Skip to main content

Deep Feedback Learning

  • Conference paper
  • First Online:
From Animals to Animats 15 (SAB 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10994))

Included in the following conference series:

  • 853 Accesses

Abstract

An agent acting in an environment aims to minimise uncertainties so that being attacked can be predicted, and rewards are not only found by chance. These events define an error signal which can be used to improve performance. In this paper we present a new algorithm where an error signal from a reflex trains a novel deep network: the error is propagated forwards through the network from its input to its output, in order to generate pro-active actions. We demonstrate the algorithm in two scenarios: a 1st-person shooter game and a driving car scenario, where in both cases the network develops strategies to become pro-active.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bennett, M.: The concept of long term potentiation of transmission at synapses. Prog. Neuriobiol. 60, 109–137 (2000)

    Article  Google Scholar 

  2. Canolty, R.T., Knight, R.T.: The functional role of cross-frequency coupling. Trends Cogn. Sci. 14(11), 506–515 (2010). http://www.ncbi.nlm.nih.gov/pubmed/20932795

    Article  Google Scholar 

  3. Grüsser, O.: Interaction of efferent and afferent signals in visual perception. A history of ideas and experimental paradigms. Acta Psychol. 63, 3–21 (1986)

    Article  Google Scholar 

  4. Lillicrap, T.P., Cownden, D., Tweed, D.B., Akerman, C.J.: Random synaptic feedback weights support error backpropagation for deep learning. Nat. Commun. 7, 13276 (2016). http://www.ncbi.nlm.nih.gov/pubmed/27824044

    Article  Google Scholar 

  5. Lindsay, G.W., Rigotti, M., Warden, M.R., Miller, E.K., Fusi, S.: Hebbian learning in a random network captures selectivity properties of the prefrontal cortex. J. Neurosci. Off. J, Soc. Neurosci. 37(45), 11021–11036 (2017). http://www.ncbi.nlm.nih.gov/pubmed/28986463

    Article  Google Scholar 

  6. Malenka, R.C., Nicoll, R.A.: Long-term potentiation – a decade of progress? Science 285, 1870–1874 (1999)

    Article  Google Scholar 

  7. Meunier, C.N.J., Chameau, P., Fossier, P.M.: Modulation of synaptic plasticity in the cortex needs to understand all the players. Front. Synaptic Neurosci. 9, 2 (2017). http://www.ncbi.nlm.nih.gov/pubmed/28203201

    Article  Google Scholar 

  8. Mulkey, R.M., Malenka, R.C.: Mechanisms underlying induction of homosynaptic long-term depression in area ca1 of the hippocampus. Neuron 9(5), 967–975 (1992). http://www.ncbi.nlm.nih.gov/pubmed/1419003

    Article  Google Scholar 

  9. Phillips, C.L.: Feedback Control Systems. Prentice-Hall International, London (2000)

    MATH  Google Scholar 

  10. Porr, B., von Ferber, C., Wörgötter, F.: ISO-learning approximates a solution to the inverse-controller problem in an unsupervised behavioural paradigm. Neural Comput. 15, 865–884 (2003)

    Article  Google Scholar 

  11. Porr, B., Wörgötter, F.: Isotropic sequence order learning. Neural Comput. 15, 831–864 (2003)

    Article  Google Scholar 

  12. Porr, B., Wörgötter, F.: What means embodiment for radical constructivists? Kybernetes, pp. 105–117 (2005)

    Google Scholar 

  13. Roelfsema, P.R., Holtmaat, A.: Control of synaptic plasticity in deep cortical networks. Nat. Rev. Neurosci. 19(3), 166–180 (2018). http://www.ncbi.nlm.nih.gov/pubmed/29449713

    Article  Google Scholar 

  14. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 2nd edn. Bradford Books, MIT Press, Cambridge (1998)

    Google Scholar 

  15. Tejomurtula, S., Kak, S.: Inverse kinematics in robotics using neural networks. Inf. Sci. 116, 147–164 (1999)

    Article  MathSciNet  Google Scholar 

  16. von Uexküll, B.J.J.: Theoretical Biology. Kegan Paul, Trubner (1926)

    Google Scholar 

  17. Verschure, P., Coolen, A.: Adaptive fields: distributed representations of classically conditioned associations. Network 2, 189–206 (1991)

    Article  Google Scholar 

  18. Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8, 279–292 (1992)

    MATH  Google Scholar 

  19. Wörgötter, F., Porr, B.: Temporal sequence learning, prediction and control - a review of different models and their relation to biological mechanisms. Neural Comput. 17, 245–319 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Porr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Porr, B., Miller, P. (2018). Deep Feedback Learning. In: Manoonpong, P., Larsen, J., Xiong, X., Hallam, J., Triesch, J. (eds) From Animals to Animats 15. SAB 2018. Lecture Notes in Computer Science(), vol 10994. Springer, Cham. https://doi.org/10.1007/978-3-319-97628-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97628-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97627-3

  • Online ISBN: 978-3-319-97628-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics