Skip to main content

Synthesis and Functionalization of Nanomaterials

Part of the Springer Series in Materials Science book series (SSMATERIALS,volume 277)

Abstract

“Nanomaterial” and “nanotechnology ” have become well-known terms, not only among scientists, engineers, fashion designers, and architects, but also the general public. Owing to their extraordinary and unexpected behavior, nanomaterials have gained tremendous attention in fields such as automotive, electronics, aerospace , healthcare, and biomedical, and have significant potential for many modern advanced technological applications. Nanomaterials have promised to make available products and systems smaller, better, lighter, and faster, which is achieving reality due to the rigorous efforts of scientists and engineers. In this scenario, several kinds of nanomaterials , various synthesis methods and advanced characterization techniques, and many computational models and theories to elucidate experimental results, are being developed by researchers. This chapter introduces state-of-the-art progress in the development of various synthesis strategies and functionalization approaches for producing a wide range of nanomaterials . We also discuss the properties of polymer nanocomposites considering some specific applications.

Keywords

  • nanomaterialsNanomaterials
  • propertiesProperties
  • synthesisSynthesis
  • Carbon nanotubesCarbon Nanotubes (CNTs)
  • grapheneGraphene

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-97779-9_2
  • Chapter length: 41 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-97779-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2

Reprinted with permission from [31]. Copyright 2017, Springer Nature

Fig. 2.3
Fig. 2.4

Reproduced with permission from [54]. Copyright 2015, Cambridge University Press

Fig. 2.5

Reproduced with permission from [61]. Copyright 2017, the American Institute of Physics

Fig. 2.6
Fig. 2.7
Fig. 2.8
Fig. 2.9

Reproduced with permission from [91]. Copyright 2015, the Royal Society of Chemistry

Fig. 2.10

Reproduced with permission from [95]. Copyright 2013, the American Chemical Society

Fig. 2.11
Fig. 2.12

Reproduced with permission from [109]. Copyright 2010, the Royal Society of London

Fig. 2.13

Reproduced with permission from [110]. Copyright 2013, Elsevier Science Ltd

Fig. 2.14

Reproduced with permission from [110]. Copyright 2013, Elsevier Science Ltd

Fig. 2.15
Fig. 2.16

Reproduced with permission from [124]. Copyright 2013, Elsevier Science Ltd

References

  1. Rai S, Rai A. Nanotechnology-the secret of fifth industrial revolution and the future of next generation. Jurnal Nasional 2017;7(2):61–6.

    Google Scholar 

  2. Kagan CR, Murray CB. Charge transport in strongly coupled quantum dot solids. Nat Nanotechnol. 2015;10(12):1013.

    ADS  CrossRef  Google Scholar 

  3. Scher JA, Elward JM, Chakraborty A. Shape matters: effect of 1D, 2D, and 3D isovolumetric quantum confinement in semiconductor nanoparticles. J Phys Chem C. 2016;120(43):24999–5009.

    CrossRef  Google Scholar 

  4. Pitkethly MJ. Nanomaterials—the driving force. Mater Today. 2004;7(12):20–9.

    CrossRef  Google Scholar 

  5. Sanchez C, et al. Applications of advanced hybrid organic–inorganic nanomaterials: from laboratory to market. Chem Soc Rev. 2011;40(2):696–753.

    CrossRef  Google Scholar 

  6. Lohse SE, Murphy CJ. Applications of colloidal inorganic nanoparticles: from medicine to energy. J Am Chem Soc. 2012;134(38):15607–20.

    CrossRef  Google Scholar 

  7. Nam KT, et al. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 2006;312(5775):885–8.

    Google Scholar 

  8. Hossein-Babaei F, et al. A resistive gas sensor based on undoped p-type anatase. Sens Actuators B Chem. 2005;110(1):28–35.

    CrossRef  Google Scholar 

  9. Ozgit D, Hiralal P, Amaratunga G. Flexible energy storage devices based on nanomaterials. In: 2016 IEEE 16th international conference on nanotechnology (IEEE-NANO). IEEE; 2016.

    Google Scholar 

  10. Fujishima A, Zhang X. Titanium dioxide photocatalysis: present situation and future approaches. C R Chim. 2006;9(5–6):750–60.

    CrossRef  Google Scholar 

  11. Activ P. Self-cleaning glass. 2008.

    Google Scholar 

  12. Serpone N, Dondi D, Albini A. Inorganic and organic UV filters: their role and efficacy in sunscreens and suncare products. Inorg Chim Acta. 2007;360(3):794–802.

