Skip to main content

Methods for Robust and Accurate Image Acquisition

  • Chapter
  • First Online:
  • 449 Accesses

Part of the book series: Cognitive Systems Monographs ((COSMOS,volume 38))

Abstract

This chapter presents the proposed visual sensing method for humanoid robots. A consistent treatment of the irradiance signals for robust image acquisition and optimal dynamic-range expansion through image fusion is presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The content of the scene and the robot remain static during visual sensing.

  2. 2.

    According to the Nyquist-Shannon sampling theorem [24].

  3. 3.

    Algorithmically, this is a common trade-off between space and time complexity. Technically, this continuous large memory block reduces the processing time.

  4. 4.

    Capturing several images of the scene while varying a camera parameter.

  5. 5.

    The scene radiance modulated by the optical response function (see Fig. 4.17).

  6. 6.

    The aim of the alias function \(g\) is to reduce the notation.

  7. 7.

    The optimality smoothing criterion is attained in lines 6–14 of Algorithm 6.

  8. 8.

    Homomorphic filtering are methods for signal processing based on nonlinear mappings to target domains in which linear filtering is applied followed by the corresponding back mapping to initial domain (see [52]).

  9. 9.

    Due to their different spectral responses, a separated calibration per color channel (R,G,B) is done when using Bayer pattern sensors (see [44]).

  10. 10.

    Irregular delays resulting from the non-real-time modular controller architecture.

  11. 11.

    The noise reduction by integrating redundant exposures [44] is not necessary in the pipeline (see Fig. 4.4) due to the “noiseless” images attained by the optimal temporal fusion [55] during the exposure bracketing.

  12. 12.

    Suitable for sensors with “quasilinear” behavior in the homomorphic domain.

References

  1. Inaba, M., T. Igarashi, S. Kagami, and H. Inoue. 1996. A 35 DOF Humanoid that Can Coordinate Arms and Legs in Standing up, Reaching and Grasping an Object. In IEEE-RSJ International Conference on Intelligent Robots and Systems, vol. 1, 29–36.

    Google Scholar 

  2. Scassellati, B. 1998. A Binocular, Foveated Active Vision System. Technical report, MIT Artificial Intelligence Lab, Cambridge, MA, USA.

    Google Scholar 

  3. Welke, K., T. Asfour, and R. Dillmann. 2009. Active Multi-view Object Search on a Humanoid Head. In IEEE International Conference on Robotics and Automation, 417–423.

    Google Scholar 

  4. Asfour, T., K. Regenstein, P. Azad, J. Schröder, A. Bierbaum, N. Vahrenkamp, and R. Dillmann. 2006. ARMAR-III: An Integrated Humanoid Platform for Sensory-Motor Control. In IEEE-RAS International Conference on Humanoid Robots, 169–175.

    Google Scholar 

  5. Asfour, T., K. Welke, P. Azad, A. Ude, and R. Dillmann. 2008. The Karlsruhe Humanoid Head. In IEEE-RAS International Conference on Humanoid Robots, 447–453.

    Google Scholar 

  6. Bayer, B. 1976. Color Imaging Array. US Patent US3 971 065 A.

    Google Scholar 

  7. Rao, D., and P. Panduranga. 2006. A Survey on Image Enhancement Techniques: Classical Spatial Filter, Neural Network, Cellular Neural Network, and Fuzzy Filter. In IEEE International Conference on Industrial Technology, 2821–2826.

    Google Scholar 

  8. Ginneken, B., and A. Mendrik. 2006. Image Denoising with K-nearest Neighbor and Support Vector Regression. In International Conference on Pattern Recognition, vol. 3, 603–606.

    Google Scholar 

  9. Buades, A., B. Coll, and J.M. Morel. 2004. On Image Denoising Methods. Technical Note, Centre de Mathematiques et de Leurs Applications.

    Google Scholar 

  10. Mahmoudi, M., and G. Sapiro. 2005. Fast Image and Video Denoising via Nonlocal Means of Similar Neighborhoods. IEEE Signal Processing Letters 12 (12): 839–842.

    Google Scholar 

  11. Tasdizen, T. 2008. Principal Components for Non-local Means Image Denoising. In IEEE International Conference on Image Processing , 1728 –1731.

    Google Scholar 

  12. Kharlamov, A., and V. Podlozhnyuk. 2007. Image Denoising, NVIDIA Inc., Technical Report.

    Google Scholar 

  13. Dabov, K., R. Foi, V. Katkovnik, and K. Egiazarian. 2009. BM3D Image Denoising with Shape-Adaptive Principal Component Analysis. In Workshop on Signal Processing with Adaptive Sparse Structured Representations.

    Google Scholar 

  14. Irshad, H., M. Kamran, A. Siddiqui, and A. Hussain. 2009. Image Fusion Using Computational Intelligence: A Survey. In International Conference on Environmental and Computer Science, 128–132.

    Google Scholar 

  15. Battiato, S., A. Bruna, and G. Puglisi. 2010. A Robust Block-Based Image/Video Registration Approach for Mobile Imaging Devices. IEEE Transactions on Multimedia 12 (7): 622–635.

    Google Scholar 

  16. Glasner, D., S. Bagon, and M. Irani. 2009. Super-resolution from a Single Image. In IEEE International Conference on Computer Vision, 349–356.

    Google Scholar 

  17. Park, S.C., M.K. Park, and M.G. Kang. 2003. Super-resolution Image Reconstruction: A Technical Overview. IEEE Signal Processing Magazine 20 (3): 21–36.

    Google Scholar 

  18. Chen, C., L. Phen-Lan, and H. Po-Whei. 2010. A New Fusion Scheme for Multi-focus Images based on Dynamic Salient Weights on Discriminative Edge Points. In International Conference on Machine Learning and Cybernetics, 351–356.

    Google Scholar 

  19. Szeliski, R., M. Uyttendaele, and D. Steedly. 2011. Fast Poisson Blending using Multi-splines. In IEEE International Conference on Computational Photography, 1–8.

    Google Scholar 

  20. Pessoa, S., G. Moura, J. Lima, V. Teichrieb, and J. Kelner. 2010. Photorealistic Rendering for Augmented Reality: A Global Illumination and BRDF Solution. In IEEE Virtual Reality Conference, 3–10.

    Google Scholar 

  21. Chen, L., X. Wang, and X. Liang. 2010. An Effective Video Stitching Method. In International Conference on Computer Design and Applications, vol. 1, 297–301.

    Google Scholar 

  22. Gonzalez-Aguirre, D., and E. Bayro-Corrochano. 2006. A Geometric Approach for an Intuitive Perception System of Humanoids. Intelligent Autonomous Systems 9: 399–407.

    Google Scholar 

  23. Mann, S., and R.W. Picard. 1995. On Being ‘undigital’ With Digital Cameras: Extending Dynamic Range By Combining Differently Exposed Pictures. In Annual Conference; Society for Imaging Science and Technology, 442–448.

    Google Scholar 

  24. Marks, R.J. 2009. Handbook of Fourier Analysis and Its Applications. USA: Oxford University Press. ISBN 978-0195335927.

    Google Scholar 

  25. Rice J. 2006. Mathematical Statistics and Data Analysis. Duxbury Press. ISBN 978-0534399429.

    Google Scholar 

  26. Duda, R., P. Hart, and D. Stork. 2001. Pattern Classification, 2nd ed. New York: Wiley. ISBN 978-0471056690.

    Google Scholar 

  27. Elgammal, A., R. Duraiswami, and L. Davis. 2003. Efficient Kernel Density Estimation using the Fast Gauss Transform with Applications to Color Modeling and Tracking. In IEEE Transactions on Pattern Analysis and Machine Intelligence 25 (11): 1499–1504.

    Google Scholar 

  28. Härdle, W., M. Müller, S. Sperlich, and A. Werwatz. 2004. Nonparametric and Semiparametric Models. New York: Springer.

    Google Scholar 

  29. Qi, Z., and R. Hong-e. 2009. A New Idea for Color Annual Ring Image Segmentation Adaptive Region Growing Algorithm. In International Conference on Information Engineering and Computer Science, 1–3.

    Google Scholar 

  30. Grigorescu, C., N. Petkov, and M. Westenberg. 2003. Contour Detection based on Nonclassical Receptive Field Inhibition. IEEE Transactions on Image Processing 12 (7): 729–739.

    Google Scholar 

  31. Healey, G., and R. Kondepudy. 1994. Radiometric CCD Camera Calibration and Noise Estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence 16 (3): 267–276.

    Google Scholar 

  32. Dominguez-Tejera, J. 2012. GPU-Based Low-Level Image Processing for Object Recognition using HDR Images. Master’s thesis, KIT, Karlsruhe Institute of Technology, Computer Science Faculty, Institute for Anthropomatics.

    Google Scholar 

  33. Okada, K., M. Kojima, S. Tokutsu, Y. Mori, T. Maki, and M. Inaba. 2008. Task Guided Attention Control and Visual Verification in Tea Serving by the Daily Assistive Humanoid HRP2JSK. In IEEE-RSJ International Conference on Intelligent Robots and Systems, 1551–1557.

    Google Scholar 

  34. Wieland, S., D. Gonzalez-Aguirre, T. Asfour, and R. Dillmann. 2009. Combining Force and Visual Feedback for Physical Interaction Tasks in Humanoid Robots. In IEEE-RAS International Conference on Humanoid Robots, 439–446.

    Google Scholar 

  35. Gonzalez-Aguirre, D., T. Asfour, E. Bayro-Corrochano, and R. Dillmann. 2008. Model-based Visual Self-localization Using Geometry and Graphs. In International Conference on Pattern Recognition, 1–5.

    Google Scholar 

  36. Asfour, T., P. Azad, N. Vahrenkamp, K. Regenstein, A. Bierbaum, K. Welke, J. Schröder, and R. Dillmann. 2008. Toward Humanoid Manipulation in Human-centred Environments. Robotics and Autonomous Systems 56 (1): 54–65.

    Google Scholar 

  37. Tokutsu, S., K. Okada, and M. Inaba. 2009. Environment Situation Reasoning Integrating Human Recognition and Life Sound Recognition using DBN. In IEEE International Symposium on Robot and Human Interactive Communication, 744–750.

    Google Scholar 

  38. Gonzalez-Aguirre, D., S. Wieland, T. Asfour, and R. Dillmann. 2009. On Environmental Model-Based Visual Perception for Humanoids. In Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, ed. E. Bayro-Corrochano, and J.-O. Eklundh, 901–909. Lecture Notes in Computer Science. Berlin: Springer.

    Google Scholar 

  39. Lindeberg, T. 1996. Edge Detection and Ridge Detection with Automatic Scale Selection. International Journal of Computer Vision 30 (2): 465–470.

    Google Scholar 

  40. Welke, K., T. Asfour, and R. Dillmann. 2009. Bayesian Visual Feature Integration with Saccadic Eye Movements. In IEEE-RAS International Conference on Humanoid Robots, 256–262.

    Google Scholar 

  41. Vernon, D., G. Metta, and G. Sandini. 2007. The iCub Cognitive Architecture: Interactive Development in a Humanoid Robot. In IEEE International Conference on Development and Learning, 122–127.

    Google Scholar 

  42. Metta, G., L. Natale, F. Nori, and G. Sandini. 2011. The iCub Project: An Open Source Platform for Research in Embodied Cognition. In IEEE Workshop on Advanced Robotics and its Social Impacts, 24–26.

    Google Scholar 

  43. Grossberg, M.D., and S.K. Nayar. 2002. What Can Be Known about the Radiometric Response Function from Images. In IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, 602–609.

    Google Scholar 

  44. Debevec, P., and J. Malik. 1997. Recovering High Dynamic Range Radiance Maps from Photographs. In Annual conference on Computer Graphics and Interactive Techniques, 369–378.

    Google Scholar 

  45. Mitsunaga, T., and S. Nayar. 1999. Radiometric Self Calibration. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, 637–663.

    Google Scholar 

  46. Krawczyk, G., M. Goesele, and H.-P. Seidel. 2005. Photometric Calibration of High Dynamic Range Cameras, Max-Planck-Institut für Informatik, 66123 Saarbrücken, Germany, Research Report.

    Google Scholar 

  47. Lin, S., J. Gu, S. Yamazaki, and H.-Y. Shum. 2004. Radiometric Calibration from a Single Image. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, 938–945.

    Google Scholar 

  48. IIDC2. 2012. Digital Camera Control Specification Ver.1.0.0, Japan Industrial Imaging Association Standard JIIA CP-001-2011/1394 Trade Association Specification TS2011001, Japan.

    Google Scholar 

  49. Gonzalez-Aguirre, D., T. Asfour, and R. Dillmann. 2010. Eccentricity Edge-Graphs from HDR Images for Object Recognition by Humanoid Robots. In IEEE-RAS International Conference on Humanoid Robots, 144 –151.

    Google Scholar 

  50. Theuwissen, A. 1995. Solid-state Imaging with Charge Coupled Devices Dordrecht: Kluwer Academic Publishers. ISBN 0-7923-3456-6.

    Google Scholar 

  51. KIT. 2011. Karlsruhe Institute of Technology, Computer Science Faculty, Institute for Anthropomatics, The Integrating Vision Toolkit. http://ivt.sourceforge.net.

  52. Mackiewich, B. 1995. Intracranial Boundary Detection and Radio Frequency Correction in Magnetic Resonance Images. Master’s thesis, Simon Fraser University.

    Google Scholar 

  53. Madisetti, V., and D. Williams. 2009. The Digital Signal Processing Handbook. CRC Press. ISBN 9781420045635.

    Google Scholar 

  54. PTGrey. 2008. Dragonfly Technical Reference Manual. Accessed 5 Aug 2008.

    Google Scholar 

  55. Gonzalez-Aguirre, D., T. Asfour, and R. Dillmann. 2011. Robust Image Acquisition for Vision-Model Coupling by Humanoid Robots. In IAPR-Conference on Machine Vision Applications, 557–561.

    Google Scholar 

  56. Zwillinger, D., and S. Kokoska. 2000. CRC Standard Probability and Statistics Tables and Formulae. Boca Raton: CRC Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Israel González Aguirre .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

González Aguirre, D.I. (2019). Methods for Robust and Accurate Image Acquisition. In: Visual Perception for Humanoid Robots. Cognitive Systems Monographs, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-319-97841-3_4

Download citation

Publish with us

Policies and ethics