Skip to main content

Nano-biofertilizers: Harnessing Dual Benefits of Nano-nutrient and Bio-fertilizers for Enhanced Nutrient Use Efficiency and Sustainable Productivity

  • Chapter
  • First Online:
Book cover Nanoscience for Sustainable Agriculture

Abstract

Nanotechnology has introgressed to several disciplines of science and technology besides recent applications for improving the crop production and environmental sanctity of the arable lands. Though incipient, an impetus has been observed for the development of new-age smart nano-fertilizers which include both novel formulations of conventional fertilizers and adsorbed/encapsulated nano-nutrients. The phyto- and eco-toxicity issues of these novel nano-scale fertilizers have further escalated the need for alternatives that can diffuse the negative application effects of nano-fertilizer alone. The most feasible improvement can be nano-biofertilizers—a conjugate preparation involving combinatorial application of nano- and bio-fertilizers (including an array of soil beneficial microbes) to obtain enhanced and sustainable crop productivity with better addressal of environmental safety.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajirloo AR, Shaaban M, Motlagh ZR (2015) Effect of K nano-fertilizer and N bio-fertilizer on yield and yield components of tomato (Lycopersicon esculentum L.). Int J Adv Biol Biom Res 3:138–143

    Google Scholar 

  • Alagarasan G, Aswathy KS (2017) Shoot the message, not the messenger-combating pathogenic virulence in plants by inhibiting quorum sensing mediated signaling molecules. Front Plant Sci 8:1–9

    Article  Google Scholar 

  • Anderson AJ, McLean JE, Jacobson AR, Britt DW (2017) CuO and ZnO nanoparticles modify interkingdom cell signaling processes relevant to crop production. J Agric Food Chem 66:6513–6524

    Article  Google Scholar 

  • Axelos MA, Van de Voorde M (2017) Nanotechnology in agriculture and food science. Wiley, Hoboken

    Book  Google Scholar 

  • Babaei K, Seyed Sharifi R, Pirzad A, Khalilzadeh R (2017) Effects of bio fertilizer and nano Zn–Fe oxide on physiological traits, antioxidant enzymes activity and yield of wheat (Triticum aestivum L.) under salinity stress. J Plant Interact 12:381–389

    Article  CAS  Google Scholar 

  • Bal HB, Das S, Dangar TK, Adhya TK (2013) ACC deaminase and IAA producing growth promoting bacteria from the rhizosphere soil of tropical rice plants. J Basic Microbiol 53:972–984

    Article  CAS  PubMed  Google Scholar 

  • Bansiwal AK, Rayalu SS, Labhasetwar NK, Juwarkar AA, Devotta S (2006) Surfactant-modified zeolite as a slow release fertilizer for phosphorus. J Agric Food Chem 54:4773–4779

    Article  CAS  PubMed  Google Scholar 

  • Bashan Y, de Bashan LE, Prabhu S, Hernandez J-P (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant and Soil 378:1–33

    Article  CAS  Google Scholar 

  • Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Fact 13:1–10

    Article  Google Scholar 

  • Boddupalli A, Tiwari R, Sharma A, Singh S, Prasanna R, Nain L (2017) Elucidating the interactions and phytotoxicity of zinc oxide nanoparticles with agriculturally beneficial bacteria and selected crop plants. Folia Microbiol (Praha) 62:253–262

    Article  CAS  Google Scholar 

  • Boraste A, Vamsi KK, Jhadav A, Khairnar Y, Gupta N, Trivedi S, Patil P, Gupta G, Gupta M, Mujapara AK, Joshi B (2009) Biofertilizers: a novel tool for agriculture. Int J Microbiol Res 1:23–31

    Article  Google Scholar 

  • Capstaff NM, Miller AJ (2018) Improving the yield and nutritional quality of forage. Crops 9:1–18

