Skip to main content

Cylindrical Terrain Classification Using a Compliant Robot Foot with a Flexible Tactile-Array Sensor for Legged Robots

Part of the Lecture Notes in Computer Science book series (LNAI,volume 10994)


In this paper, we present a new approach that uses a combination of a compliant robot foot with a flexible tactile-array sensor to classify different types of cylindrical terrains. The foot and sensor were installed on a robot leg. Due to their compliance and flexibility, they can passively adapt their shape to the terrains and simultaneously provide pressure feedback during walking. We applied two different methods, which are average and maximum value methods, to classify the terrains based on the feedback information. To test the approach, We performed two experimental conditions which are (1) different diameters and different materials and (2) different materials with the same cylindrical diameter. In total, we use here eleven cylindrical terrains with different diameters and materials (i.e., a 8.2-cm diameter PVC cylinder, a 7.5-cm diameter PVC cylinder, a 5.5-cm diameter PVC cylinder, a 4.4-cm diameter PVC cylinder, a 7.5-cm diameter hard paper cylinder, a 7.4-cm diameter hard paper cylinder, a 5.5-cm diameter hard paper cylinder, a 20-cm diameter sponge cylinder, a 15-cm diameter sponge cylinder, a 7.5-cm diameter sponge cylinder, and a 5.5-cm diameter sponge cylinder). The experimental results show that we can successfully classify all terrains for the maximum value method. This approach can be applied to allow a legged robot to not only walk on cylindrical terrains but also recognize the terrain feature. It thereby extends the operational range the robot towards cylinder/pipeline inspection.


  • Compliant robot foot
  • Flexible tactile-array sensor
  • Cylindrical terrains

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-97628-0_12
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-97628-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.


  1. Di Canio, G., Stoyanov, S., Larsen, J.C., Hallam, J., Kovalev, A., Kleinteich, T., Gorb, S.N., Manoonpong, P.: A robot leg with compliant tarsus and its neural control for efficient and adaptive locomotion on complex terrains. Artif. Life Robot. 21(3), 274–281 (2016)

    CrossRef  Google Scholar 

  2. Drimus, A., Kootstra, G., Bilberg, A., Kragic, D.: Design of a flexible tactile sensor for classification of rigid and deformable objects. Robotics and Autonomous Systems 62, 3–15 (2014)

    CrossRef  Google Scholar 

  3. Mrva, J., Faigl, J.: Feature extraction for terrain classification with crawling robots. Robotics In: Yaghob, J. (ed.) ITAT 2015, 2010 Current and Future, pp. 179–185. Charles University in Prague, Prague (2015)

    Google Scholar 

  4. Walas, K.: Terrain classification and negotiation with a walking robot. Intell. Robot. Syst. 78(3–4), 401–423 (2015).

    CrossRef  Google Scholar 

  5. Degrave, J., Van Cauwenbergh, R., wyffels, F., Waegeman, T., Schrauwen, B.: Terrain classification for a quadruped robot. In: Machine Learning and Applications (ICMLA). IEEE, Miami (2013).

  6. Bermudez, F.L.C., Julian, C., Haldane, W., Abbeel, P., Fearing, R. S.: Performance analysis and terrain classification for a legged robot over rough terrain. In: Intelligent Robots and Systems, IEEE/RSJ, Vilamoura (2012).

  7. Belter, D., Skrzypczyński, P.: Rough terrain mapping and classification for footholdselection in a walking robot. Field. Robot. 28(4), 497–528 (2011).

    CrossRef  Google Scholar 

  8. Kisung, K., Kwangjin K., Wansoo, K., Seungnam, Y., Changsoo H.: Performance Comparison between neural network and SVM for terrain classification of legged robot. In: SICE Annual Conference 2010, pp. 1343–1348. IEEE, Taipei (2010)

    Google Scholar 

  9. Poppinga, J., Birk, A., Pathak., K.: Hough based terrain classification for realtime detection of drivable ground. Field. Robot. 25(1), 67–88 (2008).

    CrossRef  Google Scholar 

  10. Wu, X.A., Huh, T.M., Mukherjee, R., Cutkosky, M.: Integrated ground reaction force sensing and terrain classification for small legged robots. IEEE Robot. Autom. Lett. 1(2), 1125–1132 (2016)

    CrossRef  Google Scholar 

  11. Walas, K.: Tactile sensing for ground classification. J. Autom. Mobile Robot. Intell. Syst. 7(2), 18–23 (2013)

    Google Scholar 

  12. Gong, D., He, R., Yu, J., Zuo., G.: A pneumatic tactile sensor for co-operative robots. Sensors 17(11), 2592–2606 (2017)

    CrossRef  Google Scholar 

  13. Jamali, N., Sammut, C.: Material classification by tactile sensing using surface textures. In: Robotics and Automation, pp. 2336–2341. IEEE, Anchorage (2010).

  14. Nakamoto, H., Kobayashi, F., Kojima, F.: Shape classification using tactile information in rotation manipulation by universal robot hand. In: Abdellatif , H. (Ed.) Robotics 2010 Current and Future Challenges. ISBN: 978-953-7619-78-7

    Google Scholar 

  15. Drimus, A., Mátéfi-Tempfli, S.: Tactile shoe inlays for high speed pressure monitoring. In: Liu, H., Kubota, N., Zhu, X., Dillmann, R., Zhou, D. (eds.) ICIRA 2015. LNCS (LNAI), vol. 9245, pp. 74–81. Springer, Cham (2015).

    CrossRef  Google Scholar 

Download references


This work was supported by the Capacity Building on Academic Competency of KU. Students from Kasetsart University, Thailand, Centre for BioRobotics (CBR) at University of Southern Denmark (SDU, Denmark), the Thousand Talents program of China, and the Human Frontier Science Program under grant agreement no. RGP0002/2017.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Pongsiri Borijindakul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Borijindakul, P., Jinuntuya, N., Drimus, A., Manoonpong, P. (2018). Cylindrical Terrain Classification Using a Compliant Robot Foot with a Flexible Tactile-Array Sensor for Legged Robots. In: Manoonpong, P., Larsen, J., Xiong, X., Hallam, J., Triesch, J. (eds) From Animals to Animats 15. SAB 2018. Lecture Notes in Computer Science(), vol 10994. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97627-3

  • Online ISBN: 978-3-319-97628-0

  • eBook Packages: Computer ScienceComputer Science (R0)