Drummy LF, Wang YC, Schoenmakers R, May K, Jackson M, Koerner H, Farmer BL, Mauryama B, Vaia RA. Morphology of layered silicate- (nanoclay-) polymer nanocomposites by electron tomography and small-angle X-ray scattering. Macromolecules. 2008;41:2135–43.
ADS
CrossRef
Google Scholar
Ho DL, Briber RM, Glinka CJ. Characterization of organically modified clays using scattering and microscopy techniques. Chem Mater. 2001;13:1923–31.
CrossRef
Google Scholar
Mittelbach R, Glatter O. Direct structure analysis of small-angle scattering data from polydisperse colloidal particles. J Appl Crystallogr. 1998;31:600–8.
CrossRef
Google Scholar
Schnablegger H, Singh Y. A practical guide to small angle X-ray scattering. Austria: Anton Par GmbH; 2006.
Google Scholar
Glatter O, Kratky O. Small angle X-ray scattering. London: Academic Press; 1982. ISBN 0-12-286280-5.
Google Scholar
Glatter O. Data evaluation in small angle scattering: calculation of the radial electron density distribution by means of indirect Fourier transformation. Acta Phys Austriaca. 1977;47:83–102.
Google Scholar
Glatter O. A new method for the evaluation of small-angle scattering data. J Appl Crystallogr. 1977;10:415–21.
CrossRef
Google Scholar
Bergmann A, Fritz G, Glatter O. Solving the generalized indirect Fourier transformation (GIFT) by Boltzmann simplex simulated annealing (BSSA). J Appl Crystallogr. 2000;33:1212–6.
CrossRef
Google Scholar
Brunner-Popela J, Glatter O. Small-angle scattering of interacting particles. I. Basic principles of a global evaluation technique. J Appl Crystallogr. 1997;30:431–42.
CrossRef
Google Scholar
Weyerich B, Brunner-Popela J, Glatter O. Small-angle scattering of interacting particles. II. Generalized indirect Fourier transformation under consideration of the effective structure factor for polydisperse systems. J Appl Crystallogr. 1999;32:197–209.
CrossRef
Google Scholar
Hosemann R, Bagchi SN. Direct analysis of diffraction by matter. Amsterdam, The Netherlands: North-Holland; 1962.
MATH
Google Scholar
Guinier A. X-ray diffraction in crystals, imperfect crystals and amorphous bodies. Ontario, Canada: General Publishing Company; 1994.
Google Scholar
Caillé A, Seances CR. Remarks on the scattering of X-rays by A-type smectics. Actes Soc Hist B. 1972;274:891–3.
Google Scholar
Zhang R, Tristram-Nagle S, Sun W, Headrick RL, Irving TC, Suter RM, Nagle JF. Small-angle X-ray scattering from lipid bilayers is well described by modified Caillé theory but not by paracrystalline theory. Biophys J. 1996;70:349–57.
CrossRef
Google Scholar
Zhang R, Suter RM, Nagle JF. Theory of the structure factor of lipid bilayers. Phys Rev E. 1994;50:5047–60.
ADS
CrossRef
Google Scholar
Frühwirth T, Fritz G, Freiberger N, Glatter O. Structure and order in lamellar phases determined by small-angle scattering. J Appl Crystallogr. 2004;37:703–10.
CrossRef
Google Scholar
Glatter O. Convolution square root of band-limited symmetrical functions and its application to small-angle scattering data. J Appl Crystallogr. 1981;14:101–8.
CrossRef
Google Scholar
Glatter O, Hainisch B. Improvements in real-space deconvolution of small-angle scattering data. J Appl Crystallogr. 1984;17:435–41.
CrossRef
Google Scholar
Glatter O. Comparison of two different methods for direct structure analysis from small-angle scattering data. J Appl Crystallogr. 1988;21:886–90.
CrossRef
Google Scholar
Li TC, Ma J, Wang M, Tjiu C, Liu T, Huang W. Effect of clay addition on the morphology and thermal behaviour of polyamide 6. J Appl Polym Sci. 2007;103:1191–9.
CrossRef
Google Scholar
Ganguli A, Bhowmick AK. Insights into montmorillonite nanoclay based ex situ nanocomposites from SEBS by small angle X-ray scattering and modulated DSC studies. Macromolecules. 2008;41:6246–53.