    Article  Google Scholar 

  • Cravo-Laureau C, Cagnon C, Lauga B, Duran R (2017) Microbial ecotoxicology. Springer, New York

    Book  Google Scholar 

  • Daniyan IA, Omokhuale AM, Aderoba AA et al (2017) Development and performance evaluation of organic fertilizer machinery. Cogent Eng 4:1364044

    Article  Google Scholar 

  • Das A, Ghosh PK (2012) Role of legumes in sustainable agriculture and food security: an Indian perspective. Outlook Agric 41:279–284

    Article  Google Scholar 

  • Davod T, Reza Z, Ali VA, Mehrdad C (2011) Effects of nanosilver and nitroxin biofertilizer on yield and yield components of potato minitubers. Int J Agric Biol 13:986–990

    CAS  Google Scholar 

  • DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5:91

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa C, Mclean JE, Britt DW, Johnson WP, Arey B, Lea AS, Anderson AJ (2012a) Nano-specific inhibition of pyoverdine siderophore production in Pseudomonas chlororaphis O6 by CuO nanoparticles. Chem Res Toxicol 25(5):1066–1074

    Article  CAS  Google Scholar 

  • Dimkpa CO, Bindraban PS (2017) Nanofertilizers: new products for the industry? J Agric Food Chem 66:6462

    Article  CAS  PubMed  Google Scholar 

  • Dimkpa CO, Zeng J, McLean JE, Britt DW, Zhan J, Anderson AJ (2012b) Production of indole-3-acetic acid via the indole-3-acetamide pathway in the plant-beneficial bacterium Pseudomonas chlororaphis O6 is inhibited by ZnO nanoparticles but enhanced by CuO nanoparticles. Appl Environ Microbiol 78:1404–1410

    Article  Google Scholar 

  • Ditta A, Arshad M (2015) Applications and perspectives of using nanomaterials for sustainable plant nutrition. Nanotechnol Rev 5(2):209–229

    Article  CAS  Google Scholar 

  • Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Reports 15:11–23

    Article  Google Scholar 

  • Farnia A, Ghorbani A (2014) Effect of K nano-fertilizer and N bio-fertilizer on yield and yield components of red bean (Phaseolus vulgaris L.). Biosci, Int J 6655:296–303

    Google Scholar 

  • Feizi H, Kamali M, Jafari L, Rezvani P (2013) Chemosphere Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). Chemosphere 91:506–511

    Article  CAS  PubMed  Google Scholar 

  • García-Fraile P, Menéndez E, Rivas R (2015) Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioeng 2:183–205. https://doi.org/10.3934/bioeng.2015.3.183

    Article  CAS  Google Scholar 

  • Ghalamboran MR, Ramsden JJ (2012) Viability of Bradyrhizobium japanicum on soybean seeds enhanced by magnetite nanoparticles during desiccation. Int J Biol Life Sci 8:228–233

    Google Scholar 

  • Ghalamboran MR (2011) Symbiotic nitrogen fixation enhancement due to magnetite nanoparticles, 2010–2011

    Google Scholar 

  • Ghalamboran MR, Ramsden JJ, Ansari F (2009) Growth rate enhancement of Bradyrhizobium japanicum due to magnetite nanoparticles. J Bionanosci 3:33–38

    Google Scholar 

  • Ghooshchi F (2017) Influence of titanium and bio-fertilizers on some agronomic and physiological attributes of triticale exposed to cadmium stress. Glob Nest J 19:458–463

    Article  CAS  Google Scholar 

  • Ghorbanpour M, Manika K, Varma A (2017) Nanoscience and plant—soil systems, vol 48. Springer, New York

    Book  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  PubMed  Google Scholar 

  • Gouda S, Kerry RG, Das G et al (2018) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140

    Article  PubMed  Google Scholar 

  • Guo D, Xie G, Luo J (2014) Mechanical properties of nanoparticles: basics and applications. J Phys D Appl Phys 47:031001

    Article  CAS  Google Scholar 

  • Gupta G, Panwar J, Akhtar MS, Jha PN (2012) Endophytic nitrogen-fixing bacteria as biofertilizer. Sustain Agric Rev. Springer, New York, pp 183–221

    Chapter  Google Scholar 

  • Haris Z, Ahmad I (2017) Impact of metal oxide nanoparticles on beneficial soil microorganisms and their secondary metabolites. Int J Life Sci Scienti Res 3:1020

    Article  Google Scholar 

  • Imahori Y (2014) Role of ascorbate peroxidase in postharvest treatments of horticultural crops. In: Oxidative Damage to Plants, pp 425–451

    Chapter  Google Scholar 

  • Islam M, Islam S, Akter A et al (2017) Effect of organic and inorganic fertilizers on soil properties and the growth, yield and quality of tomato in mymensingh, Bangladesh. Agriculture 7:18

    Article  CAS  Google Scholar 

  • Jacobson A et al (2018) Interactions between a plant probiotic and nanoparticles on plant responses related to drought tolerance. Ind Biotechnol 14:148–156

    Article  CAS  Google Scholar 

  • Jehangir IA, Mir MA, Bhat MA, Ashraf Ahangar M (2017) Biofertilizers an approach to sustainability in agriculture: a review. J Pure App Biosci 5:327–334

    Article  Google Scholar 

  • Jiang Y, Yu L, Sun H, Yin X, Wang C, Mathews S, Wang N (2017) Transport of natural soil nanoparticles in saturated porous media: effects of pH and ionic strength. Chem Speciat Bioavailab 29:186–196

    Article  CAS  Google Scholar 

  • Jiao GJ, Xu Q, Cao SL, Peng P, She D (2018) Controlled-release fertilizer with lignin used to trap urea/hydroxymethylurea/ urea-formaldehyde polymers. BioResour 13:1711–1728

    Article  CAS  Google Scholar 

  • Ju I (2018) A review: biofertilizer—a key player in enhancing soil fertility and crop productivity. Microbiol Biotechnol Rep 2:22–28

    Article  Google Scholar 

  • Kah M (2015) Nanopesticides and nanofertilizers: emerging contaminants or opportunities for risk mitigation? Front Chem 3:1–6

    Article  Google Scholar 

  • Kah M, Kookana RS, Gogos A, Bucheli TD (2018) A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat Nanotechnol 13:1–8. https://doi.org/10.1038/s41565-018-0131-1

    Article  CAS  Google Scholar 

  • Karunakaran G, Manivasakan P, Yuvakkumar R, Yuvakkumar R, Rajendran V, Prabu P, Kannan N (2013) Effect of nanosilica and silicon sources on plant growth promoting rhizobacteria, soil nutrients and maize seed germination. IET Nanobiotechnol 7:70–77. https://doi.org/10.1049/iet-nbt.2012.0048

    Article  CAS  PubMed  Google Scholar 

  • Khan N, Bano A (2016) Role of plant growth promoting rhizobacteria and Ag-nano particle in the bioremediation of heavy metals and maize growth under municipal wastewater irrigation. Int J Phytorem 18:211–221. https://doi.org/10.1080/15226514.2015.1064352

    Article  CAS  Google Scholar 

  • Khati P, Bhatt P, Kumar R, Sharma A (2018) Effect of nanozeolite and plant growth promoting rhizobacteria on maize. 3 Biotech 8:141

    Article  Google Scholar 

  • Kheirizadeh Arough Y, Seyed Sharifi R, Seyed Sharifi R (2016) Bio fertilizers and zinc effects on some physiological parameters of triticale under water-limitation condition. J Plant Interact 11:167–177. https://doi.org/10.1080/17429145.2016.1262914

    Article  CAS  Google Scholar 

  • Khodakovskaya MV, Kim BS, Kim JN, Alimohammadi M, Dervishi E, Mustafa T, Cernigla CE (2013) Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9(1):115–123

