Skip to main content

Characteristics and Therapeutic Targeting of Minimal Residual Disease in Childhood Acute Lymphoblastic Leukemia

  • Chapter
  • First Online:
Biological Mechanisms of Minimal Residual Disease and Systemic Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1100))

Abstract

Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. Early response to therapy, especially the measurement of minimal residual disease (MRD), remains the most reliable and strongest independent prognostic parameter. Intriguingly, little is known on the mechanisms sustaining MRD in that disease. Here, we summarize existing evidence on the influences of molecular genetics and clonal architecture of childhood ALL on disease persistence. Also, the impact of the leukemic niche on residual leukemia cells in the bone marrow and extramedullary compartments is reviewed. We further discuss existing in vivo models of minimal residual disease based on different cellular labelling strategies and engraftment of ALL cells in immunodeficient mouse strains. We finally draw some conclusions on potential strategies targeting residual ALL cells, with a focus on cellular and antibody-based immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pui CH, Evans WE (2006) Treatment of acute lymphoblastic leukemia. N Engl J Med 354(2):166–178

    Article  CAS  PubMed  Google Scholar 

  2. Fischer S, Mann G, Konrad M, Metzler M, Ebetsberger G, Jones N et al (2007) Screening for leukemia- and clone-specific markers at birth in children with T-cell precursor ALL suggests a predominantly postnatal origin. Blood 110(8):3036–3038

    Article  CAS  PubMed  Google Scholar 

  3. Vijayakrishnan J, Kumar R, Henrion MY, Moorman AV, Rachakonda PS, Hosen I et al (2017) A genome-wide association study identifies risk loci for childhood acute lymphoblastic leukemia at 10q26.13 and 12q23.1. Leukemia 31(3):573–579

    Article  CAS  PubMed  Google Scholar 

  4. Hunger SP, Mullighan CG (2015) Acute lymphoblastic leukemia in children. N Engl J Med 373(16):1541–1552

    Article  CAS  PubMed  Google Scholar 

  5. Greaves M (2006) Infection, immune responses and the aetiology of childhood leukaemia. Nat Rev Cancer 6(3):193–203

    Article  CAS  PubMed  Google Scholar 

  6. Martin-Lorenzo A, Hauer J, Vicente-Duenas C, Auer F, Gonzalez-Herrero I, Garcia-Ramirez I et al (2015) Infection exposure is a causal factor in b-cell precursor acute lymphoblastic leukemia as a result of pax5-inherited susceptibility. Cancer Discov 5(12):1328–1343

    Article  CAS  PubMed  Google Scholar 

  7. Pieters R, Schrappe M, De Lorenzo P, Hann I, De Rossi G, Felice M et al (2007) A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial. Lancet 370(9583):240–250

    Article  CAS  PubMed  Google Scholar 

  8. Bardini M, Woll PS, Corral L, Luc S, Wittmann L, Ma Z et al (2015) Clonal variegation and dynamic competition of leukemia-initiating cells in infant acute lymphoblastic leukemia with MLL rearrangement. Leukemia 29(1):38–50

    Article  CAS  PubMed  Google Scholar 

  9. Forestier E, Heyman M, Andersen MK, Autio K, Blennow E, Borgstrom G et al (2008) Outcome of ETV6/RUNX1-positive childhood acute lymphoblastic leukaemia in the NOPHO-ALL-1992 protocol: frequent late relapses but good overall survival. Br J Haematol 140(6):665–672

    Article  PubMed  Google Scholar 

  10. Holmfeldt L, Wei L, Diaz-Flores E, Walsh M, Zhang J, Ding L et al (2013) The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat Genet 45(3):242–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fischer U, Forster M, Rinaldi A, Risch T, Sungalee S, Warnatz HJ et al (2015) Genomics and drug profiling of fatal TCF3-HLF-positive acute lymphoblastic leukemia identifies recurrent mutation patterns and therapeutic options. Nat Genet 47(9):1020–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schultz KR, Pullen DJ, Sather HN, Shuster JJ, Devidas M, Borowitz MJ et al (2007) Risk- and response-based classification of childhood B-precursor acute lymphoblastic leukemia: a combined analysis of prognostic markers from the Pediatric Oncology Group (POG) and Children’s Cancer Group (CCG). Blood 109(3):926–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schrappe M, Hunger SP, Pui CH, Saha V, Gaynon PS, Baruchel A et al (2012) Outcomes after induction failure in childhood acute lymphoblastic leukemia. N Engl J Med 366(15):1371–1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Suzuki K, Okuno Y, Kawashima N, Muramatsu H, Okuno T, Wang X et al (2016) MEF2D-BCL9 fusion gene is associated with high-risk acute b-cell precursor lymphoblastic leukemia in adolescents. J Clin Oncol 34(28):3451–3459

