Skip to main content

Structural Characterization of Polymer Nanocomposites

Part of the Springer Series in Materials Science book series (SSMATERIALS,volume 277)

Abstract

The performance of a heterogeneous material, such as polymer nanocomposites (PNCs) is dictated by three main factors: (i) the inherent properties of the components; (ii) interfacial interactions; and (iii) structure of the PNCs. The structure of a PNC depends on the dispersion and distribution of the nanoparticles (NPs) in the polymer matrix. However, improving the dispersion by mechanical means or via chemical bonding can influence the properties of the obtained PNCs. Therefore, elucidating the dispersion and distribution characteristics and the associated mechanisms is important and can allow prediction of the final properties . This chapter describes the different techniques used to characterize the structure and morphology of various PNCs. Primary techniques include microscopy in real space and reciprocal space, X-ray scattering analysis, as well as indirect measurements to probe the interfacial region and some physical properties . All the techniques mentioned here have certain pros and cons, but complement each other.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-97779-9_4
  • Chapter length: 40 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-97779-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 4.1
Fig. 4.2
Fig. 4.3
Fig. 4.4
Fig. 4.5
Fig. 4.6
Fig. 4.7
Fig. 4.8
Fig. 4.9
Fig. 4.10
Fig. 4.11
Fig. 4.12
Fig. 4.13
Fig. 4.14
Fig. 4.15
Fig. 4.16
Fig. 4.17
Fig. 4.18
Fig. 4.19

References

  1. Drummy LF, Wang YC, Schoenmakers R, May K, Jackson M, Koerner H, Farmer BL, Mauryama B, Vaia RA. Morphology of layered silicate- (nanoclay-) polymer nanocomposites by electron tomography and small-angle X-ray scattering. Macromolecules. 2008;41:2135–43.

    ADS  CrossRef  Google Scholar 

  2. Ho DL, Briber RM, Glinka CJ. Characterization of organically modified clays using scattering and microscopy techniques. Chem Mater. 2001;13:1923–31.

    CrossRef  Google Scholar 

  3. Mittelbach R, Glatter O. Direct structure analysis of small-angle scattering data from polydisperse colloidal particles. J Appl Crystallogr. 1998;31:600–8.

    CrossRef  Google Scholar 

  4. Schnablegger H, Singh Y. A practical guide to small angle X-ray scattering. Austria: Anton Par GmbH; 2006.

    Google Scholar 

  5. Glatter O, Kratky O. Small angle X-ray scattering. London: Academic Press; 1982. ISBN 0-12-286280-5.

    Google Scholar 

  6. Glatter O. Data evaluation in small angle scattering: calculation of the radial electron density distribution by means of indirect Fourier transformation. Acta Phys Austriaca. 1977;47:83–102.

    Google Scholar 

  7. Glatter O. A new method for the evaluation of small-angle scattering data. J Appl Crystallogr. 1977;10:415–21.

    CrossRef  Google Scholar 

  8. Bergmann A, Fritz G, Glatter O. Solving the generalized indirect Fourier transformation (GIFT) by Boltzmann simplex simulated annealing (BSSA). J Appl Crystallogr. 2000;33:1212–6.

    CrossRef  Google Scholar 

  9. Brunner-Popela J, Glatter O. Small-angle scattering of interacting particles. I. Basic principles of a global evaluation technique. J Appl Crystallogr. 1997;30:431–42.

    CrossRef  Google Scholar 

  10. Weyerich B, Brunner-Popela J, Glatter O. Small-angle scattering of interacting particles. II. Generalized indirect Fourier transformation under consideration of the effective structure factor for polydisperse systems. J Appl Crystallogr. 1999;32:197–209.

    CrossRef  Google Scholar 

  11. Hosemann R, Bagchi SN. Direct analysis of diffraction by matter. Amsterdam, The Netherlands: North-Holland; 1962.

    MATH  Google Scholar 

  12. Guinier A. X-ray diffraction in crystals, imperfect crystals and amorphous bodies. Ontario, Canada: General Publishing Company; 1994.