    CrossRef  Google Scholar 

  13. Bera A, Belhaj H. Application of nanotechnology by means of nanoparticles and nanodispersions in oil recovery—a comprehensive review. J Nat Gas Sci Eng. 2016;34:1284–309.

    CrossRef  Google Scholar 

  14. áJames McQuillan A, Martin J. Characterisation and activity of sol–gel-prepared TiO2 photocatalysts modified with Ca, Sr or Ba ion additives. J Mater Chem. 2000;10(10):2358–63.

    Google Scholar 

  15. Kumar N, et al. Morphogenesis of ZnO nanostructures: role of acetate (COOH–) and nitrate (NO3) ligand donors from zinc salt precursors in synthesis and morphology dependent photocatalytic properties. RSC Adv. 2015;5(48):38801–9.

    CrossRef  Google Scholar 

  16. Fernando RH, Nanocomposite and nanostructured coatings: Recent advancements. Washington: ACS Publications; 2009.

    Google Scholar 

  17. Domun N, et al. Improving the fracture toughness and the strength of epoxy using nanomaterials—a review of the current status. Nanoscale. 2015;7(23):10294–329.

    ADS  CrossRef  Google Scholar 

  18. Mout R, et al. Surface functionalization of nanoparticles for nanomedicine. Chem Soc Rev. 2012;41(7):2539–44.

    CrossRef  Google Scholar 

  19. Chakraborty I, Pradeep T. Atomically precise clusters of noble metals: emerging link between atoms and nanoparticles. Chem Rev. 2017;117(12):8208–71.

    CrossRef  Google Scholar 

  20. Zaleska-Medynska A, et al. Noble metal-based bimetallic nanoparticles: the effect of the structure on the optical, catalytic and photocatalytic properties. Adv Coll Interface Sci. 2016;229:80–107.

    CrossRef  Google Scholar 

  21. Yin H, Tang Z. Ultrathin two-dimensional layered metal hydroxides: an emerging platform for advanced catalysis, energy conversion and storage. Chem Soc Rev. 2016;45(18):4873–91.

    CrossRef  Google Scholar 

  22. Bromley R, Murray R, Yoffe A. The band structures of some transition metal dichalcogenides. III. Group VIA: trigonal prism materials. J Phys C Solid State Phys. 1972;5(7):759.

    ADS  CrossRef  Google Scholar 

  23. Wilson JA, Yoffe A. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv Phys. 1969;18(73):193–335.

    ADS  CrossRef  Google Scholar 

  24. Xu N, Xu Y, Zhu J, Topological insulators for thermoelectrics. npj Quantum Mater. 2017;2(1):51.

    Google Scholar 

  25. Butler SZ, et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano. 2013;7(4):2898–926.

    CrossRef  Google Scholar 

  26. Duerloo K-AN, Li Y, Reed EJ. Structural phase transitions in two-dimensional Mo-and W-dichalcogenide monolayers. Nat. Commun. 2014;5:4214.

    CrossRef  Google Scholar 

  27. Venkata Subbaiah Y, Saji K, Tiwari A. Atomically thin MoS2: a versatile nongraphene 2D material. Adv Funct Mater. 2016;26(13):2046–69

    Google Scholar 

  28. Lipatov A, et al. Few-layered titanium trisulfide (TiS3) field-effect transistors. Nanoscale. 2015;7(29):12291–6.

    ADS  CrossRef  Google Scholar 

  29. Zolyomi V, Drummond N, Fal’ko V. Band structure and optical transitions in atomic layers of hexagonal gallium chalcogenides. Phys Rev B. 2013;87(19):195403.

    ADS  CrossRef  Google Scholar 

  30. Gonzalez JM, Oleynik II. Layer-dependent properties of SnS2 and SnSe2 two-dimensional materials. Phys Rev B. 2016;94(12):125443.

    ADS  CrossRef  Google Scholar 

  31. Verzhbitskiy I, Eda G. Chalcogenide nanosheets: optical signatures of many-body effects and electronic band structure. In: Inorganic nanosheets and nanosheet-based materials. Berlin: Springer; 2017. p. 133–62.

