Skip to main content

Origin of Life

  • Chapter
  • First Online:
Life in the Universe

Part of the book series: Springer Praxis Books ((ASTRONOMY))

  • 1611 Accesses

Abstract

The origin of life is a large and active field of research, and one chapter in this book can hardly do it justice. Yet, if we are to make reasonable inferences about the probability of life on other worlds, we must be able to gauge the possibility that living systems could have arisen (or arrived) there in the first place. And that, in turn, depends on our understanding of what the possibilities are for the origin of life anywhere. In an effort to rescue those possibilities from the realm of total speculation, we consider first what we know or infer about the origin of life on Earth, hoping that this singular example can provide some insights into and boundaries upon our thinking about the generic origins of life, wherever they have occurred. Then we use our limited understanding of what may have happened at the dawn of life on Earth, in combination with our definition of life given in Chap. 2, to focus on inferences with regard to the first cellular membranes, the first metabolisms, and the first replication mechanisms. Finally, we will discuss the implications of these insights for the predictability of life elsewhere in the Universe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andes-Koback, M. and C.D. Keating. 2011. Complete budding and asymmetric division of primitive model cells to produce daughter vesicles with different interior and membrane compositoions. J. Am. Chem. Soc. 133: 9545-9555.

    Article  Google Scholar 

  • Ardell, D.H. and G. Sella. 2001. On the evolution of redundancy in genetic codes. J. Molec. Evol. 53: 269-281.

    Article  ADS  Google Scholar 

  • Arrhenius, S. 1903. Die Verbreitung des Lebens im Weltenraum. Umschau 7: 481-485.

    Google Scholar 

  • Attwater, J., A. Wochner, and P. Holliger. 2013. In-ice evolution of RNA polymerase ribozyme activity. Nature Chem. 5: 1011–1018.

    Article  ADS  Google Scholar 

  • Bada, J.L., and A. Lazcano. 2002a. Miller revealed new ways to study the origins of life. Nature 416: 475.

    Article  ADS  Google Scholar 

  • Bada, J.L., and A. Lazcano. 2002b. Some like it hot, but not the first biomolecules Science 269: 1982-1983.

    Article  Google Scholar 

  • Bada, J.L. 2004. How life began on Earth: a status report. Earth Planetary Sci. Lett. 226: 1-15.

    Article  ADS  Google Scholar 

  • Baker, B.J., G.W. Tyson, R.I. Webb, et al. 2006. Lineages of acidophilic archaea revealed by community genomic analysis. Science 314: 1933-1935.

    ADS  Google Scholar 

  • Ball, R. and J. Brindley, J. 2015. The life story of hydrogen peroxide II: a periodic pH and thermochemical drive for the RNA world. J. Roy. Soc. Interface 12: 20150366.

    Article  Google Scholar 

  • Barrell, B.G., A.T. Bankier, and J. Drouin, J. 1979. A different genetic code in human mitochondria. Nature 282: 189-194.

    Article  ADS  Google Scholar 

  • Benner, S.A. 2002. Weird life: chances vs. necessity (alternative biochemistries). In “Weird Life” Planning Session for the Committee on the Origins and Evolution of Life, at Washington, DC, USA.

    Google Scholar 

  • Bernal, J.D. 1967. The origin of life. World Publ., Cleveland.

    Google Scholar 

  • Branscomb, E. and M.J. Russell. 2012, Turnstiles and bifurcators: the disequilibrium converting engines that put metabolism on the road. Biochim. Biophys. Acta 1827: 62-78.

    Article  Google Scholar 

  • Budisa, N. 2005. Engineering the Genetic Code: Expanding the Amino Acid Repertoire for the Design of Novel Proteins. New York, NY USA: John Wiley.

    Book  Google Scholar 

  • Burton, F.G., R. Lohrmann and L.E. Orgel. 1974. On the possible role of crystals in the origins of life. VII. The adsorption and polymerization of phosphoramidates by montmorillonite clay. J Mol Evol 3: 141-150.

    Article  ADS  Google Scholar 

  • Bhavesh H. Patel, Claudia Percivalle, Dougal J. Ritson, Colm D. Duffy, John D. Sutherland, (2015) Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nature Chemistry 7 (4):301–307

    Article  ADS  Google Scholar 

  • Cairns-Smith, A.G. 1982. Genetic Takeover. Cambridge University Press, London.

