Advertisement

A Probabilistic Interpretation of PID Controllers Using Active Inference

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10994)

Abstract

In the past few decades, probabilistic interpretations of brain functions have become widespread in cognitive science and neuroscience. The Bayesian brain hypothesis, predictive coding, the free energy principle and active inference are increasingly popular theories of cognitive functions that claim to unify understandings of life and cognition within general mathematical frameworks derived from information and control theory, statistical physics and machine learning. The connections between information and control theory have been discussed since the 1950’s by scientists like Shannon and Kalman and have recently risen to prominence in modern stochastic optimal control theory. However, the implications of the confluence of these two theoretical frameworks for the biological sciences have been slow to emerge. Here we argue that if the active inference proposal is to be taken as a general process theory for biological systems, we need to consider how existing control theoretical approaches to biological systems relate to it. In this work we will focus on PID (Proportional-Integral-Derivative) controllers, one of the most common types of regulators employed in engineering and more recently used to explain behaviour in biological systems, e.g. chemotaxis in bacteria and amoebae or robust adaptation in biochemical networks. Using active inference, we derive a probabilistic interpretation of PID controllers, showing how they can fit a more general theory of life and cognition under the principle of (variational) free energy minimisation under simple linear generative models.

Notes

Acknowledgements

The authors would like to thank Karl Friston for thought-provoking discussions and insightful feedback on the final version of this manuscript, and Martijn Wisse and Sherin Grimbergen for important comments on the mathematical derivation.