    Article  CAS  Google Scholar 

  • Kong X, Lal R, Li B, Li K (2014) Crop yield response to soil organic carbon stock over long-term fertilizer management in Huang-Huai-Hai plains of China. Agric Res 3:246–256. https://doi.org/10.1007/s40003-014-0118-6

    Article  CAS  Google Scholar 

  • Kumar P, Burman U, Santra P (2015) Effect of nano-zinc oxide on nitrogenase activity in legumes: an interplay of concentration and exposure time. Int Nano Lett 5:191–198. https://doi.org/10.1007/s40089-015-0155-6

    Article  CAS  Google Scholar 

  • Lahiani MH, Dervishi E, Chen J et al (2013) Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl Mater Interf 5:7965–7973

    Article  CAS  Google Scholar 

  • Latha S, Assistant A, John S (2013) Development of bio-fertilizers and its future perspective. Sch Acad J Pharm 2:327–332

    Google Scholar 

  • Li H, Feng WT, He XH, Ping ZH, Gao HJ, Nan SU, Xu MG (2017) Chemical fertilizers could be completely replaced by manure to maintain high maize yield and soil organic carbon (SOC) when SOC reaches a threshold in the Northeast China Plain. J Integr Agric 16:937–946. https://doi.org/10.1016/S2095-3119(16)61559-9

    Article  Google Scholar 

  • Lutful M, Asad A, Ahmed I (2012) Bio-fertilizer a highly potent alternative to chemical fertilizers: uses and future prospects. J Chem Eng Biol Sci 6(4):10–23

    Google Scholar 

  • Madhavi V, Madhavi G, Reddy A (2016) A scrupulous overview on controlled release fertilizers. Agric Allied Sci 5:26–33

    Google Scholar 

  • Mahajan P, Dhoke SK, Khanna AS (2011) Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. J Nanotechnol. https://doi.org/10.1155/2011/696535

    Article  Google Scholar 

  • Mardalipour M, Zahedi H, Sharghi Y (2014) Evaluation of nano biofertilizer efficiency on agronomic traits of spring wheat at different sowing date. Biol Forum—An Int J 6:349–356

    Google Scholar 

  • Miao HT, Lü JL, Xu MG, Zhang WJ, Huang SM, Chang PE, Chen LM (2015) Carbon and nitrogen allocations in corn grown in Central and Northeast China: different responses to fertilization treatments. J Integr Agric 14:1212–1221. https://doi.org/10.1016/S2095-3119(14)60790-5

    Article  Google Scholar 

  • Mir S, Sirousmehr A, Shirmohammadi E (2015) Effect of nano and biological fertilizers on carbohydrate and chlorophyll content of forage sorghum (Speedfeed hybrid). Int J Biosci (IJB) 6(4):157–164

    Article  CAS  Google Scholar 

  • Mishra D, Rajvir S, Mishra U, Kumar S (2013) Role of bio-fertilizer in organic agriculture: a review. Res J Recent Sci 2(1):39–41

    CAS  Google Scholar 

  • Mohasedat Z, Dehestani-Ardakani M, Kamali K, Eslami F (2018) The effects of nano-bio fertilizer on vegetative growth and nutrient uptake in seedlings of three apple cultivars. Adv Biores 9

    Google Scholar 

  • Moll J, Gogos A, Bucheli TD, Widmer F, Heijden MG (2016) Effect of nanoparticles on red clover and its symbiotic microorganisms. J Nanobiotechnol 14:1–8. https://doi.org/10.1186/s12951-016-0188-7

    Article  CAS  Google Scholar 

  • Moore FP, Barac T, Borremans B, Oeyen L, Vangronsveld J, Van Der Lelie D, Campbell CD, Moore ER (2006) Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: the characterisation of isolates with potential to enhance phytoremediation. Syst Appl Microbiol 29:539–556. https://doi.org/10.1016/j.syapm.2005.11.012

