Skip to main content

Phosphorus Retention and Elevated FGF-23 in Chronic Kidney Disease

  • Chapter
  • First Online:
Endocrine Disorders in Kidney Disease
  • 707 Accesses

Abstract

Cardiovascular disease is a major cause of morbidity and mortality in patients with chronic kidney disease (CKD), especially in those with end-stage renal disease (ESRD), and the risk of cardiovascular mortality is 10–20-fold higher among hemodialysis patients. However, some of the traditional risk factors of cardiovascular disease such as African-American race, hypertension, hypercholesterolemia, and obesity are paradoxically associated with better outcomes in CKD and ESRD patients, and these observations point to the presence of novel cardiovascular risk factors in CKD. In addition to the fact that decreased kidney function itself is a strong and independent predictor of cardiovascular events, CKD is characterized by a complex metabolic milieu that consists of multiple biochemical and hormonal abnormalities. Those abnormalities in mineral and bone metabolism have also been associated with worse cardiovascular outcomes and mortality independent of traditional risk factors. These findings have led to the emergence of a framework termed CKD-related mineral and bone disorders (CKD-MBD).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Foley RN, Murray AM, Li S, et al. Chronic kidney disease and the risk for cardiovascular disease, renal replacement, and death in the United States Medicare population, 1998 to 1999. J Am Soc Nephrol. 2005;16:489–95.

    Article  PubMed  Google Scholar 

  2. Kalantar-Zadeh K, Block G, Humphreys MH, et al. Reverse epidemiology of cardiovascular risk factors in maintenance dialysis patients. Kidney Int. 2003;63:793–808.

    Article  PubMed  Google Scholar 

  3. Kalantar-Zadeh K, Abbott KC, Salahudeen AK, et al. Survival advantages of obesity in dialysis patients. Am J Clin Nutr. 2005;81:543–54.

    Article  CAS  PubMed  Google Scholar 

  4. Kovesdy CP, Trivedi BK, Kalantar-Zadeh K, et al. Association of low blood pressure with increased mortality in patients with moderate to severe chronic kidney disease. Nephrol Dial Transplant. 2006;21:1257–62.

    Article  PubMed  Google Scholar 

  5. Kovesdy CP, Anderson JE, Kalantar-Zadeh K. Paradoxical association between body mass index and mortality in men with CKD not yet on dialysis. Am J Kidney Dis. 2007;49:581–91.

    Article  PubMed  Google Scholar 

  6. Kovesdy CP, Anderson JE, Kalantar-Zadeh K. Inverse association between lipid levels and mortality in men with chronic kidney disease who are not yet on dialysis: effects of case mix and the malnutrition-inflammation-cachexia syndrome. J Am Soc Nephrol. 2007;18:304–11.

    Article  CAS  PubMed  Google Scholar 

  7. Kovesdy CP, Quarles LD, Lott EH, et al. Survival advantage in black versus white men with CKD: effect of estimated GFR and case mix. Am J Kidney Dis. 2013;62:228–35.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kalantar-Zadeh K, Kuwae N, Regidor DL, et al. Survival predictability of time-varying indicators of bone disease in maintenance hemodialysis patients. Kidney Int. 2006;70:771–80.

    Article  CAS  PubMed  Google Scholar 

  9. Regidor DL, Kovesdy CP, Mehrotra R, et al. Serum alkaline phosphatase predicts mortality among maintenance hemodialysis patients. J Am Soc Nephrol. 2008;19:2193–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kovesdy CP, Kuchmak O, Lu JL, et al. Outcomes associated with serum calcium level in men with non-dialysis-dependent chronic kidney disease. Clin J Am Soc Nephrol. 2010;5:468–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kovesdy CP, Anderson JE, Kalantar-Zadeh K. Outcomes associated with serum phosphorus level in males with non-dialysis dependent chronic kidney disease. Clin Nephrol. 2010;73:268–75.

    Article  CAS  PubMed  Google Scholar 

  12. Kalantar-Zadeh K, Shah A, Duong U, et al. Kidney bone disease and mortality in CKD: revisiting the role of vitamin D, calcimimetics, alkaline phosphatase, and minerals. Kidney Int Suppl. 2010;78:S10–21.

    Article  CAS  Google Scholar 

  13. Streja E, Wang HY, Lau WL, et al. Mortality of combined serum phosphorus and parathyroid hormone concentrations and their changes over time in hemodialysis patients. Bone. 2014;61:201–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rivara MB, Ravel V, Kalantar-Zadeh K, et al. Uncorrected and albumin-corrected calcium, phosphorus, and mortality in patients undergoing maintenance dialysis. J Am Soc Nephrol. 2015;26:1671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moe S, Drueke T, Cunningham J, et al. Definition, evaluation, and classification of renal osteodystrophy: a position statement from kidney disease: improving global outcomes (KDIGO). Kidney Int. 2006;69:1945–53.

    Article  CAS  PubMed  Google Scholar 

  16. Herzog CA, Asinger RW, Berger AK, et al. Cardiovascular disease in chronic kidney disease. A clinical update from kidney disease: improving global outcomes (KDIGO). Kidney Int. 2011;80:572–86.

