Skip to main content

Energy Sources and Life

  • Chapter
  • First Online:
Life in the Universe

Part of the book series: Springer Praxis Books ((ASTRONOMY))

Abstract

An external energy source is a necessary condition for life, because living systems require a flow of energy to organize materials and maintain a low state of entropy (Morowitz 1968). Energy is also needed to perform work. Life on Earth can be distinguished by the external energy source that it uses. Photoautotrophic life derives energy from sunlight and uses CO2 as a carbon source. Chemolithotrophic life uses redox reactions involving abiological compounds and chemolithoautotrophic life uses CO2 (or other small carbon compounds) as a carbon source. Chemoheterotrophic life uses high-energy organic molecules, produced in general by autotrophic life, as a source of energy and carbon. On other worlds, where other forms of energy may be more abundant, or where the primary sources for energy on Earth may be lacking, life may have evolved to depend on different forms of energy. In this chapter, we critically analyze the various forms of energy that are potentially available to living systems, consider other factors that bear on the evolution of energy harvesting mechanisms, and evaluate the apparent availability of different forms of energy at different sites in our Solar System.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aekesson, S., J. Morin, R. Muheim, et al. 2001. Avian orientation at steep angles of inclination: experiments with migratory white-crowned sparrows at the magnetic North Pole. Proc. Roy. Soc. Lond., Series B: Biological Sciences 268: 1907-1913.

    Article  Google Scholar 

  • Amend, J.P., and E.L. Shock. 2001. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and bacteria. FEMS Microbiol. Rev. 25: 175-243.

    Article  Google Scholar 

  • Bains, W., S. Seager, and A. Zsom, A. 2014. Photosynthesis in hydrogen-dominated atmospheres. Life 4: 716-744

    Article  Google Scholar 

  • Balashova, V.V., and G.A. Zavarzin. 1980. Anaerobic reduction of ferric iron by hydrogen bacteria. Microbiology 48: 635-639.

    Google Scholar 

  • Baross, J.A., S.A. Benner, G.D Cody, S.D. Copley, N.R. Pace, and et al. 2007. The Limits of Organic Life in Planetary Systems. Washington, D.C.: National Academies Press.

    Google Scholar 

  • Baumstark-Khan, C., and R. Facius. 2002. Life under conditions of ionizing radiation. pp. 261-284 in G. Horneck and C. Baumstark-Khan, eds. Astrobiology: The Quest for the Conditions of Life. Springer, Berlin.

    Chapter  Google Scholar 

  • Beatty, J.K., and A. Chaikin. 1990. The new solar system. Sky Publishing Corporation, Cambridge, Massachusetts.

    Google Scholar 

  • Beatty, J.T., J. Overmann, M.T. Lince, et al. 2005. An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. Proc. Natl. Acad. Sci. USA 102: 9306-9310.

    Article  ADS  Google Scholar 

  • Blakemore, R.P. 1982. Magnetotactic bacteria. Annu Rev Microbiol 36: 217-238.

    Article  Google Scholar 

  • Borucki, J.G., B. Khare and D.P. Cruikshank. 2002. A new energy source for organic synthesis in Europa’s surface ice. JGR-Planets 107: Art. no 5114.

    Google Scholar 

  • Bräucker, R., A. Cogoli and R. Hemmersbach. 2002. Graviperception and graviresponse at the cellular level. pp. 287-296 in G. Horneck and C. Baumstark-Kahn, eds. Astrobiology: The Quest for the Conditions of Life. Springer Publ, Berlin

    Chapter  Google Scholar 

  • Brock, T.D., and J. Gustafson. 1976. Ferric iron reduction by sulfur and iron-oxidizing bacteria. Appl. Environ. Microbiol. 32: 567-571.

    Google Scholar 

  • Byrne, J. M., N. Klueglein, C. Pearce, K. M. Rosso, E. Appel, and A. Kappler. 2015. Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria. Science 347: 1473-1476.

    Article  ADS  Google Scholar 

  • Carl Sagan, W. Reid Thompson, Bishun N. Khare, (2002) Titan: a laboratory for prebiological organic chemistry. Accounts of Chemical Research 25 (7):286-292.

    Article  Google Scholar 

  • Chyba, C. F., P. J. Thomas, L. Brookshaw, and C. Sagan. 1990. Cometary delivery of organic molecules to the early Earth. Science 249: 366-373.

