Abstract
In this paper the Topological Derivative for crash loaded structures is derived with the adjoint sensitivity analysis. The main idea of the adjoint sensitivity analysis is to circumvent the direct calculation of the sensitivity of the displacement field. Instead, the adjoint equilibrium equation has to be solved. In this approach, material derivation and partial integration in the time domain are applied to the Topological Derivative. This ensures, that the inertial effects are kept, as they are important for a reliable crash simulation. The result is a backward integration scheme for the adjoint state.
With implicit time integration, a numerical scheme to solve the primal and the adjoint problem is demonstrated. The specific adjoint equation as well as the Topological Derivative for a displacement functional and the internal energy are presented.
Keywords
- Topological Derivative
- Adjoint sensitivity analysis
- Nonlinearities
This is a preview of subscription content, access via your institution.
Buying options
References
Allaire, G., Jouve, F., Toader, A.M.: Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194(1), 363–393 (2004). https://doi.org/10.1016/j.jcp.2003.09.032
Amstutz, S., Andrä, H.: A new algorithm for topology optimization using a level-set method. J. Comput. Phys. 216(2), 573–588 (2006). https://doi.org/10.1016/j.jcp.2005.12.015
Dahl, J., Jensen, J.S., Sigmund, O.: Topology optimization for transient wave propagation problems in one dimension. Struct. Multidiscip. Optim. 36(6), 585–595 (2008). https://doi.org/10.1007/s00158-007-0192-5
Eschenauer, H.A., Kobelev, V.V., Schumacher, A.: Bubble method for topology and shape optimization of structures. Struct. Optim. 8(1), 42–51 (1994). https://doi.org/10.1007/BF01742933
Patel, N.M., Kang, B.S., Renaud, J.E., Tovar, A.: Crashworthiness design using topology optimization. J. Mech. Design 131(6) (2009). https://doi.org/10.1115/1.3116256. ISSN 1050-0472
Michaleris, P., Tortorelli, D.A., Vidal, C.A.: Tangent operators and design sensitivity formulations for transient nonlinear coupled problems with applications to elastoplasticity. Int. J. Numer. Methods Eng. 37(14), 2471–2499 (1994). https://doi.org/10.1002/nme.1620371408
Novotny, A.A., Sokołowski, J.: Topological Derivatives in Shape Optimization. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35245-4
Ortmann, C., Schumacher, A.: Graph and heuristic based topology optimization of crash loaded structures. Struct. Multidiscip. Optim. 47(6), 839–854 (2013). https://doi.org/10.1007/s00158-012-0872-7
Sokołowski, J., Żochowski, A.: On the topological derivative in shape optimization. SIAM J. Control Optim. 37(4), 1251–1272 (1999). https://doi.org/10.1137/S0363012997323230
Weider, K., Schumacher, A.: On the calculation of topological derivatives considering an exemplary nonlinear material model. PAMM 16(1), 717–718 (2016). https://doi.org/10.1002/pamm.201610347
Weider, K., Schumacher, A.: A topology optimization scheme for crash loaded structures using topological derivatives. In: Schumacher, A., Vietor, T., Fiebig, S., Bletzinger, K.U., Maute, K. (eds.) Advances in Structural and Multidisciplinary Optimization, pp. 1601–1614. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67988-4_120
Wriggers, P.: Nonlinear Finite Element Methods. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71001-1
Acknowledgment
The authors express their tanks to the German Research Foundation (DFG) for the support of the research project “Topological derivatives for layout generation of crash-loaded structures” (DFG-No. Schu915/4-1, project number 350645830).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Weider, K., Schumacher, A. (2019). Adjoint Method for Topological Derivatives for Optimization Tasks with Material and Geometrical Nonlinearities. In: , et al. EngOpt 2018 Proceedings of the 6th International Conference on Engineering Optimization. EngOpt 2018. Springer, Cham. https://doi.org/10.1007/978-3-319-97773-7_75
Download citation
DOI: https://doi.org/10.1007/978-3-319-97773-7_75
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-97772-0
Online ISBN: 978-3-319-97773-7
eBook Packages: EngineeringEngineering (R0)