    Article  PubMed  Google Scholar 

  17. Wanner C, Krane V, Marz W, et al. Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N Engl J Med. 2005;353:238–48.

    Article  CAS  PubMed  Google Scholar 

  18. Drechsler C, Kalim S, Wenger JB, et al. Protein carbamylation is associated with heart failure and mortality in diabetic patients with end-stage renal disease. Kidney Int. 2015;87:1201–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Quarles LD. Reducing cardiovascular mortality in chronic kidney disease: something borrowed, something new. J Clin Invest. 2013;123:542–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Foley RN, Parfrey PS, Harnett JD, et al. The prognostic importance of left ventricular geometry in uremic cardiomyopathy. J Am Soc Nephrol. 1995;5:2024–31.

    CAS  PubMed  Google Scholar 

  21. Shimada T, Hasegawa H, Yamazaki Y, et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res. 2004;19:429–35.

    Article  CAS  PubMed  Google Scholar 

  22. Shimada T, Yamazaki Y, Takahashi M, et al. Vitamin D receptor-independent FGF23 actions in regulating phosphate and vitamin D metabolism. Am J Physiol Renal Physiol. 2005;289:F1088–95.

    Article  CAS  PubMed  Google Scholar 

  23. Perwad F, Zhang MY, Tenenhouse HS, et al. Fibroblast growth factor 23 impairs phosphorus and vitamin D metabolism in vivo and suppresses 25-hydroxyvitamin D-1alpha-hydroxylase expression in vitro. Am J Physiol Renal Physiol. 2007;293:F1577–83.

    Article  CAS  PubMed  Google Scholar 

  24. Krajisnik T, Bjorklund P, Marsell R, et al. Fibroblast growth factor-23 regulates parathyroid hormone and 1alpha-hydroxylase expression in cultured bovine parathyroid cells. J Endocrinol. 2007;195:125–31.

    Article  CAS  PubMed  Google Scholar 

  25. Liu S, Tang W, Zhou J, et al. Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J Am Soc Nephrol. 2006;17:1305–15.

    Article  CAS  PubMed  Google Scholar 

  26. Lavi-Moshayoff V, Wasserman G, Meir T, et al. PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop. Am J Physiol Renal Physiol. 2010;299:F882–9.

    Article  CAS  PubMed  Google Scholar 

  27. Lopez I, Rodriguez-Ortiz ME, Almaden Y, et al. Direct and indirect effects of parathyroid hormone on circulating levels of fibroblast growth factor 23 in vivo. Kidney Int. 2011;80:475.

    Article  CAS  PubMed  Google Scholar 

  28. Kolek OI, Hines ER, Jones MD, et al. 1alpha,25-Dihydroxyvitamin D3 upregulates FGF23 gene expression in bone: the final link in a renal-gastrointestinal-skeletal axis that controls phosphate transport. Am J Physiol Gastrointest Liver Physiol. 2005;289:G1036–42.

    Article  CAS  PubMed  Google Scholar 

  29. Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, et al. The parathyroid is a target organ for FGF23 in rats. J Clin Invest. 2007;117:4003–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Canalejo R, Canalejo A, Martinez-Moreno JM, et al. FGF23 fails to inhibit uremic parathyroid glands. J Am Soc Nephrol. 2010;21:1125–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brenza HL, DeLuca HF. Regulation of 25-hydroxyvitamin D3 1alpha-hydroxylase gene expression by parathyroid hormone and 1,25-dihydroxyvitamin D3. Arch Biochem Biophys. 2000;381:143–52.

    Article  CAS  PubMed  Google Scholar 

  32. Murayama A, Takeyama K, Kitanaka S, et al. Positive and negative regulations of the renal 25-hydroxyvitamin D3 1alpha-hydroxylase gene by parathyroid hormone, calcitonin, and 1alpha,25(OH)2D3 in intact animals. Endocrinology. 1999;140:2224–31.

    Article  CAS  PubMed  Google Scholar 

  33. Kong XF, Zhu XH, Pei YL, et al. Molecular cloning, characterization, and promoter analysis of the human 25-hydroxyvitamin D3-1alpha-hydroxylase gene. Proc Natl Acad Sci U S A. 1999;96:6988–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fukumoto S. Phosphate metabolism and vitamin D. BoneKEy Rep. 2014;3:497.

    PubMed  PubMed Central  Google Scholar 

  35. Kovesdy CP, Quarles LD. FGF23 from Bench to Bedside. Am J Physiol Renal Physiol. 2016.; ajprenal 00606 02015.

    Google Scholar 

  36. Kovesdy CP, Quarles LD. Fibroblast growth factor-23: what we know, what we don't know, and what we need to know. Nephrol Dial Transplant. 2013;28:2228–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Itoh N. Hormone-like (endocrine) Fgfs: their evolutionary history and roles in development, metabolism, and disease. Cell Tissue Res. 2010;342:1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Harmer NJ, Pellegrini L, Chirgadze D, et al. The crystal structure of fibroblast growth factor (FGF) 19 reveals novel features of the FGF family and offers a structural basis for its unusual receptor affinity. Biochemistry (Mosc). 2004;43:629–40.