    ADS  Google Scholar 

  • Danovaro, R., A. Dell’Anno, A. Pusceddu, C. Gambi, I. Heiner, and R. M. Kristensen. 2010. The first metazoa living in permanently anoxic conditions. BMC Biol 8: 30 (doi:https://doi.org/10.1186/1741-7007-8-30)

    Google Scholar 

  • Dartnell, L. R. 2011. Ionizing radiation and life. Astrobiology 11: 551-82.

    Article  ADS  Google Scholar 

  • Doelle, H.W. 1969. Bacterial metabolism. Academic Press, New York.

    Google Scholar 

  • Farkas, I. 1935. Orthohydrogen, parahydrogen, and heavy hydrogen. Cambridge University Press, Cambridge.

    Google Scholar 

  • Feinberg, G., and R. Shapiro. 1980. Life beyond Earth: The Intelligent Earthling’s Guide to Life in the Universe. William Morrow and Company, Inc, New York.

    Google Scholar 

  • Fox, S.W., and K. Dose. 1977. Molecular Evolution and the Origin of Life. Marcel Dekker, New York.

    Google Scholar 

  • Frankel, R.B., R.P. Blakemore and R.S. Wolfe. 1979. Magnetite in freshwater magnetotactic bacteria. Science 203: 1355-1356.

    Article  ADS  Google Scholar 

  • Gonzalez-Partida, E., P. Birkle and I.S. Torres-Alvarado. 2000. Evolution of the hydrothermal system at Los Azufres, Mexico, based on petrologic, fluid inclusion and isotopic data. Journal of Volcanology and Geothermal Research 104: 277-296.

    Article  ADS  Google Scholar 

  • Greenberg, R. 2010. Transport rates of radiolytic substances into Europa´s ocean: implications for the potential origin and maintenance of life. Astrobiology 10: 275-283.

    ADS  Google Scholar 

  • Grinspoon, D.H. 1997. Venus revealed: a new look below the clouds of our mysterious twin planet. Perseus Publishing, Cambridge, Massachusetts.

    Google Scholar 

  • Gundersen, J.K., B.B. Jørgensen, E. Larsen, et al. 1992. Mats of giant sulphur bacteria on deep-sea sediments due to fluctuating hydrothermal flow. Nature 360: 454-456.

    Article  ADS  Google Scholar 

  • Gusev, V.A., and D. Schulze-Makuch. 2005. Low frequency electromagnetic waves as a supplemental energy source to sustain microbial growth. Naturwissenschaften 92: 115-120.

    Article  ADS  Google Scholar 

  • Haas, J.R. 2010. The potential feasibility of chlorinic photosynthesis on exoplanets. Astrobiology 10: 953-963.

    Article  ADS  Google Scholar 

  • Hagemann, M., A. Schoor, S. Mikkat, et al. 1999. The biochemistry and genetics ofthe synthesis of osmoprotective compounds in cyanobacteria. pp. 177-186 in Oren A, ed. Microbiology and Biogeochemistry of Hypersaline Environments. CRC press, New York.

    Google Scholar 

  • Haldane, J. 1929. The origin of life. Rationalist Annual 148: 3-10.

    Google Scholar 

  • Houtkooper, J.M. and D. Schulze-Makuch. 2007. A possible biogenic origin for hydrogen peroxide on Mars: the Viking results reinterpreted. Int. J. Astrobiol. 6: 147-152.

    Google Scholar 

  • Ibrahim, A.I., J.H. Swank and W. Parke. 2003. New evidence of proton-cyclotron resonance in a magnetar strength field from SGR 1806-20. Astrophys. J. Lett. 584: L17-L21.

    Article  ADS  Google Scholar 

  • Ioale, P., A. Gagliardo and V.P. Bingman. 2001. Further experiments on the relationship between hippocampus and orientation following phase-shift in homing pigeons. Behavioural Brain Research 108: 157-167.

    Article  Google Scholar 

  • Kargel, J.S., J.Z. Kaye, J.W. Head, et al. 2000. Europa’s crust and ocean: origin, composition, and the prospects for life. Icarus 148: 226-265.

    Article  ADS  Google Scholar 

  • Khurana, K.K., M.G. Kivelson, D.J. Stevenson, et al. 1998. Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature 395: 777-780.

    Article  ADS  Google Scholar 

  • Kiang, N.Y., A. Segura, G. Tinetti, et al. 2007a. Spectral signatures of photosynthesis. II. Coevolution with other stars and the atmosphere on extrasolar worlds. Astrobiology 7: 252-274.