    Google Scholar 

  13. Caillé A, Seances CR. Remarks on the scattering of X-rays by A-type smectics. Actes Soc Hist B. 1972;274:891–3.

    Google Scholar 

  14. Zhang R, Tristram-Nagle S, Sun W, Headrick RL, Irving TC, Suter RM, Nagle JF. Small-angle X-ray scattering from lipid bilayers is well described by modified Caillé theory but not by paracrystalline theory. Biophys J. 1996;70:349–57.

    CrossRef  Google Scholar 

  15. Zhang R, Suter RM, Nagle JF. Theory of the structure factor of lipid bilayers. Phys Rev E. 1994;50:5047–60.

    ADS  CrossRef  Google Scholar 

  16. Frühwirth T, Fritz G, Freiberger N, Glatter O. Structure and order in lamellar phases determined by small-angle scattering. J Appl Crystallogr. 2004;37:703–10.

    CrossRef  Google Scholar 

  17. Glatter O. Convolution square root of band-limited symmetrical functions and its application to small-angle scattering data. J Appl Crystallogr. 1981;14:101–8.

    CrossRef  Google Scholar 

  18. Glatter O, Hainisch B. Improvements in real-space deconvolution of small-angle scattering data. J Appl Crystallogr. 1984;17:435–41.

    CrossRef  Google Scholar 

  19. Glatter O. Comparison of two different methods for direct structure analysis from small-angle scattering data. J Appl Crystallogr. 1988;21:886–90.

    CrossRef  Google Scholar 

  20. Li TC, Ma J, Wang M, Tjiu C, Liu T, Huang W. Effect of clay addition on the morphology and thermal behaviour of polyamide 6. J Appl Polym Sci. 2007;103:1191–9.

    CrossRef  Google Scholar 

  21. Ganguli A, Bhowmick AK. Insights into montmorillonite nanoclay based ex situ nanocomposites from SEBS by small angle X-ray scattering and modulated DSC studies. Macromolecules. 2008;41:6246–53.

    ADS  CrossRef  Google Scholar 

  22. Preschilla N, Sivalingam G, Rasheed AS, Tyagi S. Quantification of organoclay dispersion and lamellar morphology in poly(propylene) nanocomposites with small angle X-ray scattering. Polymer. 2008;49:4285–97.

    CrossRef  Google Scholar 

  23. Nawani P, Burger C, Chu B, Hsiao BS, Tsou AH, Weng W. Characterization of nanoclay orientation in polymer nanocomposite film. Polymer. 2010;51:5255–66.

    CrossRef  Google Scholar 

  24. Bandyopadhyay J, Ray SS. The quantitative analysis of nano-clay dispersion in polymer nanocomposites by small angle X-ray scattering combined with electron microscopy. Polymer. 2010;51:1437–49.

    CrossRef  Google Scholar 

  25. Carli LN, Bianchi O, Machado G, Crespo JS, Mauler RS. Morphological and structural characterization of PHBV/organoclay nanocomposites by small angle X-ray scattering. Mater Sci Eng. 2013;33:932–7.

    CrossRef  Google Scholar 

  26. Yadav R, Naebe M, Wang X, Kandasubramanian B. Structural and thermal stability of polycarbonate decorated fumed silica nanocomposite via thermomechanical analysis and in-situ temperature assisted SAXS. Sci Rep. 2017;7:7706. https://doi.org/10.1038/s41598-017-08122-7.

    ADS  CrossRef  Google Scholar 

  27. Jouault N, Dalmas F, Boúe F, Jestin J. Multiscale characterization of filler dispersion and origins of mechanical reinforcement in model nanocomposites. Polymer. 2012;53:761–75.

    CrossRef  Google Scholar 

  28. Bandyopadhyay J, Malwela T, Ray SS. Study of change in dispersion and orientation of clay platelets in a polymer nanocomposite during tensile test by variostage small-angle X-ray scattering. Polymer. 2012;53:1747–59.

