, Joshi JR (2012) An overview on nanoemulsion: a novel approach. Int J Pharm Sci Res 3:4640

    CAS  Google Scholar 

  • Patel N, Desai P, Patel N, Jha A, Gautam HK (2014) Agronanotechnology for plant fungal disease management: a review. Int J Curr Microbiol Appl Sci 3:71–84

    Google Scholar 

  • Patra P, Mitra S, Debnath N, Goswami A (2012) Biochemical-, biophysical-, and microarray-based antifungal evaluation of the buffer-mediated synthesized nano zinc oxide: an in vivo and in vitro toxicity study. Langmuir 28:16966–16978

    Article  CAS  PubMed  Google Scholar 

  • Petersen DG, Dahllof I, Nielsen LP (2004) Effects of zinc pyrithione and copper pyrithione on microbial community function and structure in sediments. Environ Toxicol Chem 23:921–928

    Article  CAS  Google Scholar 

  • Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2:32

    Article  Google Scholar 

  • Qian Y, Yu H, He D, Yang H, Wang W, Wan X, Wang L (2013) Biosynthesis of silver nanoparticles by the endophytic fungus Epicoccum nigrum and their activity against pathogenic fungi. Bioprocess Biosyst Eng 36:1613–1619

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    Article  CAS  PubMed  Google Scholar 

  • Rai P, Jo J-N, Lee I-H, Yu Y-T (2011) Ultrasonic synthesis of ZnO nano/micro structures and their photoluminescence property. J Mater Sci Mater Electron 22:1053–1059

    Article  CAS  Google Scholar 

  • Rai M, Deshmukh S, Ingle A, Gade A (2012) Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J Appl Microbiol 112:841–852

    Article  CAS  PubMed  Google Scholar 

  • Rajiv P, Rajeshwari S, Venckatesh R (2013) Bio-Fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochim Acta Part A Mol Biomol Spectrosc 112:384–387

    Article  CAS  Google Scholar 

  • Ramalingam B, Parandhaman T, Das SK (2016) Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of gram-negative bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Appl Mater Interfaces 8:4963–4976

    Article  CAS  PubMed  Google Scholar 

  • Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G, Rahuman AA (2012) Synthesis and antimicrobial activity of copper nanoparticles. Mater Lett 71:114–116

    Article  CAS  Google Scholar 

  • Rao KJ, Paria S (2013) Use of sulfur nanoparticles as a green pesticide on Fusarium solani and Venturia inaequalis phytopathogens. RSC Adv 3:10471–10478

    Article  CAS  Google Scholar 

  • Reed RB, Ladner DA, Higgins CP, Westerhoff P, Ranville JF (2012) Solubility of nano-zinc oxide in environmentally and biologically important matrices. Environ Toxicol Chem 31:93–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-González V, Domínguez-Espíndola R, Casas-Flores S, Patrón-Soberano O, Camposeco-Solis R, Lee S-W (2016) Antifungal nanocomposites inspired by titanate nanotubes for complete inactivation of Botrytis cinerea isolated from Tomato infection. ACS Appl Mater Interfaces 8:31625–31637

    Article  PubMed  CAS  Google Scholar 

  • Roy R, Roy RA, Roy DM (1986) Alternative perspectives on “quasi-crystallinity”: non-uniformity and nanocomposites. Mater Lett 4:323–328

    Article  Google Scholar 

  • Saharan V, Mehrotra A, Khatik R, Rawal P, Sharma S, Pal A (2013) Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi. Int J Biol Macromol 62:677–683

    Article  CAS  PubMed  Google Scholar 

  • Saharan V, Khatik R, Kumari M, Raliya R, Nallamuthu I, Pal A (2014) Nano-materials for plant protection with special reference to nano-chitosan. In: Proceedings of the international conference on advances in biotechnology (BioTech), 2014. Global Science and Technology Forum, p 23

    Google Scholar 

  • Saharan V, Sharma G, Yadav M, Choudhary MK, Sharma SS, Pal A, Raliya R, Biswas P (2015) Synthesis and in vitro antifungal efficacy of Cu–chitosan nanoparticles against pathogenic fungi of tomato. Int J Biol Macromol 75:346–353

    Article  CAS  PubMed  Google Scholar 

  • Saleem S, Ahmed B, Khan MS, Al-Shaeri M, Musarrat J (2017) Inhibition of growth and biofilm formation of clinical bacterial isolates by NiO nanoparticles synthesized from Eucalyptus globulus plants. Microb Pathog 111:375–387

    Article  CAS  PubMed  Google Scholar 

  • Salomoni R, Léo P, Montemor A, Rinaldi B, Rodrigues M (2017) Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnol Sci Appl 10:115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santra S (2014) Silica-based antibacterial and antifungal nanoformulation.U.S. Patent No. 8,632,811