    Article  CAS  Google Scholar 

  39. Goetz R, Ohnishi M, Kir S, et al. Conversion of a paracrine fibroblast growth factor into an endocrine fibroblast growth factor. J Biol Chem. 2012;287:29134–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang X, Ibrahimi OA, Olsen SK, et al. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J Biol Chem. 2006;281:15694–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Urakawa I, Yamazaki Y, Shimada T, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006;444:770–4.

    Article  CAS  PubMed  Google Scholar 

  42. Kurosu H, Ogawa Y, Miyoshi M, et al. Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem. 2006;281:6120–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nakatani T, Sarraj B, Ohnishi M, et al. In vivo genetic evidence for klotho-dependent, fibroblast growth factor 23 (Fgf23) -mediated regulation of systemic phosphate homeostasis. FASEB J. 2009;23:433–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kuro-o M, Matsumura Y, Aizawa H, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997;390:45–51.

    Article  CAS  PubMed  Google Scholar 

  45. Quarles LD. Role of FGF23 in vitamin D and phosphate metabolism: implications in chronic kidney disease. Exp Cell Res. 2012;318:1040–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gattineni J, Bates C, Twombley K, et al. FGF23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF receptor 1. Am J Physiol Renal Physiol. 2009;297:F282–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Andrukhova O, Zeitz U, Goetz R, et al. FGF23 acts directly on renal proximal tubules to induce phosphaturia through activation of the ERK1/2-SGK1 signaling pathway. Bone. 2012;51:621–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ide N, Olauson H, Sato T, et al. In vivo evidence for a limited role of proximal tubular Klotho in renal phosphate handling. Kidney Int. 2016;90:348.

    Article  CAS  PubMed  Google Scholar 

  49. Olauson H, Lindberg K, Amin R, et al. Targeted deletion of klotho in kidney distal tubule disrupts mineral metabolism. J Am Soc Nephrol. 2012;23:1641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Andrukhova O, Smorodchenko A, Egerbacher M, et al. FGF23 promotes renal calcium reabsorption through the TRPV5 channel. EMBO J. 2014;33:229–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Andrukhova O, Slavic S, Smorodchenko A, et al. FGF23 regulates renal sodium handling and blood pressure. EMBO Mol Med. 2014;6:744.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Krajisnik T, Olauson H, Mirza MA, et al. Parathyroid klotho and FGF-receptor 1 expression decline with renal function in hyperparathyroid patients with chronic kidney disease and kidney transplant recipients. Kidney Int. 2010;78:1024–32.

    Article  CAS  PubMed  Google Scholar 

  53. Dai B, David V, Martin A, et al. A comparative transcriptome analysis identifying FGF23 regulated genes in the kidney of a mouse CKD model. PLoS One. 2012;7:e44161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ohnishi M, Nakatani T, Lanske B, et al. Reversal of mineral ion homeostasis and soft-tissue calcification of klotho knockout mice by deletion of vitamin D 1alpha-hydroxylase. Kidney Int. 2009;75:1166–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Samadfam R, Richard C, Nguyen-Yamamoto L, et al. Bone formation regulates circulating concentrations of fibroblast growth factor 23. Endocrinology. 2009;150:4835–45.

    Article  CAS  PubMed  Google Scholar 

  56. Gutierrez OM, Smith KT, Barchi-Chung A, et al. (1-34) parathyroid hormone infusion acutely lowers fibroblast growth factor 23 concentrations in adult volunteers. Clin J Am Soc Nephrol. 2012;7:139–45.

    Article  CAS  PubMed  Google Scholar 

  57. Saji F, Shigematsu T, Sakaguchi T, et al. Fibroblast growth factor 23 production in bone is directly regulated by 1{alpha},25-dihydroxyvitamin D, but not PTH. Am J Physiol Renal Physiol. 2010;299:F1212–7.

    Article  CAS  PubMed  Google Scholar 

  58. Mirams M, Robinson BG, Mason RS, et al. Bone as a source of FGF23: regulation by phosphate? Bone. 2004;35:1192–9.

    Article  CAS  PubMed  Google Scholar 

  59. Saito H, Maeda A, Ohtomo S, et al. Circulating FGF-23 is regulated by 1alpha,25-dihydroxyvitamin D3 and phosphorus in vivo. J Biol Chem. 2005;280:2543–9.

    Article  CAS  PubMed  Google Scholar 

  60. Ito M, Sakai Y, Furumoto M, et al. Vitamin D and phosphate regulate fibroblast growth factor-23 in K-562 cells. Am J Physiol Endocrinol Metab. 2005;288:E1101–9.

    Article  CAS  PubMed  Google Scholar 

  61. Ito N, Fukumoto S, Takeuchi Y, et al. Effect of acute changes of serum phosphate on fibroblast growth factor (FGF)23 levels in humans. J Bone Miner Metab. 2007;25:419–22.

    Article  CAS  PubMed  Google Scholar 

  62. Bohrer MP, Deen WM, Robertson CR, et al. Mechanism of angiotensin II-induced proteinuria in the rat. Am J Phys. 1977;233:F13–21.

    CAS  Google Scholar 

  63. Mitani H, Ishizaka N, Aizawa T, et al. In vivo klotho gene transfer ameliorates angiotensin II-induced renal damage. Hypertension. 2002;39:838–43.