    Google Scholar 

  32. Shirasaki Y, et al. Emergence of colloidal quantum-dot light-emitting technologies. Nat Photonics. 2013;7(1):13.

    Google Scholar 

  33. Sun L, et al. Electrogenerated chemiluminescence from PbS quantum dots. Nano Lett. 2008;9(2):789–93.

    ADS  CrossRef  Google Scholar 

  34. Pietryga JM, et al. Spectroscopic and device aspects of nanocrystal quantum dots. Chem Rev. 2016;116(18):10513–622.

    CrossRef  Google Scholar 

  35. Zhao W, et al. Lattice dynamics in mono-and few-layer sheets of WS2 and WSe2. Nanoscale. 2013;5(20):9677–83.

    ADS  CrossRef  Google Scholar 

  36. Geim AK, Grigorieva IV. Van der Waals heterostructures. Nature. 2013;499(7459):419.

    CrossRef  Google Scholar 

  37. Prasad PN. Nanophotonics. Hoboken: Wiley; 2004.

    Google Scholar 

  38. Chang Y-M, et al. Enhanced free exciton and direct band-edge emissions at room temperature in ultrathin ZnO films grown on Si nanopillars by atomic layer deposition. ACS Appl Mater Interfaces. 2011;3(11):4415–9.

    CrossRef  Google Scholar 

  39. Zhao N, Qi L. Low-temperature synthesis of star-shaped PbS nanocrystals in aqueous solutions of mixed cationic/anionic surfactants. Adv Mater. 2006;18(3):359–62.

    CrossRef  Google Scholar 

  40. Kayanuma Y. Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape. Phys Rev B. 1988;38(14):9797.

    ADS  CrossRef  Google Scholar 

  41. Wise FW. Lead salt quantum dots: the limit of strong quantum confinement. Acc Chem Res. 2000;33(11):773–80.

    CrossRef  Google Scholar 

  42. Bellessa J, et al. Quantum-size effects on radiative lifetimes and relaxation of excitons in semiconductor nanostructures. Phys Rev B. 1998;58(15):9933.

    ADS  CrossRef  Google Scholar 

  43. Xu G, et al. New generation cadmium-free quantum dots for biophotonics and nanomedicine. Chem Rev. 2016;116(19):12234–327.

    Google Scholar 

  44. Chen X, Liu Y, Ma Q. Recent advances in quantum dot-based electrochemiluminescence sensors. J Mater Chem C 2018;6:942.

    Google Scholar 

  45. Kairdolf BA, et al. Semiconductor quantum dots for bioimaging and biodiagnostic applications. Ann Rev Anal Chem. 2013;6:143–62.

    Google Scholar 

  46. Xu Y, et al. Recent progress in two-dimensional inorganic quantum dots. Chem Soc Rev. 2018;47:586.

    Google Scholar 

  47. Ealia SAM, Saravanakumar, M. A review on the classification, characterisation, synthesis of nanoparticles and their application. In: IOP conference series: materials science and engineering. IOP Publishing; 2017.

    Google Scholar 

  48. Akbarzadeh A, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102.

    ADS  MathSciNet  CrossRef  Google Scholar 

  49. Orive G, et al. Biomaterials for promoting brain protection, repair and regeneration. Nat Rev Neurosci. 2009;10(9):682.

    CrossRef  Google Scholar 

  50. Adair JH, et al. Nanoparticulate alternatives for drug delivery. ACS Nano. 2010;4(9):4967–70.

    CrossRef  Google Scholar 

  51. Rao JP, Geckeler KE. Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci. 2011;36(7):887–913.

    CrossRef  Google Scholar 

  52. Georgakilas V, et al. Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev. 2015;115(11):4744–822.

    CrossRef  Google Scholar 

  53. Gogotsi Y, Presser V. Carbon nanomaterials. Boca Raton: CRC Press; 2013.

    Google Scholar 

  54. Gogotsi Y. Not just graphene: the wonderful world of carbon and related nanomaterials. MRS Bull. 2015;40(12):1110–21.

    CrossRef  Google Scholar 

  55. Kroto H, et al. This week’s citation classic®. Nature. 1985;318:162–3.

    ADS  CrossRef  Google Scholar 

  56. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354(6348):56.

    ADS  CrossRef  Google Scholar 

  57. Boehm H, et al. Dünnste kohlenstoff-folien. Z Naturforsch B. 1962;17(3):150–3.

    ADS  CrossRef  Google Scholar 

  58. Novoselov KS, et al. Electric field effect in atomically thin carbon films. Science 2004;306(5696):666–9.

    Google Scholar 

  59. Verma S, et al. Graphene oxide: an efficient and reusable carbocatalyst for aza-Michael addition of amines to activated alkenes. Chem Commun. 2011;47(47):12673–5.