    Google Scholar 

  • Cairns-Smith, A.G. 1985. Seven clues to the origin of life. Cambridge University Press, Cambridge.

    Google Scholar 

  • Cairns-Smith, A.G., and H. Hartman. 1986. Clay minerals and the origin of life Cambridge University Press, UK.

    Google Scholar 

  • Calvin, M. 1969. Chemical Evolution: Molecular Evolution Towards the Origin of Living Systems on the Earth and Elsewhere. Oxford University Press, New York.

    Google Scholar 

  • Carter, C.W. 2015. What RNA world? Why a peptide/RNA partnership merits renewed experimental attention. Life (Basel) 5: 294-320.

    Google Scholar 

  • Cech, T.R. 1985. Self-splicing RNA: implications for evolution. Int. Rev. Cytol. 93: 3-22.

    Article  Google Scholar 

  • Chan, S., J. Orenberg and N. Lahav. 1987. Soluble minerals in chemical evolution. II. Characterization of the adsorption of 5’-AMP and 5’-CMP on a variety of soluble mineral salts. Orig. Life Evol. Biosph. 17: 121-134.

    Article  Google Scholar 

  • Chang, S. 1993. Prebiotic synthesis in planetary environments pp. 259-300 in J.M. Greenberg, C.X. Mendoza-Gomez and V. Pirronello, eds. The Chemistry of Life’s Origins. Kluwer Academic Publishers, Dordrecht.

    Chapter  Google Scholar 

  • Chaput, J.C., and J.W. Szostak. 2003. TNA synthesis by DNA polymerases. J. Am. Chem. Soc. 125: 9274-9275.

    Article  Google Scholar 

  • Chyba, C.F., and G.D. McDonald. 1995. The origin of life in the solar system: current Issues. Ann. Rev. Earth Planet. Sci. 23: 215-249.

    Article  ADS  Google Scholar 

  • Chyba, C., and C. Sagan. 1991. Electrical energy sources for organic synthesis on the early Earth. Orig. Life Evol. Biosph. 21: 3-17.

    Article  ADS  Google Scholar 

  • Chyba, C., and C. Sagan. 1992. Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature 355: 125-132.

    Article  ADS  Google Scholar 

  • Chyba, C. F., P. J. Thomas, L. Brookshaw, and C. Sagan. 1990. Cometary delivery of organic molecules to the early Earth. Science 249: 366–373.

    Article  ADS  Google Scholar 

  • Ciftςioglu, N., and E.O. Kajander. 1998. Interaction of nanobacteria with cultured mammalian cells Pathophysiology 4: 259-270.

    Google Scholar 

  • Costanzo, G., S. Pino, F. Ciciriello, and E. Di Mauro. 2009. Generation of long RNA chains in water. J. Biol. Chem. 284: 33206-16.

    Article  Google Scholar 

  • Cowen, R. 1995. History of life. Blackwell, Boston.

    Google Scholar 

  • Crick, F.H.C. 1968. The origin of the genetic code. J. Molec. Biol. 38: 367-379.

    Article  Google Scholar 

  • Crick, F.H.C., and L.E. Orgel. 1973. Directed panspermia. Icarus 19: 341-345.

    Article  ADS  Google Scholar 

  • Davila, A.F. and C.P. McKay. 2014. Chance and necessity in biochemistry: Implications for the search for extraterrestrial biomarkers in Earth-like environments. Astrobiology 14: 534-540.

    Article  ADS  Google Scholar 

  • Davies, P. 2005. A quantum recipe for life. Nature 437: 819.

    Article  ADS  Google Scholar 

  • Davies, P.C.W. 1996. The transfer of viable microorganisms between planets. Ciba Foundation Symposium 202 (Evolution of hydrothermal ecosystems on Earth (and Mars?). Wiley, Chichester.

    Google Scholar 

  • Deamer, D. 2017. The Role of Lipid Membranes in Life’s Origin. Life (Basel) 7: doi:https://doi.org/10.3390/life7010005.

    Article  Google Scholar 

  • Deamer, D. and B. Damer. 2017. Can life begin on Enceladus? A perspective from hydrothermal chemistry. Astrobiology 17: 834-839.