ADS
CrossRef
Google Scholar
Preschilla N, Sivalingam G, Rasheed AS, Tyagi S. Quantification of organoclay dispersion and lamellar morphology in poly(propylene) nanocomposites with small angle X-ray scattering. Polymer. 2008;49:4285–97.
CrossRef
Google Scholar
Nawani P, Burger C, Chu B, Hsiao BS, Tsou AH, Weng W. Characterization of nanoclay orientation in polymer nanocomposite film. Polymer. 2010;51:5255–66.
CrossRef
Google Scholar
Bandyopadhyay J, Ray SS. The quantitative analysis of nano-clay dispersion in polymer nanocomposites by small angle X-ray scattering combined with electron microscopy. Polymer. 2010;51:1437–49.
CrossRef
Google Scholar
Carli LN, Bianchi O, Machado G, Crespo JS, Mauler RS. Morphological and structural characterization of PHBV/organoclay nanocomposites by small angle X-ray scattering. Mater Sci Eng. 2013;33:932–7.
CrossRef
Google Scholar
Yadav R, Naebe M, Wang X, Kandasubramanian B. Structural and thermal stability of polycarbonate decorated fumed silica nanocomposite via thermomechanical analysis and in-situ temperature assisted SAXS. Sci Rep. 2017;7:7706. https://doi.org/10.1038/s41598-017-08122-7.
ADS
CrossRef
Google Scholar
Jouault N, Dalmas F, Boúe F, Jestin J. Multiscale characterization of filler dispersion and origins of mechanical reinforcement in model nanocomposites. Polymer. 2012;53:761–75.
CrossRef
Google Scholar
Bandyopadhyay J, Malwela T, Ray SS. Study of change in dispersion and orientation of clay platelets in a polymer nanocomposite during tensile test by variostage small-angle X-ray scattering. Polymer. 2012;53:1747–59.
CrossRef
Google Scholar
Bandyopadhyay J, Ray SS. Determination of structural changes of dispersed clay platelets in a polymer blend during solid-state rheological property measurement by small-angle X-ray scattering. Polymer. 2011;52:2628–42.
CrossRef
Google Scholar
Gurun B, Bucknall DG, Thio YS, Teoh CC, Harkin-Jones E. Multiaxial deformation of polyethylene and polyethylene/clay nanocomposites: in situ synchrotron small angle and wide angle X-ray scattering study. J Polym Sci Part B Polym Phys. 2011;49:669–77.
ADS
CrossRef
Google Scholar
Nishada T, Obayashi A, Haraguchi K, Shibayama M. Stress relaxation and hysteresis of nanocomposite gel investigated by SAXS and SANS measurement. Polymer. 2012;53:4533–8.
CrossRef
Google Scholar
Bandyopadhyay J, Sinha Ray S, Scriba M, Wesley-Smity J. A combined experimental and theoretical approach to establish the relationship between shear force and clay platelet delamination in melt-processed polypropylene nanocomposites. Polymer. 2014;55:2233–45.
CrossRef
Google Scholar
Pujari S, Dougherty L, Mobuchon C, Carreau PJ, Heuzey M-C, Burghardt WR. X-ray scattering measurements of particle orientation in a sheared polymer/clay dispersion. Rheol Acta. 2011;50:3–16.
CrossRef
Google Scholar
Thompson A, Bianchi O, Amorim CLG, Lemos C, Teixeira SR, Samios D, Giacomelli C, Crespo JS, Machado G. Uniaxial compression and stretching deformation of an i-PP/EPDM/organoclay nanocomposite. Polymer. 2011;52:1037–44.
CrossRef
Google Scholar
Yamashita M, Kato M. Lamellar crystal thickness transition of melt crystallized isotactic polybutene-1 observed by small-angle X-ray scattering. J Appl Crystallogr. 2007;40:s650–5.
CrossRef
Google Scholar
Fu Q, Heck B, Strobl G, Thoman Y. A temperature- and molar mass-dependent change in the crystallization mechanism of poly(1-butene): transition from chain-folded to chain-extended crystallization? Macromolecules. 2001;34:2502–11.