    Article  CAS  PubMed  Google Scholar 

  64. Tang R, Zhou QL, Ao X, et al. Fosinopril and losartan regulate klotho gene and nicotinamide adenine dinucleotide phosphate oxidase expression in kidneys of spontaneously hypertensive rats. Kidney Blood Press Res. 2011;34:350–7.

    Article  CAS  PubMed  Google Scholar 

  65. Yoon HE, Ghee JY, Piao S, et al. Angiotensin II blockade upregulates the expression of klotho, the anti-ageing gene, in an experimental model of chronic cyclosporine nephropathy. Nephrol Dial Transplant. 2011;26:800–13.

    Article  CAS  PubMed  Google Scholar 

  66. Rodriguez-Ortiz ME, Lopez I, Munoz-Castaneda JR, et al. Calcium deficiency reduces circulating levels of FGF23. J Am Soc Nephrol. 2012;23:1190–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Krieger NS, Culbertson CD, Kyker-Snowman K, et al. Metabolic acidosis increases fibroblast growth factor 23 in neonatal mouse bone. Am J Physiol Renal Physiol. 2012;303:F431–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fajol A, Chen H, Umbach AT, et al. Enhanced FGF23 production in mice expressing PI3K-insensitive GSK3 is normalized by beta-blocker treatment. FASEB J. 2016;30:994–1001.

    Article  CAS  PubMed  Google Scholar 

  69. Tsuji K, Maeda T, Kawane T, et al. Leptin stimulates fibroblast growth factor 23 expression in bone and suppresses renal 1alpha,25-dihydroxyvitamin D3 synthesis in leptin-deficient mice. J Bone Miner Res. 2010;25:1711–23.

    Article  CAS  PubMed  Google Scholar 

  70. Bowe AE, Finnegan R, Jan de Beur SM, et al. FGF-23 inhibits renal tubular phosphate transport and is a PHEX substrate. Biochem Biophys Res Commun. 2001;284:977–81.

    Article  CAS  PubMed  Google Scholar 

  71. Martin A, Liu S, David V, et al. Bone proteins PHEX and DMP1 regulate fibroblastic growth factor Fgf23 expression in osteocytes through a common pathway involving FGF receptor (FGFR) signaling. FASEB J. 2011;25:2551–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Shimada T, Mizutani S, Muto T, et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci U S A. 2001;98:6500–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pereira RC, Juppner H, Azucena-Serrano CE, et al. Patterns of FGF-23, DMP1, and MEPE expression in patients with chronic kidney disease. Bone. 2009;45:1161–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shimizu Y, Tada Y, Yamauchi M, et al. Hypophosphatemia induced by intravenous administration of saccharated ferric oxide: another form of FGF23-related hypophosphatemia. Bone. 2009;45:814–6.

    Article  CAS  PubMed  Google Scholar 

  75. Schouten BJ, Hunt PJ, Livesey JH, et al. FGF23 elevation and hypophosphatemia after intravenous iron polymaltose: a prospective study. J Clin Endocrinol Metab. 2009;94:2332–7.

    Article  CAS  PubMed  Google Scholar 

  76. Takeda Y, Komaba H, Goto S, et al. Effect of intravenous saccharated ferric oxide on serum FGF23 and mineral metabolism in hemodialysis patients. Am J Nephrol. 2011;33:421–6.

    Article  CAS  PubMed  Google Scholar 

  77. Wolf M, Koch TA, Bregman DB. Effects of iron deficiency anemia and its treatment on fibroblast growth factor 23 and phosphate homeostasis in women. J Bone Miner Res. 2013;28:1793–803.

    Article  CAS  PubMed  Google Scholar 

  78. David V, Martin A, Isakova T, et al. Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production. Kidney Int. 2016;89:135–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kato K, Jeanneau C, Tarp MA, et al. Polypeptide GalNAc-transferase T3 and familial tumoral calcinosis. Secretion of fibroblast growth factor 23 requires O-glycosylation. J Biol Chem. 2006;281:18370–7.

    Article  CAS  PubMed  Google Scholar 

  80. Bhattacharyya N, Wiench M, Dumitrescu C, et al. Mechanism of FGF23 processing in fibrous dysplasia. J Bone Miner Res. 2012;27:1132–41.

    Article  CAS  PubMed  Google Scholar 

  81. Benet-Pages A, Lorenz-Depiereux B, Zischka H, et al. FGF23 is processed by proprotein convertases but not by PHEX. Bone. 2004;35:455–62.

    Article  CAS  PubMed  Google Scholar 

  82. Yamamoto H, Ramos-Molina B, Lick AN, et al. Posttranslational processing of FGF23 in osteocytes during the osteoblast to osteocyte transition. Bone. 2016;84:120–30.

    Article  CAS  PubMed  Google Scholar 

  83. Goetz R, Nakada Y, Hu MC, et al. Isolated C-terminal tail of FGF23 alleviates hypophosphatemia by inhibiting FGF23-FGFR-klotho complex formation. Proc Natl Acad Sci U S A. 2010;107:407–12.

    Article  CAS  PubMed  Google Scholar 

  84. Bergwitz C, Banerjee S, Abu-Zahra H, et al. Defective O-glycosylation due to a novel homozygous S129P mutation is associated with lack of fibroblast growth factor 23 secretion and tumoral calcinosis. J Clin Endocrinol Metab. 2009;94:4267–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Schjoldager KT, Vester-Christensen MB, Goth CK, et al. A systematic study of site-specific GalNAc-type O-glycosylation modulating proprotein convertase processing. J Biol Chem. 2011;286:40122–32.