    Article  CAS  PubMed  Google Scholar 

  15. Den Boer ML, van Slegtenhorst M, De Menezes RX, Cheok MH, Buijs-Gladdines JG, Peters ST et al (2009) A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol 10(2):125–134

    Article  CAS  Google Scholar 

  16. Mullighan CG, Su X, Zhang J, Radtke I, Phillips LA, Miller CB et al (2009) Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med 360(5):470–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Loh ML, Zhang J, Harvey RC, Roberts K, Payne-Turner D, Kang H et al (2013) Tyrosine kinome sequencing of pediatric acute lymphoblastic leukemia: a report from the Children’s Oncology Group TARGET Project. Blood 121(3):485–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Roberts KG, Li Y, Payne-Turner D, Harvey RC, Yang YL, Pei D et al (2014) Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med 371(11):1005–1015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Stanulla M, Dagdan E, Zaliova M, Moricke A, Palmi C, Cazzaniga G et al (2018) IKZF1(plus) defines a new minimal residual disease-dependent very-poor prognostic profile in pediatric B-cell precursor acute lymphoblastic leukemia. J Clin Oncol 6(12):1240–1249 JCO2017743617

    Article  Google Scholar 

  20. Witkowski MT, Hu Y, Roberts KG, Boer JM, McKenzie MD, Liu GJ et al (2017) Conserved IKAROS-regulated genes associated with B-progenitor acute lymphoblastic leukemia outcome. J Exp Med 214(3):773–791

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Schjerven H, Ayongaba EF, Aghajanirefah A, McLaughlin J, Cheng D, Geng H et al (2017) Genetic analysis of Ikaros target genes and tumor suppressor function in BCR-ABL1(+) pre-B ALL. J Exp Med 214(3):793–814

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang J, McCastlain K, Yoshihara H, Xu B, Chang Y, Churchman ML et al (2016) Deregulation of DUX4 and ERG in acute lymphoblastic leukemia. Nat Genet 48(12):1481–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cario G, Zimmermann M, Romey R, Gesk S, Vater I, Harbott J et al (2010) Presence of the P2RY8-CRLF2 rearrangement is associated with a poor prognosis in non-high-risk precursor B-cell acute lymphoblastic leukemia in children treated according to the ALL-BFM 2000 protocol. Blood 115(26):5393–5397

    Article  CAS  PubMed  Google Scholar 

  24. Vesely C, Frech C, Eckert C, Cario G, Mecklenbrauker A, Zur Stadt U et al (2017) Genomic and transcriptional landscape of P2RY8-CRLF2-positive childhood acute lymphoblastic leukemia. Leukemia 31(7):1491–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu Y, Easton J, Shao Y, Maciaszek J, Wang Z, Wilkinson MR et al (2017) The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat Genet 49(8):1211–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Katz F, Ball L, Gibbons B, Chessells J (1989) The use of DNA probes to monitor minimal residual disease in childhood acute lymphoblastic leukaemia. Br J Haematol 73(2):173–180

    Article  CAS  PubMed  Google Scholar 

  27. Neale GA, Menarguez J, Kitchingman GR, Fitzgerald TJ, Koehler M, Mirro J Jr et al (1991) Detection of minimal residual disease in T-cell acute lymphoblastic leukemia using polymerase chain reaction predicts impending relapse. Blood 78(3):739–747

    CAS  PubMed  Google Scholar 

  28. Brisco MJ, Condon J, Hughes E, Neoh SH, Sykes PJ, Seshadri R et al (1994) Outcome prediction in childhood acute lymphoblastic leukaemia by molecular quantification of residual disease at the end of induction. Lancet 343(8891):196–200

    Article  CAS  PubMed  Google Scholar 

  29. Conter V, Bartram CR, Valsecchi MG, Schrauder A, Panzer-Grumayer R, Moricke A et al (2010) Molecular response to treatment redefines all prognostic factors in children and adolescents with B-cell precursor acute lymphoblastic leukemia: results in 3184 patients of the AIEOP-BFM ALL 2000 study. Blood 115(16):3206–3214

