Skip to main content

Environmental Visual Object Recognition

  • Chapter
  • First Online:
Book cover Visual Perception for Humanoid Robots

Part of the book series: Cognitive Systems Monographs ((COSMOS,volume 38))

  • 447 Accesses

Abstract

This chapter presents the environmental visual recognition method. A detailed presentation of the proposed method for extraction of 3D geometric-primitives is provided. The synergistic cue integration (homogeneity, edge and phase rim) for extraction of 2D geometric-primitives is presented. The consolidation of 3D geometric-primitives by calibrated stereo vision is introduced. The effectiveness and precision of the proposed method are experimentally evaluated with various natural and artificial illuminations on different environmental objects ranging from rather simple doors up to complex electric appliances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Demosaicing is the reconstruction of a color image based on partial color samples from a sensor using a color filter array such as the wide spread Bayer pattern.

  2. 2.

    Factorized as a sum in the exponent of \(A_G(\mathbf x ,\mathbf x _i)\) in Eq. 5.1.

  3. 3.

    Minimum object distance is the shortest distance between the lens and the subject.

References

  1. Ayache, N. 1991. Artificial Vision for Mobile Robots. MIT Press. ISBN 978-0262011242.

    Google Scholar 

  2. Papari, G., and N. Petkov. 2011. Edge and Line Oriented Contour Detection: State of the Art. Image and Vision Computing 29 (3): 79–103.

    Article  Google Scholar 

  3. Ramanath, R., and W. Snyder. 2003. Adaptive Demosaicking. Journal of Electronic Imaging 12: 633–642.

    Article  Google Scholar 

  4. Keys, R. 1981. Cubic Convolution Interpolation for Digital Image Processing. IEEE Transactions on Acoustics, Speech and Signal Processing 29 (6): 1153–1160.

    Article  MathSciNet  Google Scholar 

  5. Grigorescu, C., N. Petkov, and M. Westenberg. 2003. Contour Detection based on Nonclassical Receptive Field Inhibition. IEEE Transactions on Image Processing 12 (7): 729–739.

    Article  Google Scholar 

  6. Wang, X., W. Lin, and P. Xue. 2005. Demosaicing with Improved Edge Direction Detection. In IEEE International Symposium on Circuits and Systems 3: 2048–2051.

    Google Scholar 

  7. Hirakawa, K., and T. Parks. 2005. Joint Demosaicing and Denoising. In IEEE International Conference on Image Processing 3: 309–312.

    Google Scholar 

  8. Moriya, S., J. Makita, T. Kuno, N. Matoba, and H. Sugiura. 2006. Advanced Demosaicing Methods based on the Changes of Colors in a Local Region. In International Conference on Consumer Electronics, Digest of Technical Papers, 307–308.

    Google Scholar 

  9. Tomasi, C., and R. Manduchi. 1998. Bilateral Filtering for Gray and Color Images. In International Conference on Computer Vision, 839–846.

    Google Scholar 

  10. Lukin, A., and D. Kubasov. 2004. High-Quality Algorithm for Bayer Pattern Interpolation. Programming and Computer Software 30 (6): 347–358.

    Article  MathSciNet  Google Scholar 

  11. Hartley, R., and A. Zisserman. 2004. Multiple View Geometry in Computer Vision, 2nd ed. Cambridge: Cambridge University Press. ISBN 0521540518.

    Book  Google Scholar 

  12. KIT. 2011. Karlsruhe Institute of Technology, Computer Science Faculty, Institute for Anthropomatics, The Integrating Vision Toolkit. http://ivt.sourceforge.net.

  13. Zhang, Z. 2000. A Flexible New Technique for Camera Calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence 22 (11): 1330–1334.

    Article  Google Scholar 

  14. OpenCV. Open Source Computer Vision Library. http://opencv.org.

  15. PTGrey. 2008. Dragonfly Technical Reference Manual. Accessed 5 Aug 2008.

    Google Scholar 

  16. Glasner, D., S. Bagon, and M. Irani. 2009. Super-resolution from a Single Image. In IEEE International Conference on Computer Vision, 349–356.

    Google Scholar 

  17. Park, S.C., M.K. Park, and M.G. Kang. 2003. Super-resolution Image Reconstruction: A Technical Overview. IEEE Signal Processing Magazine 20 (3): 21–36.

    Article  Google Scholar 

  18. Canny, J. 1986. A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8 (6): 679–698.

    Article  Google Scholar 

  19. Hart, P., N. Nilsson, and B. Raphael. 1968. A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics 4 (2): 100–107.

    Article  Google Scholar 

  20. Lowe, D. 1987. Three-Dimensional Object Recognition from Single Two-Dimensional Images. Artificial Intelligence 31: 355–395.

    Article  Google Scholar 

  21. Sarkar, S., and K. Boyer. 1993. Perceptual Organization in Computer Vision: A Review and a Proposal for a Classificatory Structure. IEEE Transactions on Systems, Man and Cybernetics 23 (2): 382–399.

    Article  Google Scholar 

  22. Grimson, W. 1990. Object Recognition by Computer: The Role of Geometric Constraints. Cambridge, MA, USA: MIT Press. ISBN 0262071304.

    Google Scholar 

  23. Wolfson, H., and I. Rigoutsos. 1997. Geometric Hashing: An Overview. IEEE Computational Science Engineering 4 (4): 10–21.

    Article  Google Scholar 

  24. Vahrenkamp, N., T. Asfour, and R. Dillmann. 2012. Simultaneous Grasp and Motion Planning. IEEE Robotics and Automation Magazine, 43–57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Israel González Aguirre .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

González Aguirre, D.I. (2019). Environmental Visual Object Recognition. In: Visual Perception for Humanoid Robots. Cognitive Systems Monographs, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-319-97841-3_5

Download citation

Publish with us

Policies and ethics