    Article  CAS  PubMed  Google Scholar 

  • Morsy NM, Shams AS, Abdel-Salam MA (2017) Zinc foliar spray on snap beans using nano-Zn with N-soil application using mineral, organic and biofertilizer. Middle East J 6(4):1301–1312

    Google Scholar 

  • Olanrewaju OS, Glick BR, Babalola OO (2017) Mechanisms of action of plant growth promoting bacteria. World J Microbiol Biotechnol 33:197. https://doi.org/10.1007/s11274-017-2364-9

  • Oves M, Khan MS, Zaidi A, Ahmed AS, Azam A (2014) Production of plant-growth promoting substances by nodule forming symbiotic bacterium Rhizobium sp. OS1 is influenced by CuO, ZnO and Fe2O3 nanoparticles. IIOAB J 5:1–11

    Google Scholar 

  • Pallavi Mehta CM, Srivastava R, Arora S, Sharma AK (2016) Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech 6:1–10. https://doi.org/10.1007/s13205-016-0567-7

    Article  Google Scholar 

  • Pathak DV, Kumar M (2016) Microbial inoculants in sustainable agricultural productivity. Springer, New York, NY. https://doi.org/10.1007/978-81-322-2647-5

    Book  Google Scholar 

  • Preetha PS, Balakrishnan N (2017) A review of nano fertilizers and their use and functions in soil. Int J Curr Microbiol App Sci 6(12):3117–3133

    Article  Google Scholar 

  • Premachandra D, Hudek L, Brau L (2016) Bacterial modes of action for enhancing of plant growth. J Biotechnol Biomater 6:1–8. https://doi.org/10.4172/2155-952x.1000236

    Article  Google Scholar 

  • Rahman KMA, Zhang D (2018) Effects of fertilizer broadcasting on the excessive use of inorganic fertilizers and environmental sustainability. Sustainability 10(3):759. https://doi.org/10.3390/su10030759

    Article  Google Scholar 

  • Rai M, Ribeiro C, Mattoso L, Duran N (2015) Nanotechnologies in food and agriculture. In: Nanotechnologies food agriculture, pp 1–347. https://doi.org/10.1007/978-3-319-14024-7

    Google Scholar 

  • Raimi A, Adeleke R, Roopnarain A (2017) Soil fertility challenges and biofertiliser as a viable alternative for increasing smallholder farmer crop productivity in sub-Saharan Africa. Cogent Food Agric 3:1–26. https://doi.org/10.1080/23311932.2017.1400933

    Article  Google Scholar 

  • Rajput VD, Minkina T, Sushkova S, Tsitsuashvili V, Mandzhieva S, Gorovtsov A, Nevidomskyaya D, Gromakova N (2017) Effect of nanoparticles on crops and soil microbial communities. J Soils Sediments 18:2179. https://doi.org/10.1007/s11368-017-1793-2

    Article  CAS  Google Scholar 

  • Raliya R, Saharan V, Dimkpa C, Biswas P (2018) Nanofertilizer for precision and sustainable agriculture: current state and future perspectives. J Agric Food Chem 66(26):6487–6503

    Article  CAS  Google Scholar 

  • Rane M, Bawskar M, Rathod D, Nagaonkar D, Rai M (2015) Influence of calcium phosphate nanoparticles, Piriformospora indica and Glomus mosseae on growth of Zea mays. Adv Nat Sci Nanosci Nanotechnol 6:45014. https://doi.org/10.1088/2043-6262/6/4/045014

    Google Scholar 

  • Rangaraj S, Gopalu K, Muthusamy P, Rathinam Y, Venkatachalam R, Narayanasamy K (2014) Augmented biocontrol action of silica nanoparticles and Pseudomonas fluorescens bioformulant in maize (Zea mays L.). RSC Adv 4:8461–8465. https://doi.org/10.1039/c3ra46251j