    Article  CAS  PubMed  Google Scholar 

  30. Schrappe M, Valsecchi MG, Bartram CR, Schrauder A, Panzer-Grumayer R, Moricke A et al (2011) Late MRD response determines relapse risk overall and in subsets of childhood T-cell ALL: results of the AIEOP-BFM-ALL 2000 study. Blood 118(8):2077–2084

    Article  CAS  PubMed  Google Scholar 

  31. Bruggemann M, Kotrova M (2017) Minimal residual disease in adult ALL: technical aspects and implications for correct clinical interpretation. Blood advances. 1(25):2456–2466

    PubMed  PubMed Central  Google Scholar 

  32. Bader P, Kreyenberg H, von Stackelberg A, Eckert C, Salzmann-Manrique E, Meisel R et al (2015) Monitoring of minimal residual disease after allogeneic stem-cell transplantation in relapsed childhood acute lymphoblastic leukemia allows for the identification of impending relapse: results of the ALL-BFM-SCT 2003 trial. J Clin Oncol 33(11):1275–1284

    Article  CAS  PubMed  Google Scholar 

  33. Gokbuget N, Zugmaier G, Klinger M, Kufer P, Stelljes M, Viardot A et al (2017) Long-term relapse-free survival in a phase 2 study of blinatumomab for the treatment of patients with minimal residual disease in B-lineage acute lymphoblastic leukemia. Haematologica 102(4):e132–e1e5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Ebinger S, Ozdemir EZ, Ziegenhain C, Tiedt S, Castro Alves C, Grunert M et al (2016) Characterization of rare, dormant, and therapy-resistant cells in acute lymphoblastic leukemia. Cancer Cell 30(6):849–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pal D, Heidenreich O, Vormoor J (2016) Dormancy stems the tide of chemotherapy. Cancer Cell 30(6):825–826

    Article  CAS  PubMed  Google Scholar 

  36. Boyerinas B, Zafrir M, Yesilkanal AE, Price TT, Hyjek EM, Sipkins DA (2013) Adhesion to osteopontin in the bone marrow niche regulates lymphoblastic leukemia cell dormancy. Blood 121(24):4821–4831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Duan CW, Shi J, Chen J, Wang B, Yu YH, Qin X et al (2014) Leukemia propagating cells rebuild an evolving niche in response to therapy. Cancer Cell 25(6):778–793

    Article  CAS  PubMed  Google Scholar 

  38. le Viseur C, Hotfilder M, Bomken S, Wilson K, Rottgers S, Schrauder A et al (2008) In childhood acute lymphoblastic leukemia, blasts at different stages of immunophenotypic maturation have stem cell properties. Cancer Cell 14(1):47–58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Lang F, Wojcik B, Rieger MA (2015) Stem cell hierarchy and clonal evolution in acute lymphoblastic leukemia. Stem Cells Int 2015:137164

    Article  PubMed  PubMed Central  Google Scholar 

  40. Anderson K, Lutz C, van Delft FW, Bateman CM, Guo Y, Colman SM et al (2011) Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 469(7330):356–361

    Article  CAS  PubMed  Google Scholar 

  41. Rehe K, Wilson K, Bomken S, Williamson D, Irving J, den Boer ML et al (2013) Acute B lymphoblastic leukaemia-propagating cells are present at high frequency in diverse lymphoblast populations. EMBO Mol Med 5(1):38–51

    Article  CAS  PubMed  Google Scholar 

  42. Spinella JF, Richer C, Cassart P, Ouimet M, Healy J, Sinnett D (2018) Mutational dynamics of early and late relapsed childhood ALL: rapid clonal expansion and long-term dormancy. Blood Adv 2(3):177–188

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lutz C, Woll PS, Hall G, Castor A, Dreau H, Cazzaniga G et al (2013) Quiescent leukaemic cells account for minimal residual disease in childhood lymphoblastic leukaemia. Leukemia 27(5):1204–1207