    CrossRef  Google Scholar 

  60. Ong W-J, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev. 2016;116(12):7159–329.

    Google Scholar 

  61. Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2007;2(4):MR17–71.

    Google Scholar 

  62. Pokropivny V, Skorokhod V. Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mater Sci Eng C. 2007;27(5–8):990–3.

    CrossRef  Google Scholar 

  63. Tiwari JN, Tiwari RN, Kim KS. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog Mater Sci. 2012;57(4):724–803.

    CrossRef  Google Scholar 

  64. Tan C, et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev. 2017;117(9):6225–331.

    CrossRef  Google Scholar 

  65. Jiang P, et al. Emission-tunable near-infrared Ag2S quantum dots. Chem Mater. 2011;24(1):3–5.

    CrossRef  Google Scholar 

  66. Duan C, et al. Controllability of the Coulomb charging energy in close-packed nanoparticle arrays. Nanoscale. 2013;5(21):10258–66.

    ADS  CrossRef  Google Scholar 

  67. Zhang J, et al. Nonepitaxial growth of hybrid core-shell nanostructures with large lattice mismatches. Science. 2010;327(5973):1634–8.

    ADS  CrossRef  Google Scholar 

  68. Jeon S, et al. Fullerene embedded shape memory nanolens array. Sci Rep. 2013;3:3269.

    CrossRef  Google Scholar 

  69. Shokuhfar T, et al. Intercalation of anti-inflammatory drug molecules within TiO2 nanotubes. Rsc Adv. 2013;3(38):17380–6.

    CrossRef  Google Scholar 

  70. Zhu J, Xue D. Crystallography and interfacial kinetic controlled ultra-uniform single crystal silver nanobelts and their optical properties. CrystEngComm. 2014;16(4):642–8.

    CrossRef  Google Scholar 

  71. Kumar N, et al. Controlled synthesis of microsheets of ZnAl layered double hydroxides hexagonal nanoplates for efficient removal of Cr(VI) ions and anionic dye from water. J Environ Chem Eng. 2017;5(2):1718–31.

    CrossRef  Google Scholar 

  72. Nayak BB, Behera D, Mishra BK. Synthesis of silicon carbide dendrite by the arc plasma process and observation of nanorod bundles in the dendrite arm. J Am Ceram Soc. 2010;93(10):3080–3.

    CrossRef  Google Scholar 

  73. Bruno E, et al. Comparison of the Sensing Properties of ZnO nanowalls-based sensors toward low concentrations of CO and NO2. Chemosensors. 2017;5(3):20.

    CrossRef  Google Scholar 

  74. Karakouz T, et al. Morphology and refractive index sensitivity of gold island films. Chem Mater. 2009;21(24):5875–85.

    CrossRef  Google Scholar 

  75. Hirahara K, Nakayama Y. The effect of a tin oxide buffer layer for the high yield synthesis of carbon nanocoils. Carbon. 2013;56:264–70.

    CrossRef  Google Scholar 

  76. Choudhury BD, et al. Silicon nanopillar arrays with SiO2 overlayer for biosensing application. Opt Mater Express. 2014;4(7):1345–54.

    ADS  CrossRef  Google Scholar 

  77. Pan A, et al. Template-free synthesis of VO2 hollow microspheres with various interiors and their conversion into V2O5 for Lithium-Ion batteries. Angew Chem. 2013;125(8):2282–6.

    CrossRef  Google Scholar 

  78. Biswas A, et al. Advances in top–down and bottom–up surface nanofabrication: techniques, applications & future prospects. Adv Coll Interface Sci. 2012;170(1–2):2–27.

    CrossRef  Google Scholar 

  79. Zhou Y, et al. Top-down preparation of active cobalt oxide catalyst. ACS Catal. 2016;6(10):6699–703.

    CrossRef  Google Scholar 

  80. Priyadarshana G, et al. Synthesis of magnetite nanoparticles by top-down approach from a high purity ore. J Nanomater. 2015;16(1):317.

    Google Scholar 

  81. Wang Y, Xia Y. Bottom-up and top-down approaches to the synthesis of monodispersed spherical colloids of low melting-point metals. Nano Lett. 2004;4(10):2047–50.