    CrossRef  Google Scholar 

  29. Bandyopadhyay J, Ray SS. Determination of structural changes of dispersed clay platelets in a polymer blend during solid-state rheological property measurement by small-angle X-ray scattering. Polymer. 2011;52:2628–42.

    CrossRef  Google Scholar 

  30. Gurun B, Bucknall DG, Thio YS, Teoh CC, Harkin-Jones E. Multiaxial deformation of polyethylene and polyethylene/clay nanocomposites: in situ synchrotron small angle and wide angle X-ray scattering study. J Polym Sci Part B Polym Phys. 2011;49:669–77.

    ADS  CrossRef  Google Scholar 

  31. Nishada T, Obayashi A, Haraguchi K, Shibayama M. Stress relaxation and hysteresis of nanocomposite gel investigated by SAXS and SANS measurement. Polymer. 2012;53:4533–8.

    CrossRef  Google Scholar 

  32. Bandyopadhyay J, Sinha Ray S, Scriba M, Wesley-Smity J. A combined experimental and theoretical approach to establish the relationship between shear force and clay platelet delamination in melt-processed polypropylene nanocomposites. Polymer. 2014;55:2233–45.

    CrossRef  Google Scholar 

  33. Pujari S, Dougherty L, Mobuchon C, Carreau PJ, Heuzey M-C, Burghardt WR. X-ray scattering measurements of particle orientation in a sheared polymer/clay dispersion. Rheol Acta. 2011;50:3–16.

    CrossRef  Google Scholar 

  34. Thompson A, Bianchi O, Amorim CLG, Lemos C, Teixeira SR, Samios D, Giacomelli C, Crespo JS, Machado G. Uniaxial compression and stretching deformation of an i-PP/EPDM/organoclay nanocomposite. Polymer. 2011;52:1037–44.

    CrossRef  Google Scholar 

  35. Yamashita M, Kato M. Lamellar crystal thickness transition of melt crystallized isotactic polybutene-1 observed by small-angle X-ray scattering. J Appl Crystallogr. 2007;40:s650–5.

    CrossRef  Google Scholar 

  36. Fu Q, Heck B, Strobl G, Thoman Y. A temperature- and molar mass-dependent change in the crystallization mechanism of poly(1-butene): transition from chain-folded to chain-extended crystallization? Macromolecules. 2001;34:2502–11.

    ADS  CrossRef  Google Scholar 

  37. Marega C, Causin V, Saini R, Marigo A. A direct SAXS determination of specific surface area of clay in polymer-layered silicate nanocomposites. J Phys Chem B. 2012;116:7596–602.

    CrossRef  Google Scholar 

  38. Bunge HJ. Influence of texture on powder diffraction. Text Microstruct. 1997;29:1–26.

    CrossRef  Google Scholar 

  39. Courgneau C, Domenek S, Lebossé R, Guinault A, Avérous L, Ducruet V. Effect of crystallization on barrier properties of formulated polylactide. Polym Int. 2012;62:180–9.

    CrossRef  Google Scholar 

  40. Incarnato L, Scarfato P, Russo GM, Maio LD, Iannelli P, Acierno D. Preparation and characterization of new melt compounded copolyamide nanocomposites. Polymer. 2003;44:4625–34.

    CrossRef  Google Scholar 

  41. Zhu W, Chen T, Li Y, Lei J, Chen X, Yao W, Duan T. High performances of artificial nacre-like graphene oxide-carrageenan bio-nanocomposite films. Materials. 2017;10:536. https://doi.org/10.3390/ma10050536.

    ADS  CrossRef  Google Scholar 

  42. Hikku GS, Jeyasubramanian K, Venugopal A, Ghosh R. Corrosion resistance behaviour of graphene/polyvinyl alcohol nanocomposite coating for aluminium-2219 alloy. J Alloy Compd. 2017;716:259–69.

    CrossRef  Google Scholar 

  43. Maravi S, Bajpai J, Bajpai AK. Improving mechanical and electrical properties of poly(vinyl alcohol-g-acrylic acid) nanocomposite films by reinforcement of thermally reduced graphene oxide. Polym Sci Ser A. 2017;59:751–63.