    Article  ADS  Google Scholar 

  • Kiang, N. Y., J. Siefert, Govindjee, and R. E. Blankenship. 2007b. Spectral signatures of photosynthesis. I. Review of Earth organisms. Astrobiology 7: 222-251.

    Article  ADS  Google Scholar 

  • Kivelson, M.G., K.K. Khurana, C.T. Russell, et al. 2000. Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa. Science 289: 1340-1343.

    Article  ADS  Google Scholar 

  • Lattimer, J.M., and M. Prakash. 2004. The physics of neutron stars. Science 304: 536-542.

    Article  ADS  Google Scholar 

  • Lovley, D.R., E.J.P. Philipps and D.J. Lonergan. 1989. Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens. Appl. Environ. Microbiol. 55: 700-706.

    Google Scholar 

  • Lovley, D.R. 1991. Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. June: 259-287.

    Google Scholar 

  • Madigan, M.T., J.M. Martinko and J. Parker. 2000. Brock Biology of Microorganisms. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • McMahon, S., J. Parnell, and N.J. Blamey. 2016. evidence for seismogenic hydrogen gas, a potential microbial energy source on Earth and Mars. Astrobiology 16: 690-702.

    Article  ADS  Google Scholar 

  • Miller, S.L., and L.E. Orgel. 1974. The Origins of Life on the Earth. Prentice-Hall.

    Google Scholar 

  • Moriyama, Y., S. Hiyama and H. Asai. 1998. High-speed video cinematographic demonstration of stalk and zooid contraction of Vorticella convallari. Biophys. J. 74: 487-491.

    Article  ADS  Google Scholar 

  • Morowitz, H.J. 1968. Energy Flow in Biology. Academic Press, New York.

    Google Scholar 

  • Muller, A.W.J. 1985. Thermosynthesis by biomembranes: energy gain from cyclic temperature changes. J. Ther. Biol. 115: 429-453.

    ADS  Google Scholar 

  • Muller, A.W.J. 1993. A mechanism for thermosynthesis based on a thermotropic phase transition in an asymmetric biomembrane. Physiol. Chem. Phys. Med. NMR 25: 95-111.

    Google Scholar 

  • Muller, A.W.J. 1995. Were the first organisms heat engines ? - a new model for biogenesis and the early evolution of biological energy conversion. Prog. Biophys. Molec. Biol. 63: 193-231.

    Google Scholar 

  • Muller, A. W. 2003. Finding extraterrestrial organisms living on thermosynthesis. Astrobiology 3: 555-564.

    Article  ADS  Google Scholar 

  • Muller, A.W.J., and D. Schulze-Makuch. 2006a. Thermal energy and the origin of life. Orig. Life Evol. Biosph. 36: 177-189.

    Article  ADS  Google Scholar 

  • Muller, A.W.J., and D. Schulze-Makuch. 2006b. Sorption heat engines: simple inanimate negative entropy generators. Physica A 362: 369-381.

    Article  ADS  Google Scholar 

  • Neidhardt, F.C., J.L. Ingraham and M. Schaechter. 1990. Physiology of the bacterial cell. A molecular approach. Sinauer Associates, Inc. Sunderland, Mass. Sinauer Associates, Inc., Sunderland, Mass.

    Google Scholar 

  • O’Malley-James, J.T., Raven, J.A., Cockell, C.S., and Greaves, J.S. 2012. Life and light: exotic photosynthesis in binary and multiple-star systems. Astrobiology 12: 115-124.

    Article  ADS  Google Scholar 

  • Oparin, A.I. 1938. Origin of Life. Dover reprinted 1953, New York.

    Google Scholar 

  • Perez, N., R. Cardenas, O. Martín, and M. Leiva Mora. 2013. The potential for photosynthesis in hydrothermal vents: A new avenue for life in the Universe? Astrophys. Space Sci. 346: 327-331.

    Article  ADS  Google Scholar 

  • Pfeffer, C., S. Larsen, J. Song, M. Dong, et al. 2012. Filamentous bacteria transport electrons over centimetre distances. Nature 491: 218-221.

    Article  ADS  Google Scholar 

  • Rettberg, P., and L.J. Rothschild. 2002. Ultraviolet radiation in planetary atmospheres and biological implications. pp. 233-243 in Horneck G and Baumstark-Khan C., eds. Astrobiology: the quest for the conditions for life. Springer Publ., Berlin, Germany.