    Article  PubMed  Google Scholar 

  44. Irving J, Matheson E, Minto L, Blair H, Case M, Halsey C et al (2014) Ras pathway mutations are prevalent in relapsed childhood acute lymphoblastic leukemia and confer sensitivity to MEK inhibition. Blood 124(23):3420–3430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Richter-Pechanska P, Kunz JB, Hof J, Zimmermann M, Rausch T, Bandapalli OR et al (2017) Identification of a genetically defined ultra-high-risk group in relapsed pediatric T-lymphoblastic leukemia. Blood Cancer J 7(2):e523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Delgado-Martin C, Meyer LK, Huang BJ, Shimano KA, Zinter MS, Nguyen JV et al (2017) JAK/STAT pathway inhibition overcomes IL7-induced glucocorticoid resistance in a subset of human T-cell acute lymphoblastic leukemias. Leukemia 31(12):2568–2576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Schwartzman O, Savino AM, Gombert M, Palmi C, Cario G, Schrappe M et al (2017) Suppressors and activators of JAK-STAT signaling at diagnosis and relapse of acute lymphoblastic leukemia in Down syndrome. Proc Natl Acad Sci U S A 114(20):E4030–E40E9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Oshima K, Khiabanian H, da Silva-Almeida AC, Tzoneva G, Abate F, Ambesi-Impiombato A et al (2016) Mutational landscape, clonal evolution patterns, and role of RAS mutations in relapsed acute lymphoblastic leukemia. Proc Natl Acad Sci U S A 113(40):11306–11311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Stam RW, Schneider P, de Lorenzo P, Valsecchi MG, den Boer ML, Pieters R (2007) Prognostic significance of high-level FLT3 expression in MLL-rearranged infant acute lymphoblastic leukemia. Blood 110(7):2774–2775

    Article  CAS  PubMed  Google Scholar 

  50. Fedders H, Alsadeq A, Schmah J, Vogiatzi F, Zimmermann M, Moricke A et al (2017) The role of constitutive activation of FMS-related tyrosine kinase-3 and NRas/KRas mutational status in infants with KMT2A-rearranged acute lymphoblastic leukemia. Haematologica 102(11):e438–ee42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Alten J, Claviez A, Vieth S, Cario G, Schewe DM (2017) Mouse-MRD” in central nervous system acute lymphoblastic leukaemia: assessing bone marrow minimal residual disease using a xenograft model – from bedside to the bench and back again. Br J Haematol. https://doi.org/10.1111/bjh.15024

  52. Krause S, Pfeiffer C, Strube S, Alsadeq A, Fedders H, Vokuhl C et al (2015) Mer tyrosine kinase promotes the survival of t(1;19)-positive acute lymphoblastic leukemia (ALL) in the central nervous system (CNS). Blood 125(5):820–830

    Article  CAS  PubMed  Google Scholar 

  53. Prieto C, Lopez-Millan B, Roca-Ho H, Stam RW, Romero-Moya D, Rodriguez-Baena FJ et al (2018) NG2 antigen is involved in leukemia invasiveness and central nervous system infiltration in MLL-rearranged infant B-ALL. Leukemia 32(3):633–644

    Article  CAS  PubMed  Google Scholar 

  54. Munch V, Trentin L, Herzig J, Demir S, Seyfried F, Kraus JM et al (2017) Central nervous system involvement in acute lymphoblastic leukemia is mediated by vascular endothelial growth factor. Blood 130(5):643

    Article  PubMed  CAS  Google Scholar 

  55. Jost TR, Borga C, Radaelli E, Romagnani A, Perruzza L, Omodho L et al (2016) Role of CXCR4-mediated bone marrow colonization in CNS infiltration by T-cell acute lymphoblastic leukemia. J Leukoc Biol 99:1077–1087

    Article  CAS  PubMed  Google Scholar 

  56. Buonamici S, Trimarchi T, Ruocco MG, Reavie L, Cathelin S, Mar BG et al (2009) CCR7 signalling as an essential regulator of CNS infiltration in T-cell leukaemia. Nature 459(7249):1000–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Alsadeq A, Fedders H, Vokuhl C, Belau NM, Zimmermann M, Wirbelauer T et al (2017) The role of ZAP70 kinase in acute lymphoblastic leukemia infiltration into the central nervous system. Haematologica 102(2):346–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Williams MT, Yousafzai Y, Cox C, Blair A, Carmody R, Sai S et al (2014) Interleukin-15 enhances cellular proliferation and upregulates CNS homing molecules in pre-B acute lymphoblastic leukemia. Blood 123(20):3116–3127

