Advertisement

Arterial Hypertension

  • Daniel DuprezEmail author
Chapter
Part of the Contemporary Cardiology book series (CONCARD)

Abstract

Arterial hypertension is one of the most important cardiovascular risk factors, and uncontrolled hypertension will lead to serious cardiovascular events such as ischemic heart disease, myocardial infarction, stroke, heart failure, and peripheral arterial disease. In 2017 the American College of Cardiology/American Heart Association in collaboration with nine other scientific organizations has established new guidelines for the diagnosis and treatment of hypertension. The new blood pressure (BP) guidelines consider four different categories of BP: (1) normal blood pressure is now defined as systolic BP (SBP) <120 mmHg and a diastolic BP (DBP) <80 mmHg; (2) elevated BP, SBP with BP range of 120–129 mmHg and DBP <80 mmHg; (3) stage 1 hypertension, SBP range of 130–139 mmHg or DBP range of 80–89 mmHg; and (4) stage 2 hypertension, SBP ≥140 mmHg and/or DBP ≥90 mmHg. This chapter describes the epidemiology and mechanism of hypertension. Hypertension is diagnosed either as primary or essential hypertension versus secondary hypertension. Home BP and 24-h ambulatory BP measurements have gained interest because these types of BP measurements are more predictive for the evaluation of the antihypertensive therapy and blood pressure-lowering effect. The most important recommendation of the 2017 hypertension guidelines is that the use of BP-lowering medications is recommended for secondary prevention of recurrent cardiovascular disease (CVD) events in patients with clinical CVD and an average SBP of 130 mm Hg or higher or an average DBP of 80 mm Hg or higher and for primary prevention in adults with an estimated 10-year atherosclerotic cardiovascular disease (ASCVD) risk of 10% or higher and an average SBP of 130 mm Hg or higher or an average DBP of 80 mm Hg or higher. Use of BP-lowering medication is recommended for primary prevention of CVD in adults with no history of CVD and with an estimated 10-year ASCVD risk <10% and a SBP of 140 mm Hg or higher or a DBP of 90 mm Hg or higher. The other difference with the previous guidelines is that there are no different target goals anymore for patients with diabetes mellitus and chronic kidney disease. Antihypertensive therapy is grouped in primary and secondary BP-lowering medication with one important change that beta-blockers are not anymore considered as first-class antihypertensive agents.

Keywords

Hypertension Cardiovascular risk Guidelines Antihypertensive drugs Cardiovascular prevention 