    ADS  CrossRef  Google Scholar 

  82. Gao M-R, et al. Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem Soc Rev. 2013;42(7):2986–3017.

    CrossRef  Google Scholar 

  83. Liang HW, et al. Macroscopic-scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications. Angew Chem Int Ed. 2012;51(21):5101–5.

    CrossRef  Google Scholar 

  84. Kumar N, et al. Sustainable one-step synthesis of hierarchical microspheres of PEGylated MoS2 nanosheets and MoO3 nanorods: their cytotoxicity towards lung and breast cancer cells. Appl Surf Sci. 2017;396:8–18.

    ADS  CrossRef  Google Scholar 

  85. Jiang T, et al. Hydrothermal synthesis of Ag@MSiO2@Ag three core–shell nanoparticles and their sensitive and stable SERS properties. Nanoscale. 2016;8(9):4908–14.

    ADS  CrossRef  Google Scholar 

  86. Kumar N, Ray SS, Ngila JC. Ionic liquid-assisted synthesis of Ag/Ag2Te nanocrystals via a hydrothermal route for enhanced photocatalytic performance. New J Chem. 2017;41(23):14618–26.

    CrossRef  Google Scholar 

  87. Kumar N, et al. Controlled microstructural hydrothermal synthesis of strontium selenides host matrices for EuII and EuIII luminescence. Mater Lett. 2015;146:51–4.

    CrossRef  Google Scholar 

  88. Kumar N, et al. A novel approach to low-temperature synthesis of cubic HfO2 nanostructures and their cytotoxicity. Sci Rep. 2017;7(1):9351.

    ADS  CrossRef  Google Scholar 

  89. Lu Q, Gao F, Zhao D. One-step synthesis and assembly of copper sulfide nanoparticles to nanowires, nanotubes, and nanovesicles by a simple organic amine-assisted hydrothermal process. Nano Lett. 2002;2(7):725–8.

    ADS  CrossRef  Google Scholar 

  90. Solanki JN, Murthy ZVP. Controlled size silver nanoparticles synthesis with water-in-oil microemulsion method: a topical review. Ind Eng Chem Res. 2011;50(22):12311–23.

    CrossRef  Google Scholar 

  91. Dhand C, et al. Methods and strategies for the synthesis of diverse nanoparticles and their applications: a comprehensive overview. Rsc Adv. 2015;5(127):105003–37.

    CrossRef  Google Scholar 

  92. Mandal M, et al. Micelle-mediated UV-photoactivation route for the evolution of Pdcore-Aushell and Pdcore-Agshell bimetallics from photogenerated Pd nanoparticles. J Photochem Photobiol A. 2004;167(1):17–22.

    MathSciNet  CrossRef  Google Scholar 

  93. Martı́nez-Rodrı́guez RA, et al. Synthesis of Pt nanoparticles in water-in-oil microemulsion: effect of HCl on their surface structure. J Am Chem Soc. 2014;136(4):1280–3.

    Google Scholar 

  94. Yıldırım ÖA, Durucan C. Synthesis of zinc oxide nanoparticles elaborated by microemulsion method. J Alloy Compd. 2010;506(2):944–9.

    CrossRef  Google Scholar 

  95. Akhtar MS, Panwar J, Yun Y-S. Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustain Chem Eng. 2013;1(6):591–602.

    CrossRef  Google Scholar 

  96. Shankar SS, et al. Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci. 2004;275(2):496–502.

    ADS  MathSciNet  CrossRef  Google Scholar 

  97. Maensiri S, et al. Indium oxide (In2O3) nanoparticles using Aloe vera plant extract: synthesis and optical properties. J Optoelectron Adv Mater. 2008;10:161–5.

    Google Scholar 

  98. Coccia F, et al. One-pot synthesis of lignin-stabilised platinum and palladium nanoparticles and their catalytic behaviour in oxidation and reduction reactions. Green Chem. 2012;14(4):1073–8.

    CrossRef  Google Scholar 

  99. Sathishkumar M, et al. Phyto-crystallization of palladium through reduction process using Cinnamom zeylanicum bark extract. J Hazard Mater. 2009;171(1–3):400–4.