    Article  CAS  PubMed  Google Scholar 

  59. Cario G, Izraeli S, Teichert A, Rhein P, Skokowa J, Moricke A et al (2007) High interleukin-15 expression characterizes childhood acute lymphoblastic leukemia with involvement of the CNS. J Clin Oncol 25(30):4813–4820

    Article  CAS  PubMed  Google Scholar 

  60. Gaynes JS, Jonart LM, Zamora EA, Naumann JA, Gossai NP, Gordon PM (2017) The central nervous system microenvironment influences the leukemia transcriptome and enhances leukemia chemo-resistance. Haematologica 102(4):e136–e1e9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Alsadeq A, Schewe DM (2017) Acute lymphoblastic leukemia of the central nervous system: on the role of PBX1. Haematologica 102(4):611–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Frishman-Levy L, Shemesh A, Bar-Sinai A, Ma C, Ni Z, Frenkel S et al (2015) Central nervous system acute lymphoblastic leukemia: role of natural killer cells. Blood 125(22):3420–3431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Meyer LH, Debatin KM (2011) Diversity of human leukemia xenograft mouse models: implications for disease biology. Cancer Res 71(23):7141–7144

    Article  CAS  PubMed  Google Scholar 

  64. Colmone A, Amorim M, Pontier AL, Wang S, Jablonski E, Sipkins DA (2008) Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science 322(5909):1861–1865

    Article  CAS  PubMed  Google Scholar 

  65. Sipkins DA, Wei X, Wu JW, Runnels JM, Cote D, Means TK et al (2005) In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 435(7044):969–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schewe DM, Alsadeq A, Sattler C, Lenk L, Vogiatzi F, Cario G et al (2017) An Fc engineered CD19 antibody eradicates MRD in patient-derived MLL-rearranged acute lymphoblastic leukemia xenografts. Blood 130:1620–1627

    Article  CAS  Google Scholar 

  67. Schurch C, Riether C, Amrein MA, Ochsenbein AF (2013) Cytotoxic T cells induce proliferation of chronic myeloid leukemia stem cells by secreting interferon-gamma. J Exp Med 210(3):605–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ et al (2014) Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 371(16):1507–1517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Porter D, Frey N, Wood PA, Weng Y, Grupp SA (2018) Grading of cytokine release syndrome associated with the CAR T cell therapy tisagenlecleucel. J Hematol Oncol 11(1):35

    Article  PubMed  PubMed Central  Google Scholar 

  70. Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H et al (2018) Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 378(5):439–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. von Stackelberg A, Locatelli F, Zugmaier G, Handgretinger R, Trippett TM, Rizzari C et al (2016) Phase I/phase II study of blinatumomab in pediatric patients with relapsed/refractory acute lymphoblastic leukemia. J Clin Oncol 34(36):4381–4389

    Article  Google Scholar 

  72. Seidel UJ, Schlegel P, Grosse-Hovest L, Hofmann M, Aulwurm S, Pyz E et al (2016) Reduction of minimal residual disease in pediatric B-lineage acute lymphoblastic leukemia by an Fc-optimized CD19 Antibody. Mol Ther 24(9):1634–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Raedler H, Vieyra MB, Leisman S, Lakhani P, Kwan W, Yang M et al (2011) Anti-complement component C5 mAb synergizes with CTLA4Ig to inhibit alloreactive T cells and prolong cardiac allograft survival in mice. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg 11(7):1397–1406

    Article  CAS  Google Scholar 

  74. Weissman I (2016) How one thing led to another. Annu Rev Immunol 34:1–30

    Article  CAS  PubMed  Google Scholar 

  75. Chao MP, Alizadeh AA, Tang C, Jan M, Weissman-Tsukamoto R, Zhao F et al (2011) Therapeutic antibody targeting of CD47 eliminates human acute lymphoblastic leukemia. Cancer Res 71(4):1374–1384