    Article  CAS  PubMed  Google Scholar 

  86. Tagliabracci VS, Engel JL, Wiley SE, et al. Dynamic regulation of FGF23 by Fam20C phosphorylation, GalNAc-T3 glycosylation, and furin proteolysis. Proc Natl Acad Sci U S A. 2014;111:5520–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lindberg I, Pang HW, Stains JP, et al. FGF23 is endogenously phosphorylated in bone cells. J Bone Miner Res. 2015;30:449–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Shimada T, Urakawa I, Isakova T, et al. Circulating fibroblast growth factor 23 in patients with end-stage renal disease treated by peritoneal dialysis is intact and biologically active. J Clin Endocrinol Metab. 2010;95:578–85.

    Article  CAS  PubMed  Google Scholar 

  89. Stubbs JR, He N, Idiculla A, et al. Longitudinal evaluation of FGF23 changes and mineral metabolism abnormalities in a mouse model of chronic kidney disease. J Bone Miner Res. 2012;27:38–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Smith ER, Cai MM, McMahon LP, et al. Biological variability of plasma intact and C-terminal FGF23 measurements. J Clin Endocrinol Metab. 2012;97:3357.

    Article  CAS  PubMed  Google Scholar 

  91. Farrow EG, Yu X, Summers LJ, et al. Iron deficiency drives an autosomal dominant hypophosphatemic rickets (ADHR) phenotype in fibroblast growth factor-23 (Fgf23) knock-in mice. Proc Natl Acad Sci U S A. 2011;108:E1146–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wolf M. Forging forward with 10 burning questions on FGF23 in kidney disease. J Am Soc Nephrol. 2010;21:1427–35.

    Article  CAS  PubMed  Google Scholar 

  93. Hu MC, Shi M, Zhang J, et al. Klotho deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol. 2011;22:124–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Asai O, Nakatani K, Tanaka T, et al. Decreased renal alpha-klotho expression in early diabetic nephropathy in humans and mice and its possible role in urinary calcium excretion. Kidney Int. 2012;81:539–47.

    Article  CAS  PubMed  Google Scholar 

  95. Sakan H, Nakatani K, Asai O, et al. Reduced renal alpha-klotho expression in CKD patients and its effect on renal phosphate handling and vitamin D metabolism. PLoS One. 2014;9:e86301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Isakova T, Wahl P, Vargas GS, et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 2011;79:1370–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nakano C, Hamano T, Fujii N, et al. Combined use of vitamin D status and FGF23 for risk stratification of renal outcome. Clin J Am Soc Nephrol. 2012;7:810–9.

    Article  CAS  PubMed  Google Scholar 

  98. van Ballegooijen AJ, Rhee EP, Elmariah S, et al. Renal clearance of mineral metabolism biomarkers. J Am Soc Nephrol. 2016;27:392–7.

    Article  PubMed  CAS  Google Scholar 

  99. Slatopolsky E, Finch J, Denda M, et al. Phosphorus restriction prevents parathyroid gland growth. High phosphorus directly stimulates PTH secretion in vitro. J Clin Invest. 1996;97:2534–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Almaden Y, Canalejo A, Hernandez A, et al. Direct effect of phosphorus on PTH secretion from whole rat parathyroid glands in vitro. J Bone Miner Res. 1996;11:970–6.

    Article  CAS  PubMed  Google Scholar 

  101. Almaden Y, Hernandez A, Torregrosa V, et al. High phosphate level directly stimulates parathyroid hormone secretion and synthesis by human parathyroid tissue in vitro. J Am Soc Nephrol. 1998;9:1845–52.

    CAS  PubMed  Google Scholar 

  102. Fukuda N, Tanaka H, Tominaga Y, et al. Decreased 1,25-dihydroxyvitamin D3 receptor density is associated with a more severe form of parathyroid hyperplasia in chronic uremic patients. J Clin Invest. 1993;92:1436–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kifor O, Moore FD Jr, Wang P, et al. Reduced immunostaining for the extracellular Ca2+−sensing receptor in primary and uremic secondary hyperparathyroidism. J Clin Endocrinol Metab. 1996;81:1598–606.

    CAS  PubMed  Google Scholar 

  104. Brown AJ, Ritter CS, Finch JL, et al. Decreased calcium-sensing receptor expression in hyperplastic parathyroid glands of uremic rats: role of dietary phosphate. Kidney Int. 1999;55:1284–92.

    Article  CAS  PubMed  Google Scholar 

  105. Komaba H, Goto S, Fujii H, et al. Depressed expression of klotho and FGF receptor 1 in hyperplastic parathyroid glands from uremic patients. Kidney Int. 2010;77:232–8.

    Article  CAS  PubMed  Google Scholar 

  106. Mace ML, Gravesen E, Hofman-Bang J, et al. Key role of the kidney in the regulation of fibroblast growth factor 23. Kidney Int. 2015;88:1304–13.

    Article  CAS  PubMed  Google Scholar 

  107. Zanchi C, Locatelli M, Benigni A, et al. Renal expression of FGF23 in progressive renal disease of diabetes and the effect of ACE inhibitor. PLoS One. 2013;8:e70775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Spichtig D, Zhang H, Mohebbi N, et al. Renal expression of FGF23 and peripheral resistance to elevated FGF23 in rodent models of polycystic kidney disease. Kidney Int. 2014;85:1340–50.

    Article  CAS  PubMed  Google Scholar 

  109. Palmer SC, Hayen A, Macaskill P, et al. Serum levels of phosphorus, parathyroid hormone, and calcium and risks of death and cardiovascular disease in individuals with chronic kidney disease: a systematic review and meta-analysis. JAMA. 2011;305:1119–27.

    Article  CAS  PubMed  Google Scholar 

  110. Giachelli CM, Jono S, Shioi A, Nishizawa Y, Mori K, Morii H. Vascular calcification and inorganic phosphate. Am J Kidney Dis. 2001;38(4 Suppl 1):S34–7.

    Article  CAS  PubMed  Google Scholar 

  111. Chen NX, O'Neill KD, Duan D, Moe SM. Phosphorus and uremic serum up-regulate osteopontin expression in vascular smooth muscle cells. Kidney Int. 2002;62:1724–31.

    Article  CAS  PubMed  Google Scholar 

  112. Shuto E, Taketani Y, Tanaka R, et al. Dietary phosphorus acutely impairs endothelial function. J Am Soc Nephrol. 2009;20:1504–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Fliser D, Kollerits B, Neyer U, et al. Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: the mild to moderate kidney disease (MMKD) study. J Am Soc Nephrol. 2007;18:2600–8.

    Article  CAS  PubMed  Google Scholar 

  114. Titan SM, Zatz R, Graciolli FG, et al. FGF-23 as a predictor of renal outcome in diabetic nephropathy. Clin J Am Soc Nephrol. 2011;6:241–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hamano T, Nakano C, Obi Y, et al. Fibroblast growth factor 23 and 25-hydroxyvitamin D levels are associated with estimated glomerular filtration rate decline. Kidney Int Suppl. 2013;3:469–75.

    Article  CAS  Google Scholar 

  116. Isakova T, Xie H, Yang W, et al. Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. JAMA. 2011;305:2432–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kendrick J, Cheung AK, Kaufman JS, et al. FGF-23 associates with death, cardiovascular events, and initiation of chronic dialysis. J Am Soc Nephrol. 2011;22:1913–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Scialla JJ, Xie H, Rahman M, et al. Fibroblast growth Factor-23 and cardiovascular events in CKD. J Am Soc Nephrol. 2014;25:349–60.

    Article  CAS  PubMed  Google Scholar 

  119. Parker BD, Schurgers LJ, Brandenburg VM, et al. The associations of fibroblast growth factor 23 and uncarboxylated matrix Gla protein with mortality in coronary artery disease: the heart and soul study. Ann Intern Med. 2010;152:640–8.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Ix JH, Katz R, Kestenbaum BR, et al. Fibroblast growth factor-23 and death, heart failure, and cardiovascular events in community-living individuals: CHS (cardiovascular health study). J Am Coll Cardiol. 2012;60:200–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Jean G, Terrat JC, Vanel T, et al. High levels of serum fibroblast growth factor (FGF)-23 are associated with increased mortality in long haemodialysis patients. Nephrol Dial Transplant. 2009;24:2792–6.

    Article  CAS  PubMed  Google Scholar 

  122. Nakano C, Hamano T, Fujii N, et al. Intact fibroblast growth factor 23 levels predict incident cardiovascular event before but not after the start of dialysis. Bone. 2012;50:1266–74.

    Article  CAS  PubMed  Google Scholar 

  123. Gutierrez OM, Mannstadt M, Isakova T, et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med. 2008;359:584–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Komaba H, Fukagawa M. The role of FGF23 in CKD--with or without klotho. Nat Rev Nephrol. 2012;8:484–90.

    Article  CAS  PubMed  Google Scholar 

  125. Mirza MA, Larsson A, Melhus H, et al. Serum intact FGF23 associate with left ventricular mass, hypertrophy and geometry in an elderly population. Atherosclerosis. 2009;207:546–51.

    Article  CAS  PubMed  Google Scholar 

  126. Gutierrez OM, Januzzi JL, Isakova T, et al. Fibroblast growth factor 23 and left ventricular hypertrophy in chronic kidney disease. Circulation. 2009;119:2545–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kirkpantur A, Balci M, Gurbuz OA, et al. Serum fibroblast growth factor-23 (FGF-23) levels are independently associated with left ventricular mass and myocardial performance index in maintenance haemodialysis patients. Nephrol Dial Transplant. 2011;26:1346–54.

    Article  CAS  PubMed  Google Scholar 

  128. Faul C, Amaral AP, Oskouei B, et al. FGF23 induces left ventricular hypertrophy. J Clin Invest. 2011;121:4393–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Grabner A, Amaral AP, Schramm K, et al. Activation of cardiac fibroblast growth factor receptor 4 causes left ventricular hypertrophy. Cell Metab. 2015;22:1020–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Leifheit-Nestler M, Große Siemer R, Flasbart K, Richter B, Kirchhoff F, Ziegler WH, Klintschar M, Becker JU, Erbersdobler A, Aufricht C, Seeman T, Fischer DC, Faul C, Haffner D. Induction of cardiac FGF23/FGFR4 expression is associated with left ventricular hypertrophy in patients with chronic kidney disease. Nephrology Dialysis Transplantation. 2016;31(7):1088–99.