    Article  ADS  Google Scholar 

  • Deamer, D., J.P. Dworkin, S.A. Sandford, et al. 2002. The first cell membranes. Astrobiology 2: 371-381.

    Article  ADS  Google Scholar 

  • Deamer, D. W. and C. D. Georgiou. 2015. Hydrothermal conditions and the origin of cellular life. Astrobiology 15: 1091-1095.

    Article  ADS  Google Scholar 

  • Deamer, D.W., and R. Pashley. 1989. Amphiphilic components of the Murchison carbonaceous chondrite: surface properties and membrane formation Orig. Life Evol. Biosph. 19: 21-38.

    Article  ADS  Google Scholar 

  • Di Giulio, M. 2005. The ocean abysses witnessed the origin of the genetic code. Gene 346: 7-12.

    Article  Google Scholar 

  • Dyson, F. J. 1982. A model for the origin of life. J. Molec. Evol. 18: 344-350.

    Article  ADS  Google Scholar 

  • Dyson, F. J. 1999. Origins of Life. Cambridge University Press, Cambridge, U.K.

    Book  Google Scholar 

  • Feinberg, G., and R. Shapiro. 1980. Life beyond Earth: The Intelligent Earthling’s Guide to Life in the Universe. William Morrow and Company, Inc, New York.

    Google Scholar 

  • Feller, G. 2017. Cryosphere and psychrophiles: insights into a cold origin of life? Life (Basel) 7: 25 (doi:https://doi.org/10.3390/life7020025).

    Article  Google Scholar 

  • Ferris, J.P. 1993. Prebiotic synthesis on minerals: RNA oligomer formation. In The Chemistry of Life’s Origins, edited by J. M. Greenberg, C. X. Mendoza-Gómez and V. Pirronello: Kluwer Acad. Publ.

    Chapter  Google Scholar 

  • Fox, S.W., and K. Dose. 1977. Molecular Evolution and the Origin of Life. Marcel Dekker, New York.

    Google Scholar 

  • Franchi, M., E. Bramanti, L.M. Bonzi, et al. 1999. Clay-nucleic acid complexes: characteristics and implications for the preservation of genetic material in primeval habitats. Orig. Life Evol. Biosph. 29: 297-315.

    Article  ADS  Google Scholar 

  • Fraser, C. M., J. D. Gocayne, O. White, M. D. Adams, et al. 1995. The minimal gene complement of Mycoplasma genitalium. Science 270: 397-403.

    Article  ADS  Google Scholar 

  • Goldsmith, D., and T. Owen. 2003. The Search for Life in the Universe University Science Books, Sausalito.

    Google Scholar 

  • Gull, M, M.A. Mojica, F.M. Fernandez, D.A. Gaul, and T.M. Orlando, et al. 2015. Nucleoside phosphorylation by the mineral schreibersite. Sci. Repts. 5: #17198; doi: 10.1038/srep17198.

    Google Scholar 

  • Hadorn, M. and P. Eggenberger Hotz. 2010. DNA-mediated self-assembly of artificial vesicles. PLoS One 5: e9886.

    Article  ADS  Google Scholar 

  • Haldane, J.B.S. 1954. The origin of life Penguin Books, Harmondsworth.

    Google Scholar 

  • Hartman, H. 1998. Photosynthesis and the origin of life Orig. Life Evol. Biosph. 28: 515-521.

    Article  Google Scholar 

  • Higgs, P. G. and R. E. Pudritz. 2009. A thermodynamic basis for prebiotic amino acid synthesis and the nature of the first genetic code. Astrobiology 9: 483-490.

    Article  ADS  Google Scholar 

  • Hoesl, M.G., Oehm, S., Durkin, P., Darmon, E., Peil, L., et al. 2015. Chemical evolution of a bacterial proteome. Ang. Chem.: doi:https://doi.org/10.1002/anie.201502868.

    Article  Google Scholar 

  • Horneck, G., D. Stöffler, S. Ott, U. Hornemann, C.S. Cockell, et al. 2008. Microbial rock inhabitants survive hypervelocity impacts on Mars-like host planets: first phase of lithopanspermia experimentally tested. Astrobiology 8: 17-44.

    Article  ADS  Google Scholar 

  • Horowitz, E. D., A. E. Engelhart, M. C. Chen, K. A. Quarles, et al. 2010. Intercalation as a means to suppress cyclization and promote polymerization of base-pairing oligonucleotides in a prebiotic world. Proc. Natl. Acad. Sci. USA 107: 5288-93.

    Article  ADS  Google Scholar 

  • Hose, L.D., A.N. Palmer, M.V. Palmer, et al. 2000. Microbiology and geochemistry in a hydrogen-sulphide-rich karst environment Chem. Geol. 169: 399-423.

    Article  ADS  Google Scholar 

  • Hoyle, F. 1983. The intelligent universe Michael Joseph, London.

    Google Scholar 

  • Huber, C., and G. Wächtershäuser. 1998. Peptides by activation of amino acids with CO on (NiFe)S surfaces. Science 281: 670-672.

    Article  ADS  Google Scholar 

  • Huber, H., M.J. Hohn, R. Rachel, et al. 2002. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417: 63-67.

    Article  ADS  Google Scholar 

  • Hutchison, C. A., R. Y. Chuang, V. N. Noskov, N. Assad-Garcia, et al. 2016. Design and synthesis of a minimal bacterial genome. Science 351: 1414-U73; doi: https://doi.org/10.1126/science.aad6253

    Article  Google Scholar 

  • Irwin, L.N., and D. Schulze-Makuch. 2005. Prebiotic evolution of riboglycopeptides: bridging the entropy gap at the dawn of life on earth. International Conference on the Origin of Life, Beijing, P.R.C.

    Google Scholar 

  • Kajander, E.O., I. Kuronen, K. Akerman, et al. 1997. Nanobacteria from blood, the smallest culturable autonomously replicating agent on Earth. Proc. SPIE 3111: 420-428.

    ADS  Google Scholar 

  • Kajander, E.O., N. Ciftcioglu, M.A. Miller-Hjelle, et al. 2001. Nanobacteria: controversial pathogens in nephrolithiasis and polycystic kidney disease. Current Opinion in Nephrology and Hypertension 10: 445-452.

    Article  Google Scholar 

  • Kasting, J.F., and L.L. Brown. 1998. The early atmosphere as a source of biogenic compound. pp. 35-56 in B. A., ed. The Molecular Origins of Life. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Keller, M. A., D. Kampjut, S. A. Harrison, and M. Ralser. 2017. Sulfate radicals enable a non-enzymatic Krebs cycle precursor. Nat. Ecol. Evol. 1: 0083; doi https://doi.org/10.1038/s41559-017-0083.

    Article  Google Scholar 

  • Keosian, J. 1968. The Origin of Life. Reinhold, New York.

    Google Scholar 

  • Khanna, M., and G. Stotzky. 1992. Transformation of Bacillus subtilis by DNA bound on montmorillonite and effect of DNase on the transforming ability of bound DNA. Applied Environmental Biology 58: 1930-1939.

    Google Scholar 

  • Kompanichenko, V.N. 1996. Transition of precellular organic microsystems to a biotic state: environment and mechanism. Nanobiology 4: 39-45.

    Google Scholar 

  • Lahav, N. 1991. Prebiotic co-evolution of self-replication and translation or RNA world? J Theor Biol 151: 531-539.

    Article  Google Scholar 

  • Lahav, N. 1994. Minerals and the origin of life: Hypotheses and experiments in heterogeneous chemistry. Heterogeneous Chem Rev 1: 159-179.

    Google Scholar 

  • Lahav, N., and S. Nir. 1997. Emergence of template-and-sequence-directed (TSD) syntheses: I. A bio-geochemical model. Orig. Life Evol. Biosph. 27: 377-395.

    Google Scholar 

  • Lathe, R. 2004. Fast tidal cycling and the origin of life. Icarus 168: 18-22.

    Article  ADS  Google Scholar 

  • Lazard, D., N. Lahav and J.B. Orenberg. 1987. The biogeochemical cycle of the adsorbed template. I: Formation of the template. Orig. Life Evol. Biosph. 17: 135-148.

    Article  Google Scholar 

  • Lazard, D., N. Lahav and J.B. Orenberg. 1988. The biogeochemical cycle of the adsorbed template. II: Selective adsorption of mononucleotides on adsorbed polynucleotide templates. Orig. Life Evol. Biosph. 18: 347-357.

    Article  Google Scholar 

  • Lazcano, A. 1994. The RNA world, its predecessors and descendants. pp. 70-80 in B. S, ed. Early life on Earth. Columbia University Press, New York.