    CrossRef  Google Scholar 

  44. Di Mauro A, Cantarella M, Nicotra G, Pellegrino G, GulinonA Brundo MV, Privitera V, Impellizzeri G. Novel synthesis of ZnO/PMMA nanocomposites for photocatalytic application. Sci Rep. 2017;7:40895. https://doi.org/10.1038/srep40895.

    CrossRef  Google Scholar 

  45. Shanthala VS, Devi SN, Murugendrappa MV. Synthesis, characterization and DC conductivity studies of polypyrrole/copper zinc iron oxide nanocomposites. J Asian Ceram Soc. 2017;5:227–34.

    CrossRef  Google Scholar 

  46. Vaez M, Alijini S, Omidkhah M, Moghaddam AZ. Synthesis, characterization and optimization of N-TiO2/PANI nanocomposite for photodegradation of acid dye under visible light. Polym Compos. 2017. https://doi.org/10.1002/pc.24574.

    CrossRef  Google Scholar 

  47. Chen Y-H, Zhong GJ, Wang Y, Li ZM, Li L. Unusual tuning of mechanical properties of isotactic polypropylene using counteraction of shear flow and β-nucleating agent on β-form nucleation. Macromolecules. 2009;42:4343–8.

    ADS  CrossRef  Google Scholar 

  48. Zhang Y-F, Chang Y, Li X, Xie D. Nucleation effects of a novel nucleating agent bicyclic[2,2,1]heptane di-carboxylate in isotactic polypropylene. J Macromol Sci. 2011;50:266–74.

    CrossRef  Google Scholar 

  49. De Santis F, Pantani R. Optical properties of polypropylene upon recycling. Sci World J. 2013;2013:1–7.

    CrossRef  Google Scholar 

  50. Malas A, Bharati A, Verkinderen O, Goderis B, Moldenaers P, Cardinaels R. Effect of the GO reduction method on the dielectric properties, electrical conductivity and crystalline behavior of PEO/rGO nanocomposites. Polymers. 2017;9:613. https://doi.org/10.3390/polym9110613.

    CrossRef  Google Scholar 

  51. Nwofe PA, Ramakrishna Reddy KT, Sreedevi G, Tan JK, Forbes I, Miles RW. Single phase, large grain, p-Conductivity-type SnS layers produced using the thermal evaporation method. Energy Proc. 2012;15:354–60.

    CrossRef  Google Scholar 

  52. Wang Y, Tang W, Zhang L. Crystalline size effects on texture coefficient, electrical and optical properties of sputter-deposited Ga-doped ZnO thin films. J Mater Sci Technol. 2015;31:175–81.

    CrossRef  Google Scholar 

  53. Ilican S, Caglar M, Caglar Y. Determination of the thickness and optical constants of transparent indium-doped ZnO thin films by the envelope method. Mater Sci Pol. 2007;25:709–18.

    Google Scholar 

  54. Bandyopadhyay J, Sinha Ray S. Mechanism of enhanced tenacity in a polymer nanocomposite studied by small-angle X-ray scattering and electron microscopy. Polymer. 2010;51:4860–6.

    CrossRef  Google Scholar 

  55. Bandyopadhyay J, Sinha Ray S, Salehiyan R, Ojijo V. Effect of the mode of nanoclay inclusion on morphology development and rheological properties of nylon6/ethyl-vinyl-alcohol blend composites. Polymer. 2017;126:96–108.

    CrossRef  Google Scholar 

  56. Bhargava R, Wang S-Q, Koenig JL. FTIR microscopy of the polymeric systems. Adv Polym Sci. 2003;163:137–91.

    CrossRef  Google Scholar 

  57. Ray SS, Bandyopadhyay J, Bousmina M. Influence of degree of intercalation on the crystal growth kinetics of poly[(butylene succinate)-co-adipate] nanocomposites. Eur Polymer J. 2008;44:3133–3145.