    Chapter  Google Scholar 

  • Rumpho, M. E., J. M. Worful, J. Lee, K. Kannan, et al. 2008. Horizontal gene transfer of the algal nuclear gene psbO to the photosynthetic sea slug Elysia chlorotica. Proc. Natl. Acad. Sci. USA 105: 17867-17871.

    Article  ADS  Google Scholar 

  • Sagan, C., and E.E. Salpeter. 1976. Particles, environments, and possible ecologies in the jovian atmosphere. Astrophys. J. Suppl. Ser. 32: 624.

    Google Scholar 

  • Schmidt-Nielsen, K. 1990. Animal Physiology: Adaptation and Environment. Cambridge Univ. Press, p. 51, Cambridge, UK.

    Google Scholar 

  • Schulze-Makuch, D. 2003. Chemical and microbial composition of subsurface-, surface-, and atmospheric water samples in the southern Sacramento Mountains, New Mexico. p. 62. New Mexico Geological Society Annual Spring Meeting. New Mexico Geological Society Socorro, New Mexico.

    Google Scholar 

  • Schulze-Makuch, D. and L.N. Irwin. 2001. Alternative energy sources could support life on Europa. EOS, Trans. Am. Geophys. Union 82: 150.

    Google Scholar 

  • Schulze-Makuch, D. and L.N. Irwin. 2002a. Energy cycling and hypothetical organisms in Europa’s ocean. Astrobiology 2: 105-121.

    ADS  Google Scholar 

  • Schulze-Makuch, D. and L.N. Irwin. 2002b. Reassessing the possibility of life on Venus: proposal for an astrobiology mission. Astrobiology 2: 197-202.

    ADS  Google Scholar 

  • Shihira-Ishikawa, I., and T. Nawata. 1992. The structure and physiological properties of the cytoplasm in intact Valonia cell. Jpn. J. Phycol. (Sorui) 40: 151-159.

    Google Scholar 

  • Stolz, J.F., and R.S. Oremland. 1999. Bacterial respiration of arsenic and selenium. FEMS Microbiology Reviews 23: 615-627.

    Google Scholar 

  • Summers, Z.M., J.A. Gralnick, and D.R. Bond. 2013. Cultivation of an obligate Fe(II)-oxidizing lithoautotrophic bacterium using electrodes. mBio 4: e00420-12.

    Google Scholar 

  • Tanenbaum, S.W. 1956. The metabolism of Acetobacter peroxidans. I. Oxidative enzymes. Biochim. Biophys. Acta 21: 335-342.

    Google Scholar 

  • Tivey, M.K., A.M. Bradley, T.M. Joyce, et al. 2002. Insights into tide-related variability at seafloor hydrothermal vents from time-series temperature measurements. Earth Planet. Sci. Lett. 202: 693-707.

    Article  ADS  Google Scholar 

  • Van Dover, C.L., J.R. Cann, C. Cavanaugh, et al. 1994. Light at deep sea hydrothermal vents. EOS Trans. AGU 75: 44-45.

    Article  ADS  Google Scholar 

  • Van Dover, C.L., and R.A. Lutz. 2004. Experimental ecology at deep-sea hydrothermal vents: a perspective. J. Exp. Marine Biol. Ecol. 300: 273-307.

    Article  Google Scholar 

  • Viswanath, V., G.M. Story, A.M. Peier, et al. 2003. Opposite thermosensor in fruitfly and mouse. Nature 423: 822-823.

    Article  ADS  Google Scholar 

  • White, S.N., A.D. Chave, G.T. Reynolds, et al. 2002. Ambient light emission from hydrothermal vents on the Mid-Atlantic Ridge Geophys. Res. Lett. 29: 1744.

    Article  Google Scholar 

  • Wilmer, P., G. Stone and I. Johnston. 2000. Environmental physiology of animals. Blackwell Science, Oxford., Blackwell Science, Oxford.

    Google Scholar 

  • Zimmer, C., K.K. Khurana and M.G. Kivelson. 2000. Subsurface oceans on Europa and Callisto: contraints from Galileo magnetometer observations Icarus 147: 329-347.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schulze-Makuch, D., Irwin, L.N. (2018). Energy Sources and Life. In: Life in the Universe. Springer Praxis Books(). Springer, Cham. https://doi.org/10.1007/978-3-319-97658-7_5

Download citation

Publish with us

Policies and ethics