    CrossRef  Google Scholar 

  100. Sintubin L, et al. Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol. 2009;84(4):741–9.

    CrossRef  Google Scholar 

  101. Bharde A, et al. Extracellular biosynthesis of magnetite using fungi. Small. 2006;2(1):135–41.

    CrossRef  Google Scholar 

  102. Bansal V, et al. Fungus-mediated biosynthesis of silica and titania particles. J Mater Chem. 2005;15(26):2583–9.

    CrossRef  Google Scholar 

  103. Kundu S, Nithiyanantham U. DNA-mediated fast synthesis of shape-selective ZnO nanostructures and their potential applications in catalysis and dye-sensitized solar cells. Ind Eng Chem Res. 2014;53(35):13667–79.

    CrossRef  Google Scholar 

  104. Charitidis CA, et al. Manufacturing nanomaterials: from research to industry. Manuf Rev. 2014;1:11.

    Google Scholar 

  105. Moon J-W, et al. Manufacturing demonstration of microbially mediated zinc sulfide nanoparticles in pilot-plant scale reactors. Appl Microbiol Biotechnol. 2016;100(18):7921–31.

    CrossRef  Google Scholar 

  106. Riche CT, et al. Flow invariant droplet formation for stable parallel microreactors. Nat Commun. 2016;7:10780.

    ADS  CrossRef  Google Scholar 

  107. Liu C, Cheng H-M. Carbon nanotubes: controlled growth and application. Materials Today. 2013;16(1–2): 19–28.

    Google Scholar 

  108. Pirard SL, Douven S, Pirard J-P. Large-scale industrial manufacturing of carbon nanotubes in a continuous inclined mobile-bed rotating reactor via the catalytic chemical vapor deposition process. Front Chem Sci Eng. 2017;11(2): 280–9.

    Google Scholar 

  109. Sperling RA, Parak WJ. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos Trans R Soc Lond A Math Phys Eng Sci. 1915;2010(368):1333–83.

    Google Scholar 

  110. Treccani L, et al. Functionalized ceramics for biomedical, biotechnological and environmental applications. Acta Biomater. 2013;9(7):7115–50.

    CrossRef  Google Scholar 

  111. Stamov DR, et al. The impact of heparin intercalation at specific binding sites in telopeptide-free collagen type I fibrils. Biomaterials. 2011;32(30):7444–53.

    CrossRef  Google Scholar 

  112. Gusain R, et al. Reduced graphene oxide–CuO nanocomposites for photocatalytic conversion of CO2 into methanol under visible light irradiation. Appl Catal B. 2016;181:352–62.

    CrossRef  Google Scholar 

  113. Mungse HP, et al. Grafting of oxo-vanadium Schiff base on graphene nanosheets and its catalytic activity for the oxidation of alcohols. J Mater Chem. 2012;22(12):5427–33.

    CrossRef  Google Scholar 

  114. Gusain R, et al. Covalently attached graphene–ionic liquid hybrid nanomaterials: synthesis, characterization and tribological application. J Mater Chem A. 2016;4(3):926–37.

    ADS  CrossRef  Google Scholar 

  115. Sainsbury T, et al. Oxygen radical functionalization of boron nitride nanosheets. J Am Chem Soc. 2012;134(45):18758–71.

    Google Scholar 

  116. He M, Swager TM. Covalent functionalization of carbon nanomaterials with iodonium salts. Chem Mater. 2016;28(23):8542–9.

    CrossRef  Google Scholar 

  117. Zhou L, et al. Facile approach to surface functionalized MoS2 nanosheets. RSC Adv. 2014;4(61):32570–8.

    CrossRef  Google Scholar 

  118. Mi C, et al. Multifunctional nanocomposites of superparamagnetic (Fe3O4) and NIR-responsive rare earth-doped up-conversion fluorescent (NaYF4: Yb, Er) nanoparticles and their applications in biolabeling and fluorescent imaging of cancer cells. Nanoscale. 2010;2(7):1141–8.

    ADS  CrossRef  Google Scholar 

  119. Lehn J-M. Toward complex matter: supramolecular chemistry and self-organization. Proc Natl Acad Sci. 2002;99(8):4763–8.

    ADS  CrossRef  Google Scholar 

  120. Georgakilas V, et al. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem Rev. 2016;116(9):5464–519.

    CrossRef  Google Scholar 

  121. Gupta P, Vermani K, Garg S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today. 2002;7(10):569–79.

    CrossRef  Google Scholar 

  122. Di Crescenzo A, Ettorre V, Fontana A. Non-covalent and reversible functionalization of carbon nanotubes. Beilstein J Nanotechnol. 2014;5:1675.