References

  1. 1.
    Ang, J., Bagh, S., Ingalls, B.P., McMillen, D.R.: Considerations for using integral feedback control to construct a perfectly adapting synthetic gene network. J. Theor. Biol. 266(4), 723–738 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Urquizo, A.: PID controller - Wikipedia, the free encyclopedia (2011). Accessed 30 Mar 2018Google Scholar
  3. 3.
    Ashby, W.: Requisite variety and its implications for the control of complex systems. Cybernetica 1, 83–99 (1958)zbMATHGoogle Scholar
  4. 4.
    Ashby, W.R.: An Introduction to Cybernetics. Chapman & Hall Ltd., London (1957)Google Scholar
  5. 5.
    Åström, K.J.: PID Controllers: Theory, Design and Tuning. Instrument society of America (1995)Google Scholar
  6. 6.
    Åström, K.J., Murray, R.M.: Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press, Princeton (2010)Google Scholar
  7. 7.
    Baltieri, M., Buckley, C.L.: An active inference implementation of phototaxis. In: Proceedings of European Conference on Artificial Life, pp. 36–43 (2017)Google Scholar
  8. 8.
    Brown, H., Adams, R.A., Parees, I., Edwards, M., Friston, K.: Active inference, sensory attenuation and illusions. Cogn. Process. 14(4), 411–427 (2013)CrossRefGoogle Scholar
  9. 9.
    Buckley, C.L., Kim, C.S., McGregor, S., Seth, A.K.: The free energy principle for action and perception: a mathematical review. J. Math. Psychol. 14, 55–79 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Carver, C.S., Scheier, M.F.: Attention and self-regulation: a control-theory approach to human behavior. Springer, New York (1981)CrossRefGoogle Scholar
  11. 11.
    Clark, A.: Being There: Putting Brain, Body, and World Together Again. MIT press, Cambridge (1998)Google Scholar
  12. 12.
    Clark, A.: Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav. Brain Sci. 36(03), 181–204 (2013)CrossRefGoogle Scholar
  13. 13.
    Clark, A.: Radical predictive processing. South. J. Philos. 53(S1), 3–27 (2015)CrossRefGoogle Scholar
  14. 14.
    Clark, A.: Surfing Uncertainty: Prediction, Action, and the Embodied Mind. Oxford University Press, New York (2015)Google Scholar
  15. 15.
    Dayan, P., Hinton, G.E., Neal, R.M., Zemel, R.S.: The Helmholtz machine. Neural Comput. 7(5), 889–904 (1995)CrossRefGoogle Scholar
  16. 16.
    Friston, K.: A theory of cortical responses. Philos. Trans. R. Soc. London Ser. B Biol. Sci. 360(1456), 815–836 (2005)CrossRefGoogle Scholar
  17. 17.
    Friston, K.: Hierarchical models in the brain. PLoS Comput. Biol. 4(11), e1000211 (2008)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Friston, K.: The free-energy principle: a rough guide to the brain? Trends Cogn. Sci. 13(7), 293–301 (2009)CrossRefGoogle Scholar
  19. 19.
    Friston, K.: The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11(2), 127–138 (2010)CrossRefGoogle Scholar
  20. 20.
    Friston, K.: What is optimal about motor control? Neuron 72(3), 488–498 (2011)CrossRefGoogle Scholar
  21. 21.
    Friston, K.: Life as we know it. J. R. Soc. Interface 10(86), 20130475 (2013)CrossRefGoogle Scholar
  22. 22.
    Friston, K., Kilner, J., Harrison, L.: A free energy principle for the brain. J. Physiol. Paris 100(1), 70–87 (2006)CrossRefGoogle Scholar
  23. 23.
    Friston, K., Mattout, J., Kilner, J.: Action understanding and active inference. Biol. Cybern. 104(1–2), 137–160 (2011)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Friston, K., Rigoli, F., Ognibene, D., Mathys, C., Fitzgerald, T., Pezzulo, G.: Active inference and epistemic value. Cogn. Neurosci. 6(4), 1–28 (2015)CrossRefGoogle Scholar
  25. 25.
    Friston, K.J., Daunizeau, J., Kiebel, S.J.: Reinforcement learning or active inference? PLoS One 4(7), e6421 (2009)CrossRefGoogle Scholar
  26. 26.
    Friston, K.J., Daunizeau, J., Kilner, J., Kiebel, S.J.: Action and behavior: a free-energy formulation. Biol. Cybern. 102(3), 227–260 (2010)CrossRefGoogle Scholar
  27. 27.
    Friston, K.J., Trujillo-Barreto, N., Daunizeau, J.: DEM: a variational treatment of dynamic systems. NeuroImage 41(3), 849–885 (2008)CrossRefGoogle Scholar
  28. 28.
    Hohwy, J.: The Predictive Mind. OUP, Oxford (2013)Google Scholar
  29. 29.
    Jazwinski, A.H.: Stochastic Processes and Filtering Theory, vol. 64. Academic Press, New York (1970)CrossRefGoogle Scholar
  30. 30.
    Kalman, R.E., et al.: Contributions to the theory of optimal control. Bol. Soc. Mat. Mexicana 5(2), 102–119 (1960)MathSciNetGoogle Scholar
  31. 31.
    Knill, D.C., Pouget, A.: The Bayesian brain: the role of uncertainty in neural coding and computation. Trends Neurosci. 27(12), 712–719 (2004)CrossRefGoogle Scholar
  32. 32.
    Powers, W.T.: Behavior: The Control of Perception. Aldine, Chicago (1973)Google Scholar
  33. 33.
    Rao, R.P., Ballard, D.H.: Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nature Neurosci. 2(1), 79–87 (1999)CrossRefGoogle Scholar
  34. 34.
    Rafal, B.: A tutorial on the free-energy framework for modelling perception and learning. J. Math. Psychol. 76, 198–211 (2017)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Ritz, H., Nassar, M.R., Frank, M.J., Shenhav, A.: A control theoretic model of adaptive behavior in dynamic environments. bioRxiv, p. 204271 (2017)Google Scholar
  36. 36.
    Seth, A.K.: The cybernetic Bayesian Brain. In: Open Mind. Frankfurt am Main: MIND Group (2014)Google Scholar
  37. 37.
    Shannon, C.E.: Coding theorems for a discrete source with a fidelity criterion. IRE Nat. Conv. Rec 4(142–163), 1 (1959)Google Scholar
  38. 38.
    Todorov, E.: General duality between optimal control and estimation. In: 47th IEEE Conference on Decision and Control, CDC 2008, pp. 4286–4292. IEEE (2008)Google Scholar
  39. 39.
    Wiener, N.: Cybernetics or Control and Communication in the Animal and the Machine, vol. 25. MIT press, Cambridge (1961)zbMATHGoogle Scholar
  40. 40.
    Wolpert, D.M., Kawato, M.: Multiple paired forward and inverse models for motor control. Neural Netw. 11(7–8), 1317–1329 (1998)CrossRefGoogle Scholar
  41. 41.
    Yang, L., Iglesias, P.A.: Positive feedback may cause the biphasic response observed in the chemoattractant-induced response of Dictyostelium cells. Syst. Control Lett. 55(4), 329–337 (2006)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Yi, T.-M., Huang, Y., Simon, M.I., Doyle, J.: Robust perfect adaptation in bacterial chemotaxis through integral feedback control. Proc. Natl. Acad. Sci. 97(9), 4649–4653 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Evolutionary and Adaptive Systems Group, Department of InformaticsUniversity of SussexBrightonUK
  2. 2.Sussex NeuroscienceUniversity of SussexBrightonUK

Personalised recommendations