Skip to main content

Adjoint Method for Topological Derivatives for Optimization Tasks with Material and Geometrical Nonlinearities

Abstract

In this paper the Topological Derivative for crash loaded structures is derived with the adjoint sensitivity analysis. The main idea of the adjoint sensitivity analysis is to circumvent the direct calculation of the sensitivity of the displacement field. Instead, the adjoint equilibrium equation has to be solved. In this approach, material derivation and partial integration in the time domain are applied to the Topological Derivative. This ensures, that the inertial effects are kept, as they are important for a reliable crash simulation. The result is a backward integration scheme for the adjoint state.

With implicit time integration, a numerical scheme to solve the primal and the adjoint problem is demonstrated. The specific adjoint equation as well as the Topological Derivative for a displacement functional and the internal energy are presented.

Keywords

  • Topological Derivative
  • Adjoint sensitivity analysis
  • Nonlinearities

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-97773-7_75
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   349.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-97773-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   449.99
Price excludes VAT (USA)
Hardcover Book
USD   449.99
Price excludes VAT (USA)

References

  1. Allaire, G., Jouve, F., Toader, A.M.: Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194(1), 363–393 (2004). https://doi.org/10.1016/j.jcp.2003.09.032

    CrossRef  MathSciNet  MATH  Google Scholar 

  2. Amstutz, S., Andrä, H.: A new algorithm for topology optimization using a level-set method. J. Comput. Phys. 216(2), 573–588 (2006). https://doi.org/10.1016/j.jcp.2005.12.015

    CrossRef  MathSciNet  MATH  Google Scholar 

  3. Dahl, J., Jensen, J.S., Sigmund, O.: Topology optimization for transient wave propagation problems in one dimension. Struct. Multidiscip. Optim. 36(6), 585–595 (2008). https://doi.org/10.1007/s00158-007-0192-5

    CrossRef  MathSciNet  MATH  Google Scholar 

  4. Eschenauer, H.A., Kobelev, V.V., Schumacher, A.: Bubble method for topology and shape optimization of structures. Struct. Optim. 8(1), 42–51 (1994). https://doi.org/10.1007/BF01742933

    CrossRef  Google Scholar 

  5. Patel, N.M., Kang, B.S., Renaud, J.E., Tovar, A.: Crashworthiness design using topology optimization. J. Mech. Design 131(6) (2009). https://doi.org/10.1115/1.3116256. ISSN 1050-0472

  6. Michaleris, P., Tortorelli, D.A., Vidal, C.A.: Tangent operators and design sensitivity formulations for transient nonlinear coupled problems with applications to elastoplasticity. Int. J. Numer. Methods Eng. 37(14), 2471–2499 (1994). https://doi.org/10.1002/nme.1620371408

    CrossRef  MATH  Google Scholar 

  7. Novotny, A.A., Sokołowski, J.: Topological Derivatives in Shape Optimization. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35245-4

    CrossRef  MATH  Google Scholar 

  8. Ortmann, C., Schumacher, A.: Graph and heuristic based topology optimization of crash loaded structures. Struct. Multidiscip. Optim. 47(6), 839–854 (2013). https://doi.org/10.1007/s00158-012-0872-7

    CrossRef  MATH  Google Scholar 

  9. Sokołowski, J., Żochowski, A.: On the topological derivative in shape optimization. SIAM J. Control Optim. 37(4), 1251–1272 (1999). https://doi.org/10.1137/S0363012997323230

    CrossRef  MathSciNet  MATH  Google Scholar 

  10. Weider, K., Schumacher, A.: On the calculation of topological derivatives considering an exemplary nonlinear material model. PAMM 16(1), 717–718 (2016). https://doi.org/10.1002/pamm.201610347

    CrossRef  Google Scholar 

  11. Weider, K., Schumacher, A.: A topology optimization scheme for crash loaded structures using topological derivatives. In: Schumacher, A., Vietor, T., Fiebig, S., Bletzinger, K.U., Maute, K. (eds.) Advances in Structural and Multidisciplinary Optimization, pp. 1601–1614. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67988-4_120

    CrossRef  Google Scholar 

  12. Wriggers, P.: Nonlinear Finite Element Methods. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71001-1

    CrossRef  MATH  Google Scholar 

Download references

Acknowledgment

The authors express their tanks to the German Research Foundation (DFG) for the support of the research project “Topological derivatives for layout generation of crash-loaded structures” (DFG-No. Schu915/4-1, project number 350645830).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Weider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Weider, K., Schumacher, A. (2019). Adjoint Method for Topological Derivatives for Optimization Tasks with Material and Geometrical Nonlinearities. In: , et al. EngOpt 2018 Proceedings of the 6th International Conference on Engineering Optimization. EngOpt 2018. Springer, Cham. https://doi.org/10.1007/978-3-319-97773-7_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97773-7_75

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97772-0

  • Online ISBN: 978-3-319-97773-7

  • eBook Packages: EngineeringEngineering (R0)