    Google Scholar 

  • Lazcano, A., and S.L. Miller. 1994. How long did it take for life to begin and evolve to cyanobacteria? J. Molec. Evol. 39: 549-554.

    Article  ADS  Google Scholar 

  • Lazcano, A. 2004. An answer in search of a question. Astrobiology 4: 469-471.

    Article  ADS  Google Scholar 

  • Lin, X., A. C. Yu, and T. F. Chan. 2017. Efforts and challenges in engineering the genetic code. Life (Basel) 7: doi:https://doi.org/10.3390/life7010012.

    Article  Google Scholar 

  • Lipps, J., and D. Schulze-Makuch. 2008. Origin of life in ice: prospects for the solar system and beyond. Astrobiology 8: 345.

    Google Scholar 

  • Liu, R., and L.E. Orgel. 1997. Oxidative acylation using thioacids. Nature 389: 52-54.

    Article  ADS  Google Scholar 

  • Lorenz, M.G., and W. Wackernagel. 1987. Adsorption of DNA to sand and variable degradation rates of adsorbed DNA. Applied Environmental Microbiology 53: 2948-2952.

    Google Scholar 

  • Luef, B., K. R. Frischkorn, K. C. Wrighton, H. Y. Holman, et al. 2015. Diverse uncultivated ultra-small bacterial cells in groundwater. Nature Commun. 6: 6372; doi: https://doi.org/10.1038/ncomms7372.

    Article  Google Scholar 

  • Madison, L.L. and G.W. Huisman, 1999. Metabolic engineering of poly (3-hydroxyalkanoates): from DNA to plastic. Microbiol. Mol. Biol. Rev. 63: 21-53.

    Google Scholar 

  • Malyshev, D. A., K. Dhami, T. Lavergne, T. Chen, et al. 2014. A semi-synthetic organism with an expanded genetic alphabet. Nature 509: 385-388.

    Article  ADS  Google Scholar 

  • Manuel A.S. Santos, Mick F. Tuite, (1995) The CUG codon is decoded as serine and not leucine in. Nucleic Acids Research 23 (9):1481–1486

    Article  Google Scholar 

  • Margulis, L., and D. Sagan. 1995. What Is Life? Simon & Schuster, New York.

    Google Scholar 

  • Martin D. Brasier, Richard Matthewman, Sean McMahon, David Wacey, (2011) Pumice as a Remarkable Substrate for the Origin of Life. Astrobiology 11 (7):725–735

    Article  ADS  Google Scholar 

  • Maurer, S. E., D. W. Deamer, J. M. Boncella, and P. A. Monnard. 2009. Chemical evolution of amphiphiles: glycerol monoacyl derivatives stabilize plausible prebiotic membranes. Astrobiology 9: 979-987.

    Article  ADS  Google Scholar 

  • Maurer, S. E. and G. Nguyen. 2016. Prebiotic vesicle formation and the necessity of salts. Orig. Life Evol. Biosph. 46: 215-22.

    Article  ADS  Google Scholar 

  • McClendon, J.H. 1999. The origin of life Earth Science Rev 47: 71-93.

    Article  ADS  Google Scholar 

  • McCollom, T.M. 1999. Methanogenesis as a potential source of chemical energy for primary biomass production by autotrophic organisms in hydrothermal systems on Europa. J. Geophys. Res.-Planets 104: 30729-30742.

    Article  ADS  Google Scholar 

  • Melosh, H.J. 2003. Exhange of meteorites (and life?) between stellar systems. Astrobiology 3: 207-215.

    Article  ADS  Google Scholar 

  • Miller, S.L. 1953. A production of amino acids under possible primitive earth conditions. Science 117: 528-529.

    Article  ADS  Google Scholar 

  • Miller, S.L., and L.E. Orgel. 1974. The Origins of Life on the Earth. Prentice-Hall.

    Google Scholar 

  • Miller, S.L., and A. Lazcano. 1996. The origin and early evolution of life: prebiotic chemistry, the pre-RNA world, and time. Cell 85: 793-799.

    Article  Google Scholar 

  • Monnard, P.A., C.L. Apel, A. Kanavarioti, et al. 2002. Influence of ionic solutes on self-assembly and polymerization processes related to early forms of life: implications for a prebiotic aqueous medium. Astrobiology 2: 139-152.