ADS
CrossRef
Google Scholar
Marega C, Causin V, Saini R, Marigo A. A direct SAXS determination of specific surface area of clay in polymer-layered silicate nanocomposites. J Phys Chem B. 2012;116:7596–602.
CrossRef
Google Scholar
Bunge HJ. Influence of texture on powder diffraction. Text Microstruct. 1997;29:1–26.
CrossRef
Google Scholar
Courgneau C, Domenek S, Lebossé R, Guinault A, Avérous L, Ducruet V. Effect of crystallization on barrier properties of formulated polylactide. Polym Int. 2012;62:180–9.
CrossRef
Google Scholar
Incarnato L, Scarfato P, Russo GM, Maio LD, Iannelli P, Acierno D. Preparation and characterization of new melt compounded copolyamide nanocomposites. Polymer. 2003;44:4625–34.
CrossRef
Google Scholar
Zhu W, Chen T, Li Y, Lei J, Chen X, Yao W, Duan T. High performances of artificial nacre-like graphene oxide-carrageenan bio-nanocomposite films. Materials. 2017;10:536. https://doi.org/10.3390/ma10050536.
ADS
CrossRef
Google Scholar
Hikku GS, Jeyasubramanian K, Venugopal A, Ghosh R. Corrosion resistance behaviour of graphene/polyvinyl alcohol nanocomposite coating for aluminium-2219 alloy. J Alloy Compd. 2017;716:259–69.
CrossRef
Google Scholar
Maravi S, Bajpai J, Bajpai AK. Improving mechanical and electrical properties of poly(vinyl alcohol-g-acrylic acid) nanocomposite films by reinforcement of thermally reduced graphene oxide. Polym Sci Ser A. 2017;59:751–63.
CrossRef
Google Scholar
Di Mauro A, Cantarella M, Nicotra G, Pellegrino G, GulinonA Brundo MV, Privitera V, Impellizzeri G. Novel synthesis of ZnO/PMMA nanocomposites for photocatalytic application. Sci Rep. 2017;7:40895. https://doi.org/10.1038/srep40895.
CrossRef
Google Scholar
Shanthala VS, Devi SN, Murugendrappa MV. Synthesis, characterization and DC conductivity studies of polypyrrole/copper zinc iron oxide nanocomposites. J Asian Ceram Soc. 2017;5:227–34.
CrossRef
Google Scholar
Vaez M, Alijini S, Omidkhah M, Moghaddam AZ. Synthesis, characterization and optimization of N-TiO2/PANI nanocomposite for photodegradation of acid dye under visible light. Polym Compos. 2017. https://doi.org/10.1002/pc.24574.
CrossRef
Google Scholar
Chen Y-H, Zhong GJ, Wang Y, Li ZM, Li L. Unusual tuning of mechanical properties of isotactic polypropylene using counteraction of shear flow and β-nucleating agent on β-form nucleation. Macromolecules. 2009;42:4343–8.
ADS
CrossRef
Google Scholar
Zhang Y-F, Chang Y, Li X, Xie D. Nucleation effects of a novel nucleating agent bicyclic[2,2,1]heptane di-carboxylate in isotactic polypropylene. J Macromol Sci. 2011;50:266–74.
CrossRef
Google Scholar
De Santis F, Pantani R. Optical properties of polypropylene upon recycling. Sci World J. 2013;2013:1–7.
CrossRef
Google Scholar
Malas A, Bharati A, Verkinderen O, Goderis B, Moldenaers P, Cardinaels R. Effect of the GO reduction method on the dielectric properties, electrical conductivity and crystalline behavior of PEO/rGO nanocomposites. Polymers. 2017;9:613. https://doi.org/10.3390/polym9110613.
CrossRef
Google Scholar
Nwofe PA, Ramakrishna Reddy KT, Sreedevi G, Tan JK, Forbes I, Miles RW. Single phase, large grain, p-Conductivity-type SnS layers produced using the thermal evaporation method. Energy Proc. 2012;15:354–60.
CrossRef
Google Scholar
Wang Y, Tang W, Zhang L. Crystalline size effects on texture coefficient, electrical and optical properties of sputter-deposited Ga-doped ZnO thin films. J Mater Sci Technol. 2015;31:175–81.