    Google Scholar 

  131. Shalhoub V, Shatzen EM, Ward SC, et al. FGF23 neutralization improves chronic kidney disease-associated hyperparathyroidism yet increases mortality. J Clin Invest. 2012;122:2543–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Donoghue M, Hsieh F, Baronas E, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res. 2000;87:E1–9.

    Article  CAS  PubMed  Google Scholar 

  133. Wysocki J, Ye M, Rodriguez E, et al. Targeting the degradation of angiotensin II with recombinant angiotensin-converting enzyme 2: prevention of angiotensin II-dependent hypertension. Hypertension. 2010;55:90–8.

    Article  CAS  PubMed  Google Scholar 

  134. Gurley SB, Allred A, Le TH, et al. Altered blood pressure responses and normal cardiac phenotype in ACE2-null mice. J Clin Invest. 2006;116:2218–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhong J, Guo D, Chen CB, et al. Prevention of angiotensin II-mediated renal oxidative stress, inflammation, and fibrosis by angiotensin-converting enzyme 2. Hypertension. 2011;57:314–22.

    Article  CAS  PubMed  Google Scholar 

  136. Crackower MA, Sarao R, Oudit GY, et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature. 2002;417:822–8.

    Article  CAS  PubMed  Google Scholar 

  137. Rentzsch B, Todiras M, Iliescu R, et al. Transgenic angiotensin-converting enzyme 2 overexpression in vessels of SHRSP rats reduces blood pressure and improves endothelial function. Hypertension. 2008;52:967–73.

    Article  CAS  PubMed  Google Scholar 

  138. Lovren F, Pan Y, Quan A, et al. Angiotensin converting enzyme-2 confers endothelial protection and attenuates atherosclerosis. Am J Physiol Heart Circ Physiol. 2008;295:H1377–84.

    Article  CAS  PubMed  Google Scholar 

  139. Lieb W, Graf J, Gotz A, et al. Association of angiotensin-converting enzyme 2 (ACE2) gene polymorphisms with parameters of left ventricular hypertrophy in men. Results of the MONICA Augsburg echocardiographic substudy. J Mol Med (Berl). 2006;84:88–96.

    Article  CAS  Google Scholar 

  140. Zhong J, Basu R, Guo D, et al. Angiotensin-converting enzyme 2 suppresses pathological hypertrophy, myocardial fibrosis, and cardiac dysfunction. Circulation. 2010;122:717–28. 718 p following 728.

    Article  CAS  PubMed  Google Scholar 

  141. Wong DW, Oudit GY, Reich H, et al. Loss of angiotensin-converting enzyme-2 (Ace2) accelerates diabetic kidney injury. Am J Pathol. 2007;171:438–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Oudit GY, Herzenberg AM, Kassiri Z, et al. Loss of angiotensin-converting enzyme-2 leads to the late development of angiotensin II-dependent glomerulosclerosis. Am J Pathol. 2006;168:1808–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Oudit GY, Liu GC, Zhong J, et al. Human recombinant ACE2 reduces the progression of diabetic nephropathy. Diabetes. 2010;59:529–38.

    Article  CAS  PubMed  Google Scholar 

  144. Zhou C, Lu F, Cao K, et al. Calcium-independent and 1,25(OH)2D3-dependent regulation of the renin-angiotensin system in 1alpha-hydroxylase knockout mice. Kidney Int. 2008;74:170–9.

    Article  CAS  PubMed  Google Scholar 

  145. Portale AA, Halloran BP, Morris RC. Dietary-intake of phosphorus modulates the circadian-rhythm in serum concentration of phosphorus - implications for the renal production of 1,25-Dihydroxyvitamin-D. J Clin Invest. 1987;80:1147–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. de Boer IH, Rue TC, Kestenbaum B. Serum phosphorus concentrations in the third National Health and nutrition examination survey (NHANES III). Am J Kidney Dis. 2009;53:399–407.

    Article  PubMed  CAS  Google Scholar 

  147. Trivedi H, Moore H, Atalla J. Lack of significant circadian and post-prandial variation in phosphate levels in subjects receiving chronic hemodialysis therapy. J Nephrol. 2005;18:417–22.

    CAS  PubMed  Google Scholar 

  148. Tentori F, Blayney MJ, Albert JM, et al. Mortality risk for dialysis patients with different levels of serum calcium, phosphorus, and PTH: the Dialysis outcomes and practice patterns study (DOPPS). Am J Kidney Dis. 2008;52:519–30.

    Article  CAS  PubMed  Google Scholar 

  149. Yokoyama K, Katoh N, Kubo H, et al. Clinical significance of the K/DOQI bone guidelines in Japan. Am J Kidney Dis. 2004;44:383–4. author reply 384

    Article  PubMed  Google Scholar 

  150. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl. 2009;113:S1–130.