    CrossRef  Google Scholar 

  58. Alabarse FG, Conceição RV, Balzaretti NM. In-situ FTIR analyses of bentonite under high-pressure. Appl Clay Sci. 2011;51:202–8.

    CrossRef  Google Scholar 

  59. Schleidt S, Spiess HW, Jeschke G. A site-directed spin-labeling study of surfactants in polymerclay nanocomposites. Colloid Polym Sci. 2006;284:1211–9.

    CrossRef  Google Scholar 

  60. Kielmann U, Jeschke G, García-Rubio G. Structural characterization of polymer-clay nanocomposites prepared by co-precipitation using EPR techniques. Materials. 2014;7:1384–408.

    ADS  CrossRef  Google Scholar 

  61. Papon A, Saalwächter K, Schäler K, Guy L, Montes H. Low-field NMR investigations of nanocomposites: polymer dynamics and network effects. Macromolecule. 2011;44:913–22.

    ADS  CrossRef  Google Scholar 

  62. da Silva E, Tavares MIB, Nogueira JS. Solid state evaluation of natural resin/clay nanocomposites. J Nano Res. 2008;4:117–26.

    CrossRef  Google Scholar 

  63. Böhme U, Scheler U. Interfaces in polymer nanocomposites—an NMR study. Proceedings of PPS-31. AIP Conf Proc. 2016;1713:090009-1–3.

    Google Scholar 

  64. Dewimille L, Bresson B, Bokobza L. Synthesis, structure and morphology of poly(dimethylsiloxane) networks filled with in situ generated silica particles. Polymer. 2005;46:4135–43.

    CrossRef  Google Scholar 

  65. Nelson JK, Hu Y. Nanocomposite dielectrics—properties and implications. J Phys D Appl Phys. 2005;38:213–22.

    ADS  CrossRef  Google Scholar 

  66. Lewis TJ. Interfaces: nanometric dielectrics. J Phys D Appl Phys. 2005;38:202–12.

    ADS  CrossRef  Google Scholar 

  67. Kenny JM, Trivisano A. Isothermal and dynamic reaction kinetics of high performance epoxy matrices. Polym Eng Sci. 1991;31:1426–33.

    CrossRef  Google Scholar 

  68. Wang K, Huang X, Huang Y, Xie L, Jiang P. Fluoro-polymer@BaTiO3 hybrid nanoparticles prepared via RAFT polymerization: Toward ferroelectric polymer nanocomposites with high dielectric constant and low dielectric loss for energy storage application. Chem Mater. 2013;25:2327–38.

    CrossRef  Google Scholar 

  69. Zhang G, Brannum D, Dong D, Tang L, Allahyarov E, Tang S, Kodweis K, Lee J-K, Zhu L. Interfacial polarization-induced loss Mechanisms in polypropylene/BaTiO3 nanocomposite dielectrics. Chem Mater. 2016;28:4646–60.

    CrossRef  Google Scholar 

  70. Casalini R, Prevosto D, Labardi M, Roland CM. Effect of interface interaction on the segmental dynamics of poly(vinyl acetate) investigated by local dielectric spectroscopy. ACS Macro Lett. 2015;4:1022–6.

    CrossRef  Google Scholar 

  71. Abraham J, Sharika T, George SC, Thomas S. Rheological percolation in thermoplastic polymer nanocomposites. Rheol Open Access. 2017;1:1–15.

    Google Scholar 

  72. Knauret ST, Douglas JF, Starr FW. The effect of nanoparticle shape on polymer-nanocomposite rheology and tensile strength. J Polym Sci Part B Polym Phys. 2007;45:1882–97.

    ADS  CrossRef  Google Scholar 

  73. Bandyopadhyay J, Ray SS, Maiti A, Khatua B. Thermal and rheological properties of biodegradable poly[(butylene succinate)-co-adipate] nanocomposites. J Nanosci Nanotechnol. 2010;10:4184–95.

    CrossRef  Google Scholar 

  74. Krishnamoorti R, Yurekli K. Rheology of polymer layered silicate nanocomposites. Curr Opin Colloid Interface. 2001;6:464–70.

    CrossRef  Google Scholar 

  75. Eslami H, Grmela M, Bousmina M. A mesoscopic tube model of polymer/layered silicate nanocomposites. Rheol Acta. 2009;48:317–31.

    CrossRef  Google Scholar 

  76. Park JH, Jana SC. Mechanism of exfoliation of nanoclay particles in epoxy-clay nanocomposites. Macromolecules. 2003;36:2758–68.

    ADS  CrossRef  Google Scholar 

  77. Terenzi A, Vedova C, Leilli G, Mijovic J, Torre L, Valentini L, Kenny JM. Chemorheological behaviour of double-walled carbon nanotube-epoxy nanocomposites. Compos Sci Technol. 2008;68:1862–8.

    CrossRef  Google Scholar 

  78. Kim J-T, Martin D, Halley P, Kim DS. Chemorheological studies on a thermoset PU/clay nanocomposite system. Compos Interfaces. 2012;14:449–65.

    CrossRef  Google Scholar 

  79. Fox J, Wie J, Greenland B, Burattini S, Hayes W, Colquhoun H, Mackay M, Rowan S. High strength, healable, supramolecular polymer nanocomposites. J Am Chem Soc. 2012;134:5362–8.

    CrossRef  Google Scholar 

  80. Wang Y, He J, Aktas S, Sukhishvilli SA, Kalyon DM. Rheological behaviour and self-healing of hydrogen-bonded complexes of a tribock Pluronic® copolymer with weak polyacid. J Rheol. 2017;61:1103. https://doi.org/10.1122/1.4997591.

    ADS  CrossRef  Google Scholar 

  81. Ojijo V, Ray SS, Sadiku R. Effect of nanoclay loading on the thermal and mechanical properties of biodegradable polylactide/poly[(butylene succinate)-co-adipate] blend composites. ACS Appl Mater Interfaces. 2012;4:2395–405.

    CrossRef  Google Scholar 

  82. Zare Y. Development of Halpin-Tsai model for polymer nanocomposites assuming interphase properties and nanofiller size. Polym Test. 2016;51:69–73.

    CrossRef  Google Scholar 

  83. Arunvisut S, Phummanee S, Somwangthanaroj A. Effect of clay on mechanical and gas barrier properties of blown film LDPE/clay nanocomposites. J Appl Polym Sci. 2007;106:2210–7.

    CrossRef  Google Scholar 

  84. Golebiewski J, Rozanski A, Dzwonkowski J, Galeski A. Low density polyethylene–montmorillonite nanocomposites for film blowing. Eur Polymer J. 2008;44:270–86.

    CrossRef  Google Scholar 

  85. Lotti C, Isaac CS, Branciforti MC, Alves RM, Liberman S, Bretas RE. Rheological, mechanical and transport properties of blown films of high density polyethylene nanocomposites. Eur Polymer J. 2008;44:1346–57.

    CrossRef  Google Scholar 

  86. Yeh J-T, Chang C-J, Tsai F-C, Chen K-N, Huang K-S. Oxygen barrier and blending properties of blown films of blends of modified polyamide and polyamide-6 clay mineral nanocomposites. Appl Clay Sci. 2009;45:1–7.

    CrossRef  Google Scholar 

  87. Garofalo E, Fariello ML, Di Maio L, Incarnato L. Effect of biaxial drawing on morphology and properties of copolyamide nanocomposites produced by film blowing. Eur Polymer J. 2013;49:80–9.

    CrossRef  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Science and Technology and the Council for Scientific and Industrial Research, South Africa, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suprakas Sinha Ray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Bandyopadhyay, J., Sinha Ray, S. (2018). Structural Characterization of Polymer Nanocomposites. In: Sinha Ray, S. (eds) Processing of Polymer-based Nanocomposites. Springer Series in Materials Science, vol 277. Springer, Cham. https://doi.org/10.1007/978-3-319-97779-9_4

Download citation