    Article  ADS  Google Scholar 

  • Monnard, P.-A., C.L. Apel, A. Kanavarioti, and D.W. Deamer. 2004. Influence of ionic inorganic solutes on self-assembly and polymerization processes related to early forms of life: implications for a prebiotic aqueous medium. Astrobiology 2: 139-152.

    Article  ADS  Google Scholar 

  • Monnard, P.A., A. Kanavarioti and D.W. Deamer. 2003. Eutectic phase polymerization of activated ribonucleotide mixtures yields quasi-equimolar incorporation of purine and pyrimidine nucleobases. J Am Chem Soc 125: 13734-13740.

    Article  Google Scholar 

  • Muller, A.W.J. 1985. Thermosynthesis by biomembranes: energy gain from cyclic temperature changes. J. Ther. Biol. 115: 429-453.

    Article  ADS  Google Scholar 

  • Muller, A.W.J. 1993. A mechanism for thermosynthesis based on a thermotropic phase transition in an asymmetric biomembrane. Physiol. Chem. Phys. Med. NMR 25: 95-111.

    Google Scholar 

  • Muller, A.W.J. 1995. Were the first organisms heat engines ? - a new model for biogenesis and the early evolution of biological energy conversion. Prog. Biophys. Molec. Biol. 63: 193-231.

    Article  Google Scholar 

  • Nielsen, P.E. 1993. Peptide nucleic acid (PNA): a model structure for the primordial genetic material Orig. Life Evol. Biosph. 23: 323-327.

    Article  ADS  Google Scholar 

  • Nisbet, E.G., and N.H. Sleep. 2001. The habitat and nature of early life. Nature 409: 1083-1091.

    Article  ADS  Google Scholar 

  • Oparin, A.I. 1938. Origin of Life. Dover reprinted 1953, New York.

    Google Scholar 

  • Orenberg, J.B., S. Chan, J. Calderon, et al. 1985. Soluble minerals in chemical evolution. I. Adsorption of 5’-AMP on CaSO4--a model system. Orig. Life Evol. Biosph. 15: 121-129.

    Article  Google Scholar 

  • Orgel, L.E. 1998. The origin of life – a review of facts and speculations. Trends Biochem. Sci. 23: 491-495.

    Article  Google Scholar 

  • Oro, J., T. Mills and A. Lazcano. 1992. Comets and the formation of biochemical compounds on the primitive Earth--a review. Orig. Life Evol. Biosph. 21: 267-277.

    Article  ADS  Google Scholar 

  • Paget, E., L. Jocteur-Monrozoir and P. Simonet. 1992. Adsorption of DNA on clay minerals: protection against DNaseI and influence on gene transfer FEMS Microbiol. Lett. 97: 31-40.

    Article  Google Scholar 

  • Philip, G.K. and S.J. Freeland. 2011. Did evolution select a nonrandom “alphabet” of amino acids? Astrobiology 11: 235-240.

    Article  ADS  Google Scholar 

  • Prat, L., I. U. Heinemann, H. R. Aerni, J. Rinehart, P. O’Donoghue, D. Soll. 2012. Carbon source-dependent expansion of the genetic code in bacteria. Proc. Natl. Acad. Sci. USA 109: 21070-21075.

    Article  ADS  Google Scholar 

  • Price, P.B. 2010. Microbial life in Martian ice: a biotic origin of methane on Mars? Planet. Space Sci. 58: 1199-1206.

    Article  ADS  Google Scholar 

  • Pross, A. 2004. Causation and the origin of life. Metabolism or replication first? Orig. Life Evol. Biosph. 34: 307-321.

    Article  ADS  Google Scholar 

  • Qiao, Y., M. Li, R. Booth, and S. Mann. 2016. Predatory behaviour in synthetic protocell communities. Nature Chemistry: doi:https://doi.org/10.1038/nchem.2617.

    Article  ADS  Google Scholar 

  • Rios, A. C. and Y. Tor. 2012. Refining the genetic alphabet: a late-period selection pressure? Astrobiology 12: 884-91.

    Article  ADS  Google Scholar 

  • Ruf, A., B. Kanawati, N. Hertkorn, Q. Z. Yin, et al. 2017. Previously unknown class of metalorganic compounds revealed in meteorites. Proc. Natl. Acad. Sci. USA 114: 2819-2824.