    CrossRef  Google Scholar 

  123. Gusain R, et al. Ionic-liquid-functionalized copper oxide nanorods for photocatalytic splitting of water. ChemPlusChem. 2016;81(5):489–95.

    CrossRef  Google Scholar 

  124. Hsiao S-T, et al. Using a non-covalent modification to prepare a high electromagnetic interference shielding performance graphene nanosheet/water-borne polyurethane composite. Carbon. 2013;60:57–66.

    CrossRef  Google Scholar 

  125. Kumar N, et al. Efficient removal of rhodamine 6G dye from aqueous solution using nickel sulphide incorporated polyacrylamide grafted gum karaya bionanocomposite hydrogel. RSC Adv. 2016;6(26):21929–39.

    CrossRef  Google Scholar 

  126. Sinha Ray S. Polylactide-based bionanocomposites: a promising class of hybrid materials. Acc Chem Res. 2012;45(10):1710–20.

    CrossRef  Google Scholar 

  127. Wang X, et al. Heteroatom-doped graphene materials: syntheses, properties and applications. Chem Soc Rev. 2014;43(20):7067–98.

    CrossRef  Google Scholar 

  128. Kong X-K, Chen C-L, Chen Q-W. Doped graphene for metal-free catalysis. Chem Soc Rev. 2014;43(8):2841–57.

    CrossRef  Google Scholar 

  129. Yu X, Kang Y, Park HS. Sulfur and phosphorus co-doping of hierarchically porous graphene aerogels for enhancing supercapacitor performance. Carbon. 2016;101:49–56.

    CrossRef  Google Scholar 

  130. Wang Z, Wang D, Sun J. Controlled synthesis of defect-rich ultrathin two-dimensional WO3 nanosheets for NO2 gas detection. Sens Actuators B Chem. 2017;245:828–34.

    CrossRef  Google Scholar 

  131. Sanchez C, et al. Applications of hybrid organic–inorganic nanocomposites. J Mater Chem. 2005;15(35–36):3559–92.

    CrossRef  Google Scholar 

  132. Ke Y, Stroeve P. Polymer-layered silicate and silica nanocomposites. Amsterdam: Elsevier; 2005.

    Google Scholar 

  133. Brinker CJ, Clark DE, Ulrich DR. Better ceramics through chemistry III. Pittsburgh, PA (USA): Materials Research Society; 1988.

    Google Scholar 

  134. Wen J, Mark JE. Sol–gel preparation of composites of poly (dimethylsiloxane) with SiO2 and SiO2/TiO2, and their mechanical properties. Polym J. 1995;27(5):492.

    CrossRef  Google Scholar 

  135. Mago G, et al. Polymer nanocomposite processing, characterization, and applications. J Nanomat 2010;2010.

    Google Scholar 

  136. Liu Y, et al. Electrospun CeO2 nanoparticles/PVP nanofibers based high-frequency surface acoustic wave humidity sensor. Sens Actuators B Chem. 2016;223:730–7.

    CrossRef  Google Scholar 

  137. Sabitha G, et al. Ceria/vinylpyridine polymer nanocomposite: an ecofriendly catalyst for the synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones. Tetrahedron Lett. 2005;46(47):8221–4.

    CrossRef  Google Scholar 

  138. Aguirre M, et al. Hybrid acrylic/CeO2 nanocomposites using hydrophilic, spherical and high aspect ratio CeO2 nanoparticles. J Mater Chem A. 2014;2(47):20280–7.

    CrossRef  Google Scholar 

  139. Sato M, et al. Preparation and properties of polymer/zinc oxide nanocomposites using functionalized zinc oxide quantum dots. Eur Polym J. 2008;44(11):3430–8.

    CrossRef  Google Scholar 

  140. Vaishnav D, Goyal R. Thermal and dielectric properties of high performance polymer/ZnO nanocomposites. In: IOP conference series: materials science and engineering. IOP Publishing; 2014.

    Google Scholar 

  141. Prakash J, et al. Phosphor polymer nanocomposite: ZnO:Tb3+ embedded polystyrene nanocomposite thin films for solid-state lighting applications. ACS Appl Nano Mater. 2018;1:977.

    Google Scholar 

  142. Xu QF, et al. Superhydrophobic TiO2–polymer nanocomposite surface with UV-induced reversible wettability and self-cleaning properties. ACS Appl Mater Interfaces. 2013;5(18):8915–24.