CrossRef
Google Scholar
Ilican S, Caglar M, Caglar Y. Determination of the thickness and optical constants of transparent indium-doped ZnO thin films by the envelope method. Mater Sci Pol. 2007;25:709–18.
Google Scholar
Bandyopadhyay J, Sinha Ray S. Mechanism of enhanced tenacity in a polymer nanocomposite studied by small-angle X-ray scattering and electron microscopy. Polymer. 2010;51:4860–6.
CrossRef
Google Scholar
Bandyopadhyay J, Sinha Ray S, Salehiyan R, Ojijo V. Effect of the mode of nanoclay inclusion on morphology development and rheological properties of nylon6/ethyl-vinyl-alcohol blend composites. Polymer. 2017;126:96–108.
CrossRef
Google Scholar
Bhargava R, Wang S-Q, Koenig JL. FTIR microscopy of the polymeric systems. Adv Polym Sci. 2003;163:137–91.
CrossRef
Google Scholar
Ray SS, Bandyopadhyay J, Bousmina M. Influence of degree of intercalation on the crystal growth kinetics of poly[(butylene succinate)-co-adipate] nanocomposites. Eur Polymer J. 2008;44:3133–3145.
CrossRef
Google Scholar
Alabarse FG, Conceição RV, Balzaretti NM. In-situ FTIR analyses of bentonite under high-pressure. Appl Clay Sci. 2011;51:202–8.
CrossRef
Google Scholar
Schleidt S, Spiess HW, Jeschke G. A site-directed spin-labeling study of surfactants in polymer–clay nanocomposites. Colloid Polym Sci. 2006;284:1211–9.
CrossRef
Google Scholar
Kielmann U, Jeschke G, García-Rubio G. Structural characterization of polymer-clay nanocomposites prepared by co-precipitation using EPR techniques. Materials. 2014;7:1384–408.
ADS
CrossRef
Google Scholar
Papon A, Saalwächter K, Schäler K, Guy L, Montes H. Low-field NMR investigations of nanocomposites: polymer dynamics and network effects. Macromolecule. 2011;44:913–22.
ADS
CrossRef
Google Scholar
da Silva E, Tavares MIB, Nogueira JS. Solid state evaluation of natural resin/clay nanocomposites. J Nano Res. 2008;4:117–26.
CrossRef
Google Scholar
Böhme U, Scheler U. Interfaces in polymer nanocomposites—an NMR study. Proceedings of PPS-31. AIP Conf Proc. 2016;1713:090009-1–3.
Google Scholar
Dewimille L, Bresson B, Bokobza L. Synthesis, structure and morphology of poly(dimethylsiloxane) networks filled with in situ generated silica particles. Polymer. 2005;46:4135–43.
CrossRef
Google Scholar
Nelson JK, Hu Y. Nanocomposite dielectrics—properties and implications. J Phys D Appl Phys. 2005;38:213–22.
ADS
CrossRef
Google Scholar
Lewis TJ. Interfaces: nanometric dielectrics. J Phys D Appl Phys. 2005;38:202–12.
ADS
CrossRef
Google Scholar
Kenny JM, Trivisano A. Isothermal and dynamic reaction kinetics of high performance epoxy matrices. Polym Eng Sci. 1991;31:1426–33.
CrossRef
Google Scholar
Wang K, Huang X, Huang Y, Xie L, Jiang P. Fluoro-polymer@BaTiO3 hybrid nanoparticles prepared via RAFT polymerization: Toward ferroelectric polymer nanocomposites with high dielectric constant and low dielectric loss for energy storage application. Chem Mater. 2013;25:2327–38.
CrossRef
Google Scholar
Zhang G, Brannum D, Dong D, Tang L, Allahyarov E, Tang S, Kodweis K, Lee J-K, Zhu L. Interfacial polarization-induced loss Mechanisms in polypropylene/BaTiO3 nanocomposite dielectrics. Chem Mater. 2016;28:4646–60.
CrossRef
Google Scholar
Casalini R, Prevosto D, Labardi M, Roland CM. Effect of interface interaction on the segmental dynamics of poly(vinyl acetate) investigated by local dielectric spectroscopy. ACS Macro Lett. 2015;4:1022–6.