    Article  Google Scholar 

  • Russell, M.J., and A.J. Hall. 1997. The emergence of life from monosulfide bubbles at a submarine hydrothermal redox and pH front. J. Geol. Soc. London 154: 377-402.

    Article  Google Scholar 

  • Russell, M.J., W. Nitschke, and E. Branscomb. 2013. The inevitable journey to being. Phil. Trans. R. Soc. B 368: 20120254.

    Article  Google Scholar 

  • Sagan, C., and E.E. Salpeter. 1976. Particles, environments, and possible ecologies in the jovian atmosphere. Astrophys. J. Suppl. Ser. 32: 624.

    Article  Google Scholar 

  • Saeidi, N., C. K. Wong, T. M. Lo, H. X. Nguyen, et al. 2011. Engineering microbes to sense and eradicate Pseudomonas aeruginosa, a human pathogen. Mol. Syst. Biol. 7: 521; doi https://doi.org/10.1038/msb.2011.55.

    Article  Google Scholar 

  • Scharf, C., Virgo, N., Cleaves, J., Aono, M., Aubert-Kato, N., et al. 2015. A strategy for origins of life research. Astrobiology 15: 1031-1042.

    Article  ADS  Google Scholar 

  • Schieber, J., and H.J. Arnott. 2003. Nannobacteria as a by-product of enzyme-driven tissue decay Geology 31: 717-720.

    Google Scholar 

  • Schöning, K.-U., P. Scholz, W. Guntha, et al. 2000. Chemical etiology of nucleic acid structure: The alpha-threofuranosyl-(3’2’) oligonucleotide system. Science 290: 1347-1351.

    Article  ADS  Google Scholar 

  • Schreiber, U., O. Locker-Grütjen, and C. Mayer. 2012. Origin of life in deep-reaching tectonic faults. Orig. Life Evol. Biosph.: doi https://doi.org/10.1007/s11084-012-9267-4.

    Article  ADS  Google Scholar 

  • Schrödinger, E. 1944. What is Life? The Physical Aspect of the Living Cell. University Press, Cambridge.

    MATH  Google Scholar 

  • Schulze-Makuch, D. 2002. At the crossroads between microbiology and planetology: a proposed iron cycle could sustain life in an ocean – and the ocean need not be on Earth. ASM News 68: 364-365.

    Google Scholar 

  • Schulze-Makuch, D., Guan, H., Irwin, L.N., and Vega, E. 2002c. Redefining life: an ecological, thermodynamic, and bioinformatic approach. Fundamentals of Life. Elsevier SAS, Amsterdam, pp. 169-179.

    Google Scholar 

  • Schulze-Makuch, D., and W. Bains. 2017. The Cosmic Zoo: Complex Life on Many Worlds. Chichester, U.K.: Springer Praxis.

    Chapter  Google Scholar 

  • Schwartz, A.W. 1993. Biology and theory: RNA and the origin of life. pp. 323-344 in J.M. Greenberg, C.X. Mendoza-Gomez and V. Pirronello, eds. The chemistry of life’s origins. Kluwer Acad. Publ.

    Google Scholar 

  • Segre, D. and D. Lancet. 2000. Composing life. EMBO Rept. 1: 217-222.

    Article  Google Scholar 

  • Segre, D., D. Ben-Eli, and D. Lancet. 2000. Compositional genomes: prebiotic information transfer in mutually catalytic noncovalent assemblies. Proc. Natl. Acad. Sci. USA 97: 4112-7.

    Article  ADS  Google Scholar 

  • Sojo, V., B. Herschy, A. Whicher, E. Camprubi, N. Lane. 2016. The Origin of Life in Alkaline Hydrothermal Vents. Astrobiology 16: 181-197.

    Article  ADS  Google Scholar 

  • Srivatsan, S.G. 2004. Modeling prebiotic catalysis with nucleic acid-like polymers and its implications for the proposed RNA world. Pure Appl. Chem. 76: 2085-2099.

    Article  Google Scholar 

  • Stetter, K.O. 1998. Hyperthermophiles and their possible role as ancestors of modern life pp. 315-335 in B. A., ed. The Molecular Origins of Life. Cambridge University Press.

    Google Scholar 

  • Stevens, T.O., and J.P. McKinley. 1995. Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270: 450-454.