    CrossRef  Google Scholar 

  143. Dhanasekar M, et al. Ambient light antimicrobial activity of reduced graphene oxide supported metal doped TiO2 nanoparticles and their PVA based polymer nanocomposite films. Mater Res Bull. 2018;97:238–43.

    CrossRef  Google Scholar 

  144. Cao L, et al. Biocompatible nanocomposite of TiO2 incorporated bi-polymer for articular cartilage tissue regeneration: a facile material. J Photochem Photobiol B. 2018;178:440–6.

    CrossRef  Google Scholar 

  145. Song S, Zhai Y, Zhang Y. Bioinspired graphene oxide/polymer nanocomposite paper with high strength, toughness, and dielectric constant. ACS Appl Mater Interfaces. 2016;8(45):31264–72.

    CrossRef  Google Scholar 

  146. Fan J, Grande CD, Rodrigues DF. Biodegradation of graphene oxide-polymer nanocomposite films in wastewater. Environ Sci Nano. 2017;4(9):1808–16.

    CrossRef  Google Scholar 

  147. Xu J, et al. Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano. 2010;4(9):5019–26.

    CrossRef  Google Scholar 

  148. Kannan M, Thomas S, Joseph K. Flame-retardant properties of nanoclay-filled thermoplastic polyurethane/polypropylene nanocomposites. J Vinyl Addit Technol. 2015;23:E72.

    Google Scholar 

  149. Cai S, Pourdeyhimi B, Loboa EG. High-throughput fabrication method for producing a silver-nanoparticles-doped nanoclay polymer composite with novel synergistic antibacterial effects at the material interface. ACS Appl Mater Interfaces. 2017;9(25):21105–15.

    CrossRef  Google Scholar 

  150. Zhang L, et al. Sodium lactate loaded chitosan-polyvinyl alcohol/montmorillonite composite film towards active food packaging. Innovative Food Sci Emerg Technol. 2017;42:101–8.

    CrossRef  Google Scholar 

  151. Wu W-T, et al. Fabrication of silver/cross-linked poly (vinyl alcohol) cable-like nanostructures under γ-ray irradiation. Nanotechnology. 2005;16(12):3017.

    ADS  CrossRef  Google Scholar 

  152. Chizari K, et al. Three-dimensional printing of highly conductive polymer nanocomposites for EMI shielding applications. Mater Today Commun. 2017;11:112–8.

    CrossRef  Google Scholar 

  153. Hsu J-H, et al. Origin of unusual thermoelectric transport behaviors in carbon nanotube filled polymer composites after solvent/acid treatments. Org Electron. 2017;45:182–9.

    CrossRef  Google Scholar 

  154. Santa Ana MA, et al. Poly (acrylonitrile)–molybdenum disulfide polymer electrolyte nanocomposite. J Mater Chem. 2006;16(30):3107–13.

    CrossRef  Google Scholar 

  155. Kim J-M, et al. Non-volatile organic memory based on CdSe nano-particle/PMMA blend as a tunneling layer. Synth Met. 2011;161(13–14):1155–8.

    CrossRef  Google Scholar 

  156. Zhang R-C, et al. Gold nanoparticle-polymer nanocomposites synthesized by room temperature atmospheric pressure plasma and their potential for fuel cell electrocatalytic application. Sci Rep. 2017;7:46682.

    ADS  CrossRef  Google Scholar 

  157. Mural PKS, et al. Porous membranes designed from bi-phasic polymeric blends containing silver decorated reduced graphene oxide synthesized via a facile one-pot approach. RSC Adv. 2015;5(41):32441–51.

    CrossRef  Google Scholar 

  158. Talapin DV, Shevchenko EV. Introduction: nanoparticle chemistry. Chem Rev. 2016;116(18):10343–5.

    Google Scholar 

  159. Justyna C, Jacek H, Artur M, Marta M, Tomasz A, Kowalewski, et al. Synthesis of carbon nanotubes by the laser ablation method: effect of laser wavelength. Phys. Status Solidi(b). 2015;252(8):1860–7.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Department of Science and Technology and the Council for Scientific and Industrial Research, South Africa, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suprakas Sinha Ray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, N., Sinha Ray, S. (2018). Synthesis and Functionalization of Nanomaterials. In: Sinha Ray, S. (eds) Processing of Polymer-based Nanocomposites. Springer Series in Materials Science, vol 277. Springer, Cham. https://doi.org/10.1007/978-3-319-97779-9_2

Download citation