    Article  CAS  PubMed  Google Scholar 

  76. Chao MP, Alizadeh AA, Tang C, Myklebust JH, Varghese B, Gill S et al (2010) Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell 142(5):699–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jaiswal S, Jamieson CH, Pang WW, Park CY, Chao MP, Majeti R et al (2009) CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 138(2):271–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ring NG, Herndler-Brandstetter D, Weiskopf K, Shan L, Volkmer JP, George BM et al (2017) Anti-SIRPalpha antibody immunotherapy enhances neutrophil and macrophage antitumor activity. Proc Natl Acad Sci U S A 114(49):E10578–E10585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gardner R, Wu D, Cherian S, Fang M, Hanafi LA, Finney O et al (2016) Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood 127(20):2406–2410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mejstrikova E, Hrusak O, Borowitz MJ, Whitlock JA, Brethon B, Trippett TM et al (2017) CD19-negative relapse of pediatric B-cell precursor acute lymphoblastic leukemia following blinatumomab treatment. jBlood Cancer J 7(12):659

    Article  CAS  Google Scholar 

  81. Nagel I, Bartels M, Duell J, Oberg HH, Ussat S, Bruckmueller H et al (2017) Hematopoietic stem cell involvement in BCR-ABL1-positive ALL as a potential mechanism of resistance to blinatumomab therapy. Blood 130(18):2027–2031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Topp MS, Gokbuget N, Zugmaier G, Klappers P, Stelljes M, Neumann S et al (2014) Phase II trial of the anti-CD19 bispecific T cell-engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory B-precursor acute lymphoblastic leukemia. J Clin Oncol 32(36):4134–4140

    Article  CAS  PubMed  Google Scholar 

  83. Topp MS, Gokbuget N, Zugmaier G, Degenhard E, Goebeler ME, Klinger M et al (2012) Long-term follow-up of hematologic relapse-free survival in a phase 2 study of blinatumomab in patients with MRD in B-lineage ALL. Blood 120(26):5185–5187

    Article  CAS  PubMed  Google Scholar 

  84. Maury S, Chevret S, Thomas X, Heim D, Leguay T, Huguet F et al (2016) Rituximab in B-lineage adult acute lymphoblastic leukemia. N Engl J Med 375(11):1044–1053

    Article  CAS  PubMed  Google Scholar 

  85. Kantarjian HM (2016) Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med 375:740–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fry TJ, Shah NN, Orentas RJ, Stetler-Stevenson M, Yuan CM, Ramakrishna S et al (2018) CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med 24(1):20–28

    Article  CAS  PubMed  Google Scholar 

  87. Kohrt HE, Houot R, Goldstein MJ, Weiskopf K, Alizadeh AA, Brody J et al (2011) CD137 stimulation enhances the antilymphoma activity of anti-CD20 antibodies. Blood 117(8):2423–2432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Houot R, Kohrt H, Goldstein MJ, Levy R (2011) Immunomodulating antibodies and drugs for the treatment of hematological malignancies. Cancer Metastasis Rev 30(1):97–109

    Article  CAS  PubMed  Google Scholar 

  89. Busch L, Mougiakakos D, Buttner-Herold M, Muller MJ, Volmer DA, Bach C et al (2018) Lenalidomide enhances MOR202-dependent macrophage-mediated effector functions via the vitamin D pathway. Leukemia

    Google Scholar 

  90. Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR et al (2013) Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 368(16):1509–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Abramson JS, McGree B, Noyes S, Plummer S, Wong C, Chen YB et al (2017) Anti-CD19 CAR T Cells in CNS Diffuse Large-B-Cell Lymphoma. N Engl J Med 377(8):783–784

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

IJ was funded by ERC Consolidator Grant 681524; Mildred Scheel Professorship by German Cancer Aid; German Research Foundation (DFG), Collaborative Research Center 1243 “Genetic and epigenetic evolution of hematopoietic neoplasms”, project A05; DFG proposal MA 1876/13-1; and by Bettina Bräu Stiftung and Dr. Helmut Legerlotz Stiftung. DS was funded by a Max Eder Fellowship by the German Cancer Aid, the Wilhelm-Sander-Stiftung and the Deutsche José-Carreras Leukämiestiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis M. Schewe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jeremias, I., Schewe, D.M. (2018). Characteristics and Therapeutic Targeting of Minimal Residual Disease in Childhood Acute Lymphoblastic Leukemia. In: Aguirre-Ghiso, J. (eds) Biological Mechanisms of Minimal Residual Disease and Systemic Cancer. Advances in Experimental Medicine and Biology, vol 1100. Springer, Cham. https://doi.org/10.1007/978-3-319-97746-1_8

Download citation

Publish with us

Policies and ethics