    Article  ADS  Google Scholar 

  • Stribling, R., and S.L. Miller. 1991. Template-directed synthesis of oligonucleotides under eutectic conditions. J. Mol. Evol. 32: 289-295.

    Article  ADS  Google Scholar 

  • Tajika, E., and T. Matsui. 1993. Degassing History and Carbon-Cycle of the Earth - from an Impact-Induced Steam Atmosphere to the Present Atmosphere. Lithos 30: 267-280.

    Article  ADS  Google Scholar 

  • Taylor, D.J., M.J. Ballinger, S.M. Bowman, and J.A. Bruenn. 2013. Virus-host coevolution under a modified nuclear genetic code. PeerJ 1: e50; doi: https://doi.org/10.7717/peerj.50.

    Article  Google Scholar 

  • Trinks, H., W. Schroder and C.K. Biebricher. 2005. Ice and the origin of life. Orig. Life Evol. Biosph. 35: 429-445.

    Article  ADS  Google Scholar 

  • Turian, G. 2003. Biogenic bipolarity - A new approach to the origin of life. Arch. Sci. 56: 155-182.

    Google Scholar 

  • Vlassov, A.V., B.H. Johnston, L.F. Landweber, et al. 2004. Ligation activity of fragmented ribozymes in frozen solution: implications for the RNA world. Nucleic Acids Res 32: 2966-2974.

    Article  Google Scholar 

  • Wächtershäuser, G. 1988. Before enzymes and templates: theory of surface metabolism. Microbiol Rev 52: 452-484.

    Google Scholar 

  • Wächtershäuser, G. 1994. Vitalists and virulists: a theory of self-expanding reproduction. pp. 124-132 in S. Bengtson, ed. Early life on Earth. Columbia University Press, New York.

    Google Scholar 

  • Wächtershäuser, G. 2007. On the chemistry and evolution of the pioneer organism. Chem Biodivers 4: 584-602.

    Article  Google Scholar 

  • Walker, J.C.G. 1977. Evolution of the atmosphere Macmillan, New York.

    Google Scholar 

  • Wang, Q., A.R. Parrish, L.Wang. 2009. Expanding the genetic code for biological studies. Chemistry & Biology 16: 323–336.

    Article  Google Scholar 

  • Weiss, M. C., F. L. Sousa, N. Mrnjavac, S. Neukirchen, et al. 2016. The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 1: 16116.

    Article  Google Scholar 

  • Westall, F., M.J. de Wit, J. Dann, et al. 2001. Early Archean fossil bacteria and biofilms in hydrothermally-influenced sediments from the Barberton greenstone belt, South Africa. Precambrian Research 106: 93-116.

    Article  ADS  Google Scholar 

  • Woese, C. 1979. A proposal concerning the origin of life on the planet Earth. J Molec Evol 13: 95-101.

    Article  ADS  Google Scholar 

  • Xie, J. and P. G. Schultz. 2005. Adding amino acids to the genetic repertoire. Curr. Opin. Chem. Biol. 9: 548-554.

    Article  Google Scholar 

  • Yamao, F., A. Muto, Y. Kawauchi, M. Iwami, S. Iwagami, et al. 1985. UGA is read as tryptophan in Mycoplasma capricolum. Proc. Natl. Acad. Sci USA 82: 2306-2309.

    Article  Google Scholar 

  • Yang, Z., F. Chen, J.B. Alvarado, and S.A. Benner. 2011. Amplification, mutation, and sequencing of a six-letter synthetic genetic system. J. Am. Chem. Soc. 133: 15105–15112.

    Article  Google Scholar 

  • Zhang, Y., P.V. Baranov, J.F. Atkins, and V.N. Gladyshev. 2005. Pyrrolysine and selenocysteine use dissimilar coding strategies. J. Biol. Chem. 280: 20740-20751.

    Article  Google Scholar 

  • Zamudio, G.S. and M.V. José. 2017. On the uniqueness of the standard genetic code. Life 7: doi: https://doi.org/10.3390/life7010007.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schulze-Makuch, D., Irwin, L.N. (2018). Origin of Life. In: Life in the Universe. Springer Praxis Books(). Springer, Cham. https://doi.org/10.1007/978-3-319-97658-7_3

Download citation

Publish with us

Policies and ethics