    Google Scholar 

  • Savi GD, Bortoluzzi AJ, Scussel VM (2013) Antifungal properties of Zinc-compounds against toxigenic fungi and mycotoxin. Int J Food Sci Technol 48:1834–1840

    Article  CAS  Google Scholar 

  • Sawangphruk M, Srimuk P, Chiochan P, Sangsri T, Siwayaprahm P (2012) Synthesis and antifungal activity of reduced graphene oxide nanosheets. Carbon 50:5156–5161

    Article  CAS  Google Scholar 

  • Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF (2010) Metal-based nanoparticles and their toxicity assessment. Wiley Interdisc Rev Nanomed Nanobiotechnol 2:544–568

    Article  CAS  Google Scholar 

  • Seil JT, Webster TJ (2012) Antimicrobial applications of nanotechnology: methods and literature. Int J Nanomed 7:2767

    CAS  Google Scholar 

  • Shanmugam C, Gunasekaran D, Duraisamy N, Nagappan R, Krishnan K (2015) Bioactive bile salt-capped silver nanoparticles activity against destructive plant pathogenic fungi through in vitro system. RSC Adv 5:71174–71182

    Article  CAS  Google Scholar 

  • Sharma D, Rajput J, Kaith B, Kaur M, Sharma S (2010) Synthesis of ZnO nanoparticles and study of their antibacterial and antifungal properties. Thin Solid Films 519:1224–1229

    Article  CAS  Google Scholar 

  • Sharma P, Sharma A, Sharma M, Bhalla N, Estrela P, Jain A, Thakur P, Thakur A (2017) Nanomaterial fungicides: in vitro and in vivo antimycotic activity of Cobalt and Nickel nanoferrites on phytopathogenic fungi. Global Challenges 1:1700041

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh Y, Meher JG, Raval K, Khan FA, Chaurasia M, Jain NK, Chourasia MK (2017) Nanoemulsion: concepts, development and applications in drug delivery. J Controlled Release 252:28–49

    Article  CAS  Google Scholar 

  • Slavin YN, Asnis J, Häfeli UO, Bach H (2017) Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol 15:65

    Article  CAS  Google Scholar 

  • Smitha S, Gopchandran K (2013) Surface enhanced Raman scattering, antibacterial and antifungal active triangular gold nanoparticles. Spectrochim Acta Part A Mol Biomol Spectrosc 102:114–119

    Article  CAS  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci 275:177–182

    Article  CAS  PubMed  Google Scholar 

  • Soni KS, Desale SS, Bronich TK (2016) Nanogels: an overview of properties, biomedical applications and obstacles to clinical translation. J Controlled Release 240:109–126

    Article  CAS  Google Scholar 

  • Srinivasan N, Kannan J, Satheeskumar S (2015) Antifungal activity of pure and aluminium doped zinc oxide nanoparticles against Aspergillus nigar and Aspergillus flavus. Int J ChemTech Res 7:287–290

    CAS  Google Scholar 

  • Srivastav AK, Kumar M, Ansari NG, Jain AK, Shankar J, Arjaria N, Jagdale P, Singh D (2016) A comprehensive toxicity study of zinc oxide nanoparticles versus their bulk in Wistar rats: toxicity study of zinc oxide nanoparticles. Hum Exp Toxicol 35:1286–1304

    Article  CAS  Google Scholar 

  • Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138

    Article  CAS  PubMed  Google Scholar 

  • Sukhwal A, Jain D, Joshi A, Rawal P, Kushwaha HS (2016) Biosynthesised silver nanoparticles using aqueous leaf extract of Tagetes patula L. and evaluation of their antifungal activity against phytopathogenic fungi. IET Nanobiotechnol

    Google Scholar 

  • Suriyaprabha R, Karunakaran G, Kavitha K, Yuvakkumar R, Rajendran V, Kannan N (2013) Application of silica nanoparticles in maize to enhance fungal resistance. IET Nanobiotechnol 8:133–137

    Article  CAS  Google Scholar 

  • Velmurugan P, Lee S-M, Iydroose M, Lee K-J, Oh B-T (2013) Pine cone-mediated green synthesis of silver nanoparticles and their antibacterial activity against agricultural pathogens. Appl Microbiol Biotechnol 97:361–368

    Article  CAS  PubMed  Google Scholar 

  • Velmurugan P, Shim J, Kim K, Oh B-T (2016) Prunus × yedoensis tree gum mediated synthesis of platinum nanoparticles with antifungal activity against phytopathogens. Mater Lett 174:61–65

    Article  CAS  Google Scholar 

  • Viet PV, Nguyen HT, Cao TM, Hieu LV (2016) Fusarium antifungal activities of copper nanoparticles synthesized by a chemical reduction method. J Nanomater 2016:6

    Google Scholar 

  • Vivek M, Kumar PS, Steffi S, Sudha S (2011) Biogenic silver nanoparticles by Gelidiella acerosa extract and their antifungal effects. Avicenna J Med Biotechnol 3:143

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner G, Korenkov V, Judy JD, Bertsch PM (2016) Nanoparticles composed of Zn and ZnO inhibit Peronospora tabacina spore germination in vitro and P. tabacina infectivity on tobacco leaves. Nanomaterials 6:50

    Article  PubMed Central  CAS  Google Scholar 

  • Wang C, Zhang J, Chen H, Fan Y, Shi Z (2010) Antifungal activity of eugenol against Botrytis cinerea. Tropical Plant Pathol 35:137–143

    Article  CAS  Google Scholar 

  • Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed 12:1227

    Article  CAS  Google Scholar 

  • Wani IA, Ahmad T (2013) Size and shape dependant antifungal activity of gold nanoparticles: a case study of Candida. Colloids Surf B 101:162–170

    Article  CAS  Google Scholar 

  • Wani A, Shah M (2012) A unique and profound effect of MgO and ZnO nanoparticles on some plant pathogenic fungi. J Appl Pharm Sci 2:4

    Google Scholar 

  • Xie Y, He Y, Irwin PL, Jin T, Shi X (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol 77:2325–2331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing K, Shen X, Zhu X, Ju X, Miao X, Tian J, Feng Z, Peng X, Jiang J, Qin S (2016) Synthesis and in vitro antifungal efficacy of oleoyl-chitosan nanoparticles against plant pathogenic fungi. Int J Biol Macromol 82:830–836

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Cao L-D, Li F-M, Wang X-J, Huang Q-L (2014) Utilization of chitosan-lactide copolymer nanoparticles as controlled release pesticide carrier for pyraclostrobin against Colletotrichum gossypii Southw. J Dispers Sci Technol 35:544–550

    Article  CAS  Google Scholar 

  • Xue J, Luo Z, Li P, Ding Y, Cui Y, Wu Q (2014) A residue-free green synergistic antifungal nanotechnology for pesticide thiram by ZnO nanoparticles. Sci Rep 4:5408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yehia RS, Ahmed OF (2013) In vitro study of the antifungal efficacy of zinc oxide nanoparticles against Fusarium oxysporum and Penicilium expansum. Afr J Microbiol Res 7:1917–1923

    Article  CAS  Google Scholar 

  • Yien L, Zin NM, Sarwar A, Katas H (2012) Antifungal activity of chitosan nanoparticles and correlation with their physical properties. Int J Biomater. vol. 2012, Article ID 632698, 9 pages

    Google Scholar 

  • Zabrieski Z, Morrell E, Hortin J, Dimkpa C, McLean J, Britt D, Anderson A (2015) Pesticidal activity of metal oxide nanoparticles on plant pathogenic isolates of Pythium. Ecotoxicology 24:1305–1314

    Article  CAS  PubMed  Google Scholar 

  • Zakharova OV, Gusev AA, Zherebin PM, Skripnikova EV, Skripnikova MK, Ryzhikh VE, Lisichkin GV, Shapoval OA, Bukovskii ME, Krutyakov YA (2017) Sodium tallow amphopolycarboxyglycinate-stabilized silver nanoparticles suppress early and late blight of Solanum lycopersicum and stimulate the growth of Tomato plants. BioNanoScience 1–11

    Google Scholar 

  • Zhang J, Liu Y, Zhao C, Cao L, Huang Q, Wu Y (2016) Enhanced germicidal efficacy by co-delivery of Validamycin and Hexaconazole with Methoxy Poly (ethylene glycol)-Poly (lactideco-glycolide) nanoparticles. J Nanosci Nanotechnol 16:152–159

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Ding Y, Povey M, York D (2008) ZnO nanofluids—a potential antibacterial agent. Prog Nat Sci 18:939–944

    Google Scholar 

  • Zhang L, Jiang Y, Ding Y, Povey M, York D (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanoparticle Res 9:479–489

    Article  CAS  Google Scholar 

  • Zhao Y, Nalwa HS (2007) Nanotoxicology: interactions of nanomaterials with biological systems, vol 19. American Scientific Publishers

    Google Scholar 

  • Zhaveh S, Mohsenifar A, Beiki M, Khalili ST, Abdollahi A, Rahmani-Cherati T, Tabatabaei M (2015) Encapsulation of Cuminum cyminum essential oils in chitosan-caffeic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. Ind Crops Prod 69:251–256

    Article  CAS  Google Scholar 

Download references

Acknowledgements

RNP gratefully acknowledges the funding under Start-up Research Grant (Life Sciences) by Science and Engineering Research Board, Department of Science and Technology, Government of India (SB/FT/LS-104/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Namdeo Pudake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rana, K., Luksiene, Z., Pudake, R.N. (2019). Recent Advances in Plant Pathogen Control by Nanocides. In: Pudake, R., Chauhan, N., Kole, C. (eds) Nanoscience for Sustainable Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-319-97852-9_5

Download citation

Publish with us

Policies and ethics