CrossRef
Google Scholar
Abraham J, Sharika T, George SC, Thomas S. Rheological percolation in thermoplastic polymer nanocomposites. Rheol Open Access. 2017;1:1–15.
Google Scholar
Knauret ST, Douglas JF, Starr FW. The effect of nanoparticle shape on polymer-nanocomposite rheology and tensile strength. J Polym Sci Part B Polym Phys. 2007;45:1882–97.
ADS
CrossRef
Google Scholar
Bandyopadhyay J, Ray SS, Maiti A, Khatua B. Thermal and rheological properties of biodegradable poly[(butylene succinate)-co-adipate] nanocomposites. J Nanosci Nanotechnol. 2010;10:4184–95.
CrossRef
Google Scholar
Krishnamoorti R, Yurekli K. Rheology of polymer layered silicate nanocomposites. Curr Opin Colloid Interface. 2001;6:464–70.
CrossRef
Google Scholar
Eslami H, Grmela M, Bousmina M. A mesoscopic tube model of polymer/layered silicate nanocomposites. Rheol Acta. 2009;48:317–31.
CrossRef
Google Scholar
Park JH, Jana SC. Mechanism of exfoliation of nanoclay particles in epoxy-clay nanocomposites. Macromolecules. 2003;36:2758–68.
ADS
CrossRef
Google Scholar
Terenzi A, Vedova C, Leilli G, Mijovic J, Torre L, Valentini L, Kenny JM. Chemorheological behaviour of double-walled carbon nanotube-epoxy nanocomposites. Compos Sci Technol. 2008;68:1862–8.
CrossRef
Google Scholar
Kim J-T, Martin D, Halley P, Kim DS. Chemorheological studies on a thermoset PU/clay nanocomposite system. Compos Interfaces. 2012;14:449–65.
CrossRef
Google Scholar
Fox J, Wie J, Greenland B, Burattini S, Hayes W, Colquhoun H, Mackay M, Rowan S. High strength, healable, supramolecular polymer nanocomposites. J Am Chem Soc. 2012;134:5362–8.
CrossRef
Google Scholar
Wang Y, He J, Aktas S, Sukhishvilli SA, Kalyon DM. Rheological behaviour and self-healing of hydrogen-bonded complexes of a tribock Pluronic® copolymer with weak polyacid. J Rheol. 2017;61:1103. https://doi.org/10.1122/1.4997591.
ADS
CrossRef
Google Scholar
Ojijo V, Ray SS, Sadiku R. Effect of nanoclay loading on the thermal and mechanical properties of biodegradable polylactide/poly[(butylene succinate)-co-adipate] blend composites. ACS Appl Mater Interfaces. 2012;4:2395–405.
CrossRef
Google Scholar
Zare Y. Development of Halpin-Tsai model for polymer nanocomposites assuming interphase properties and nanofiller size. Polym Test. 2016;51:69–73.
CrossRef
Google Scholar
Arunvisut S, Phummanee S, Somwangthanaroj A. Effect of clay on mechanical and gas barrier properties of blown film LDPE/clay nanocomposites. J Appl Polym Sci. 2007;106:2210–7.
CrossRef
Google Scholar
Golebiewski J, Rozanski A, Dzwonkowski J, Galeski A. Low density polyethylene–montmorillonite nanocomposites for film blowing. Eur Polymer J. 2008;44:270–86.
CrossRef
Google Scholar
Lotti C, Isaac CS, Branciforti MC, Alves RM, Liberman S, Bretas RE. Rheological, mechanical and transport properties of blown films of high density polyethylene nanocomposites. Eur Polymer J. 2008;44:1346–57.
CrossRef
Google Scholar
Yeh J-T, Chang C-J, Tsai F-C, Chen K-N, Huang K-S. Oxygen barrier and blending properties of blown films of blends of modified polyamide and polyamide-6 clay mineral nanocomposites. Appl Clay Sci. 2009;45:1–7.
CrossRef
Google Scholar
Garofalo E, Fariello ML, Di Maio L, Incarnato L. Effect of biaxial drawing on morphology and properties of copolyamide nanocomposites produced by film blowing. Eur Polymer J. 2013;49:80–9.
CrossRef
Google Scholar