    Article  CAS  Google Scholar 

  • Rashid MI, Mujawar LH, Shahzad T, Almeelbi T, Ismail IM (2016) Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol Res 183:26–41. https://doi.org/10.1016/j.micres.2015.11.007

    Article  CAS  PubMed  Google Scholar 

  • Razzaghifard SA, Gholipouri A, Tobeh A, Reza S (2017) Effect of mycorrhiza, vermicompost and nanofertilizer on quantitative and qualitative characteristics of Cucurbita pepo L. Eur J Hortic Sci 82(2):105–114

    Article  Google Scholar 

  • Rico CM, Majumdar S, Duarte-gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59(8):3485–3498

    Article  CAS  Google Scholar 

  • Ritika B, Utpal D (2014) Biofertilizer, a way towards organic agriculture: a review. Afr J Microbiol Res 8:2332–2343. https://doi.org/10.5897/AJMR2013.6374

    Article  Google Scholar 

  • Sadeghi R, Rodriguez RJ, Yao Y, Kokini JL (2017) Advances in nanotechnology as they pertain to food and agriculture: benefits and risks. Annu Rev Food Sci Technol 8:467–492. https://doi.org/10.1146/annurev-food-041715-033338

    Article  PubMed  Google Scholar 

  • Savoy H (2012) Fertilizers and their use. Agricultural Extension Service. The University of Tennessee, pp 1–24

    Google Scholar 

  • Schoebitz M, López MD, Roldán A (2013) Bioencapsulation of microbial inoculants for better soil–plant fertilization. A Rev Agron Sustain Dev 33:751–765

    Article  CAS  Google Scholar 

  • Sempeho SI, Kim HT, Mubofu E, Hilonga A (2014) Meticulous overview on the controlled release fertilizers. Adv Chem Article ID 36307: 1–16. https://doi.org/10.1155/2014/363071

    Article  Google Scholar 

  • Sharma A, Chetani R (2017) A review on the effect of organic and chemical fertilizers on plants. Int J Res Appl Sci Eng Technol 5:677–680

    Article  Google Scholar 

  • Shcherbakova EN, Shcherbakov AV, Andronov EE, Gonchar LN, Kalenskaya SM, Chebotar VK (2017) Combined pre-seed treatment with microbial inoculants and Mo nanoparticles changes composition of root exudates and rhizosphere microbiome structure of chickpea (Cicer arietinum L.) plants. Symbiosis 73:57–69. https://doi.org/10.1007/s13199-016-0472-1

    Article  CAS  Google Scholar 

  • Shende S, Rathod D, Gade A, Rai M (2017) Biogenic copper nanoparticles promote the growth of pigeon pea (Cajanus cajan L.). IET Nanobiotechnol 11(7):773–781. https://doi.org/10.1049/iet-nbt.2016.0179

    Article  Google Scholar 

  • Simonin M, Richaume A, Guyonnet JP, Dubost A, Martins JM, Pommier T (2016) Titanium dioxide nanoparticles strongly impact soil microbial function by affecting archaeal nitrifiers. Sci Rep 6:1–10. https://doi.org/10.1038/srep33643

    Article  CAS  Google Scholar 

  • Singh B (2018) Are nitrogen fertilizers deleterious to soil health? Agronomy 8:48

    Article  CAS  Google Scholar 

  • Singh MD, Chirag G, Prakash POM, Mohan MH, Prakasha G, Vishwajith (2017) Nano fertilizers is a new way to increase nutrients use efficiency in crop production. Int J Agric Sci 9:3831–3833

    CAS  Google Scholar 

  • Stagnari F, Maggio A, Galieni A, Pisante M (2017) Multiple benefits of legumes for agriculture sustainability: an overview. Chem Biol Technol Agric 4:1–13. https://doi.org/10.1186/s40538-016-0085-1