    Google Scholar 

  151. Yamazaki Y, Okazaki R, Shibata M, et al. Increased circulatory level of biologically active full-length FGF-23 in patients with hypophosphatemic rickets/osteomalacia. J Clin Endocrinol Metab. 2002;87:4957–60.

    Article  CAS  PubMed  Google Scholar 

  152. Jonsson KB, Zahradnik R, Larsson T, et al. Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. N Engl J Med. 2003;348:1656–63.

    Article  CAS  PubMed  Google Scholar 

  153. Fukumoto S, Martin TJ. Bone as an endocrine organ. Trends Endocrinol Metab. 2009;20:230–6.

    Article  CAS  PubMed  Google Scholar 

  154. Smith ER, McMahon LP, Holt SG. Method-specific differences in plasma fibroblast growth factor 23 measurement using four commercial ELISAs. Clin Chem Lab Med. 2013;51:1971–81.

    Article  CAS  PubMed  Google Scholar 

  155. Sinha MD, Turner C, Goldsmith DJ. FGF23 concentrations measured using "intact" assays similar but not interchangeable. Int Urol Nephrol. 2013;45:1821–3.

    Article  PubMed  Google Scholar 

  156. Isakova T, Xie H, Barchi-Chung A, et al. Daily variability in mineral metabolites in CKD and effects of dietary calcium and calcitriol. Clin J Am Soc Nephrol. 2012;7:820–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Smith ER, Ford ML, Tomlinson LA, et al. Instability of fibroblast growth factor-23 (FGF-23): implications for clinical studies. Clin Chim Acta. 2011;412:1008–11.

    Article  CAS  PubMed  Google Scholar 

  158. El-Maouche D, Dumitrescu CE, Andreopoulou P, et al. Stability and degradation of fibroblast growth factor 23 (FGF23): the effect of time and temperature and assay type. Osteoporos Int. 2016;27:2345–53.

    Article  CAS  PubMed  Google Scholar 

  159. Kalantar-Zadeh K, Gutekunst L, Mehrotra R, et al. Understanding sources of dietary phosphorus in the treatment of patients with chronic kidney disease. Clin J Am Soc Nephrol. 2010;5:519–30.

    Article  CAS  PubMed  Google Scholar 

  160. National Kidney Foundation. K/DOQI clinical practice guidelines for bone metablism and disease on chronic kidney disease. Am J Kidney Dis. 2003;42:S1–S201.

    Google Scholar 

  161. Fouque D, Vennegoor M, ter Wee P, et al. EBPG guideline on nutrition. Nephrol Dial Transplant. 2007;22:ii45–87.

    Article  PubMed  Google Scholar 

  162. Ikizler TA, Cano NJ, Franch H, et al. International Society of Renal Nutrition and Metabolism. Prevention and treatment of protein energy wasting in chronic kidney disease patients: a consensus statement by the International Society of Renal Nutrition and Metabolism. Kidney Int. 2013;6:1096–107.

    Article  CAS  Google Scholar 

  163. Shinaberger CS, Greenland S, Kopple JD, et al. Ratio of paricalcitol dosage to serum parathyroid hormone level and survival in maintenance hemodialysis patients. Clin J Am Soc Nephrol. 2008;6:1769–76.

    Article  CAS  Google Scholar 

  164. Boaz M, Smetana S. Regression equation predicts dietary phosphorus intake from estimate of dietary protein intake. J Am Diet Assoc. 1996;96:1268–70.

    Article  CAS  PubMed  Google Scholar 

  165. Rambod M, Kovesdy CP, Bross R, et al. Association of serum prealbumin and its changes over time with clinical outcomes and survival in patients receiving hemodialysis. Am J Clin Nutr. 2008;88:1485–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. St Peter WL, Wazny LD, Weinhandl ED. Phosphate-binder use in US Dialysis patients: prevalence, costs, evidence, and policies. Am J Kidney Dis. 2018;71:246–53.

    Article  CAS  PubMed  Google Scholar 

  167. Palmer SC, Gardner S, Tonelli M, et al. Phosphate-binding agents in adults with CKD: a network meta-analysis of randomized trials. Am J Kidney Dis. 2016;68:691–702.

    Article  CAS  PubMed  Google Scholar 

  168. Sekercioglu N, Thabane L, Diaz Martinez JP, et al. Comparative effectiveness of phosphate binders in patients with chronic kidney disease: a systematic review and network meta-analysis. PLoS One. 2016;11:e0156891.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Patel L, Bernard LM, Elder GJ. Sevelamer versus calcium based binders for treatment of hyperphosphatemia in CKD: a meta-analysis of randomized controlled trials. Clin J Am Soc Nephrol. 2016;11:232–44.

    Article  CAS  PubMed  Google Scholar 

  170. Waheed AA, Pedraza F, Lenz O, et al. Phosphate control in end-stage renal disease: barriers and opportunities. Nephrol Dial Transplant. 2013;28:2961–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Connie M. Rhee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Obi, Y., Rhee, C.M. (2019). Phosphorus Retention and Elevated FGF-23 in Chronic Kidney Disease. In: Rhee, C., Kalantar-Zadeh, K., Brent, G. (eds) Endocrine Disorders in Kidney Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-97765-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97765-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97763-8

  • Online ISBN: 978-3-319-97765-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics