Skip to main content

High Performance Analysis of Hetero-Junction In1−XGaXN/GaAs Solar Cell Using SCAPS

  • Conference paper
  • First Online:
Book cover Advanced Control Engineering Methods in Electrical Engineering Systems (ICEECA 2017)

Abstract

The group-III nitride based semiconductors have proved their potential application in optoelectronic devices. The effects of layers thickness and doping on the photovoltaic cell parameters in p-In1−xGaxN/i-GaAs/n-In1−xGaxN hétérojunction solar cell have been investigated using solar cell capacitance simulator (SCAPS). The impacts of gallium (Ga) content, doping and thickness variation on the cell’s output parameters were extensively simulated. In this work, the p and n-In1−xGaxN band gap (Eg) are first defined and formulated as mathematical functions of gallium (Ga) content (“x”). Our numerical analysis highlights that the Eg value of 1.27 eV corresponding to x = 0.3 is optimal. Our results showed that the best structure must have a p-doped In0.7Ga0.3N layer, an active intrinsic GaAs layer, and n-doped In0.7Ga0.3N layer that have thicknesses of 0.15, 1.2 and 0.15 \( \upmu{\text{m}} \), respectively and doped with NA = 1016 cm−3 and ND = 1017 cm−3. Cells with these optimization results are found to give conversion efficiency of 25.88%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benmir, A., Aida, M.S.: Analytical modeling and simulation of CIGS solar cells. Energy Procedia 36, 618–627 (2013)

    Article  Google Scholar 

  2. Wang Ms, J.: Optical properties of In1−xGaxN epilayers grown by HPCVD, Thesis, Georgia State University (2010)

    Google Scholar 

  3. Bennacer, H., Berrah, S., Boukortt, A., Ziane, M.I.: First principal calculations of optical properties of InGaN2 using in solar cells applications. In: Haddar, M., et al. (eds.) Multiphysics Modelling and Simulation for Systems Design and Monitoring. Applied Condition Monitoring, vol. 2. Springer, Cham (2015)

    Google Scholar 

  4. Wu, J., et al.: Small bandgap bowing in In1−xGaxN alloys, PACS numbers: 78.66.Fd, 72.80.Ey (2002)

    Google Scholar 

  5. Wu, J., Walukiewicz, W., Yu, K.M., Ager III, J.W., Haller, E.E., Lu, H., Schaff, W.J., Saito, Y., Nanishi, Y.: Appl. Phys. Lett. 80, 3967 (2002)

    Article  Google Scholar 

  6. Movla, H., Salami, D., Sadreddini, S.V.: Simulation analysis of the effects of defect density on the performance of p-i-n InGaN solar cell. Appl. Phys. A 109, 497–502 (2012)

    Article  Google Scholar 

  7. Moon, S., et al.: Highly efficient single-junction GaAs thin-film solar cell on flexible substrate. Sci. Rep. 6, 30107 (2016). https://doi.org/10.1038/srep30107

    Article  Google Scholar 

  8. Farrell, R.M., Friedman, D.J., Young, N.G.: InGaN-based solar cells and high-performance broadband optical coatings for ultrahigh efficiency hybrid multijunction device designs. In: Conference on Lasers and Electro-Optics (CLEO). IEEE Explore (2013)

    Google Scholar 

  9. Burgelman, M.: SCAPS User Manual. Elis-University of Gent, p. 10 (2007)

    Google Scholar 

  10. Heriche, H., Rouabah, Z., Bouarissa, N.: High-efficiency CIGS solar cells with optimization of layers thickness and doping. Optik Int. J. Light Electron Opt. 127, 11751–11757 (2016)

    Article  Google Scholar 

  11. Burgelman, M., Nollet, P., Degrave, S.: Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361–362, 527–532 (2000)

    Article  Google Scholar 

  12. Burgelman, M., Verschraegen, J., Degrave, S., Nollet, P.: Prog. Photovolt. 12, 143–153 (2004)

    Article  Google Scholar 

  13. Street, R.A.: J. Non-Cryst. Solids 77, 1–16 (1985)

    Article  Google Scholar 

  14. Halpern, V.: Philos. Mag. B 54, 473–482 (1986)

    Article  Google Scholar 

  15. Feng, S.-W., Lai, C.-M., Chen, C.-H., Sun, W.-C., Tu, L.-W.: J. Appl. Phys. 108, 093118 (2010)

    Article  Google Scholar 

  16. Levinshtein, M.E., Rumyanstev, S.L., Shur, M.S.: Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe. Wiley, New York (2001)

    Google Scholar 

  17. Vurgaftman, I., Meyer, J.R.: J. Appl. Phys. 94, 3675–3696 (2003)

    Article  Google Scholar 

  18. Chelvanathan, P., Hossain, M.I., Amin, N.: Performance analysis of copper-indium-gallium-diselenide (CIGS) solar cells with various buffer layers by SCAPS. Curr. Appl. Phys. 10, S387–S391 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the use of SCAPS-1D program developed by Marc Burgelman and colleagues at the University of Gent in all the simulations reported in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelkader Nassour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nassour, A., Kandouci, M., Belghachi, A. (2019). High Performance Analysis of Hetero-Junction In1−XGaXN/GaAs Solar Cell Using SCAPS. In: Chadli, M., Bououden, S., Ziani, S., Zelinka, I. (eds) Advanced Control Engineering Methods in Electrical Engineering Systems. ICEECA 2017. Lecture Notes in Electrical Engineering, vol 522. Springer, Cham. https://doi.org/10.1007/978-3-319-97816-1_23

Download citation

Publish with us

Policies and ethics