    Article  Google Scholar 

  • Subramanian KS, Tarafdar JC (2011) Prospects of nanotechnology in Indian farming. Indian J Agric Sci 81:887–893

    CAS  Google Scholar 

  • Taran NY, Gonchar OM, Lopatko KG, Batsmanova LM, Patyka MV, Volkogon MV (2014) The effect of colloidal solution of molybdenum nanoparticles on the microbial composition in rhizosphere of Cicer arietinum L. Nanoscale Res Lett 9:1–8

    Article  Google Scholar 

  • Tian K, Zhao Y, Xu X, Hai N, Huang B, Deng W (2015) Effects of long-term fertilization and residue management on soil organic carbon changes in paddy soils of China: a meta-analysis. Agric Ecosyst Environ 204:40–50. https://doi.org/10.1016/j.agee.2015.02.008

    Article  CAS  Google Scholar 

  • Timilsena YP, Adhikari R, Casey P, Muster T, Gill H, Adhikari B (2015) Enhanced efficiency fertilisers: a review of formulation and nutrient release patterns. J Sci Food Agric 95:1131–1142

    Article  CAS  PubMed  Google Scholar 

  • Timmusk S, Seisenbaeva G, Behers L (2018) Titania (TiO2) nanoparticles enhance the performance of growth-promoting rhizobacteria. Sci Rep 8:1–13

    Article  CAS  Google Scholar 

  • Ukoje JA, Yusuf RO (2013) Organic fertilizer: the underestimated component in agricultural transformation initiatives for sustainable small holder farming in Nigeria. Ethiop J Environ Stud Manag 6:794–801

    Article  Google Scholar 

  • Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability-A review. Molecules 21:1–17

    Article  CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586. https://doi.org/10.1023/A:1026037216893

    Article  CAS  Google Scholar 

  • Wu CH, Bernard SM, Andersen GL, Chen W (2009) Developing microbe-plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation and carbon sequestration. Microb Biotechnol 2:428–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasin M, Ahmad K, Mussarat W, Tanveer A (2012) Bio-fertilizers, substitution of synthetic fertilizers in cereals for leveraging agriculture. Crop Environ 3:62–66

    Google Scholar 

  • Yousaf M, Li J, Lu J et al (2017) Effects of fertilization on crop production and nutrient-supplying capacity under rice-oilseed rape rotation system. Sci Rep 7:1–9. https://doi.org/10.1038/s41598-017-01412-0

    Article  CAS  Google Scholar 

  • Yuan Z, Zhang Z, Wang X, Ren T, Cong R, Fahad S, Li X (2017) Novel impacts of functionalized multi-walled carbon nanotubes in plants: Promotion of nodulation and nitrogenase activity in the rhizobium-legume system. Nanoscale 9:9921–9937

    Article  CAS  PubMed  Google Scholar 

  • Zapata LS, Tabarez MR, Álvarez JC, Escobar VV (2017) Reviewing microbial behaviors in ecosystems leading to a natural quorum quenching occurrence. Brazilian Arch Biol Technol 60:1–12

    Article  CAS  Google Scholar 

  • Zhou J, Zhang W, Liu D, Wang Z, Li S (2017) Influence of humic acid on the transport and deposition of colloidal silica under different hydrogeochemical conditions. Water 9:10

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors extend their gracious thanks to the Head, Department of Soil Science, Punjab Agricultural University, for providing the necessary infrastructural facilities for carrying out the research on nano-biofertilizers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anu Kalia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kalia, A., Kaur, H. (2019). Nano-biofertilizers: Harnessing Dual Benefits of Nano-nutrient and Bio-fertilizers for Enhanced Nutrient Use Efficiency and Sustainable Productivity. In: Pudake, R., Chauhan, N., Kole, C. (eds) Nanoscience for Sustainable Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-319-97852-9_3

Download citation

Publish with us

Policies and ethics