References

  1. 1.
    Lewington S, Clarke R, Qizilbash N, et al. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360:1903–13.CrossRefGoogle Scholar
  2. 2.
    Rapsomaniki E, Timmis A, George J, et al. Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1.25 million people. Lancet. 2014;383:1899–911.CrossRefGoogle Scholar
  3. 3.
    Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, DePalma SM, Gidding S, Jamerson KA, Jones DW, MacLaughlin EJ, Muntner P, Ovbiagele B, Smith SC Jr, Spencer CC, Stafford RS, Taler SJ, Thomas RJ, Williams KA Sr, Williamson JD, Wright JT Jr. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2018;71:1269–1324.Google Scholar
  4. 4.
    Reboussin DM, Allen NB, Griswold ME, Guallar E, Hong Y, Lackland DT, Miller ER 3rd, Polonsky T, Thompson-Paul AM, Vupputuri S. Systematic review for the 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2018;71(6):e116–e35.Google Scholar
  5. 5.
    Ettehad D, Emdin CA, Kiran A, et al. Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. Lancet. 2016;387:957–67.CrossRefGoogle Scholar
  6. 6.
    Law MR, Morris JK, Wald NJ. Use of blood pressure lowering drugs in the prevention of cardiovascular disease: meta-analysis of 147 randomised trials in the context of expectations from prospective epidemiological studies. BMJ. 2009;338:b1665.CrossRefGoogle Scholar
  7. 7.
    Sundstrom J, Arima H, Jackson R, et al. Effects of blood pressure reduction in mild hypertension: a systematic review and meta-analysis. Ann Intern Med. 2015;162:184–91.CrossRefGoogle Scholar
  8. 8.
    Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure lowering on outcome incidence in hypertension: 2. Effects at different baseline and achieved blood pressure levels--overview and meta-analyses of randomized trials. J Hypertens. 2014;32:2296–304.CrossRefGoogle Scholar
  9. 9.
    Shihab HM, Meoni LA, Chu AY, et al. Body mass index and risk of incident hypertension over the life course: the Johns Hopkins Precursors Study. Circulation. 2012;126:2983–9.CrossRefGoogle Scholar
  10. 10.
    Yoon SS, Gu Q, Nwankwo T, et al. Trends in blood pressure among adults with hypertension: United States, 2003 to 2012. Hypertension. 2015;65:54–61.CrossRefGoogle Scholar
  11. 11.
    Danaei G, Ding EL, Mozaffarian D, et al. The preventable causes of death in the United States: comparative risk assessment of dietary, lifestyle, and metabolic risk factors. PLoS Med. 2009;6:e1000058.CrossRefGoogle Scholar
  12. 12.
    Lim SS, Vos T, Flaxman AD, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380:2224–60.CrossRefGoogle Scholar
  13. 13.
    Ford ES. Trends in mortality from all causes and cardiovascular disease among hypertensive and nonhypertensive adults in the United States. Circulation. 2011;123:1737–44.CrossRefGoogle Scholar
  14. 14.
    Hajjar I, Kotchen TA. Trends in prevalence, awareness, treatment, and control of hypertension in the United States, 1988–2000. JAMA. 2003;290:199–206.CrossRefGoogle Scholar
  15. 15.
    Freis ED. Studies in hemodynamics and hypertension. Hypertension. 2001;38:1–5.CrossRefGoogle Scholar
  16. 16.
    Susic D, Frohlich ED. Hypertension and the heart. Curr Hypertens Rep. 2000;2:565–9.CrossRefGoogle Scholar
  17. 17.
    Verdecchia P, Schillaci G, Reboldi G, Franklin SS, Porcellati C. Different prognostic impact of 24-hour mean blood pressure and pulse pressure on stroke and coronary artery disease in essential hypertension. Circulation. 2001;103:2579–84.CrossRefGoogle Scholar
  18. 18.
    Chirinos JA, Kips JG, Jacobs DR Jr, Brumback L, Duprez DA, Kronmal R, Bluemke DA, Townsend RR, Vermeersch S, Segers P. Arterial wave reflections and incident cardiovascular events and heart failure: MESA (Multiethnic Study of Atherosclerosis). J Am Coll Cardiol. 2012;60:2170–7.CrossRefGoogle Scholar
  19. 19.
    Hom EK, Duprez DA, Jacobs DR Jr, Bluemke DA, Brumback LC, Polak JF, Peralta CA, Greenland P, Magzamen SL, Lima JA, Redheuil A, Herrington DM, Stein JH, Vaidya D, Ouyang P, Kaufman JD. Comparing arterial function parameters for the prediction of coronary heart disease events: the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Epidemiol. 2016;184:894–901.CrossRefGoogle Scholar
  20. 20.
    Duprez DA, Jacobs DR Jr, Lutsey PL, Bluemke DA, Brumback LC, Polak JF, Peralta CA, Greenland P, Kronmal RA. Association of small artery elasticity with incident cardiovascular disease in older adults: the multi-ethnic study of atherosclerosis. Am J Epidemiol. 2011;174:528–36.CrossRefGoogle Scholar
  21. 21.
    Lund-Johansen P. Twenty-year follow-up of hemodynamics in essential hypertension during rest and exercise. Hypertension. 1991;18(5 Suppl):III54–61.PubMedGoogle Scholar
  22. 22.
    Hart EC. Human hypertension, sympathetic activity and the selfish brain. Exp Physiol. 2016;101:1451–62.CrossRefGoogle Scholar
  23. 23.
    Duprez DA. Role of the renin-angiotensin-aldosterone system in vascular remodeling and inflammation: a clinical review. J Hypertens. 2006;24(6):983–91.CrossRefGoogle Scholar
  24. 24.
    Schütten MT, Houben AJ, de Leeuw PW, Stehouwer CD. The link between adipose tissue renin-angiotensin-aldosterone system signaling and obesity-associated hypertension. Physiology (Bethesda). 2017;32:197–209.Google Scholar
  25. 25.
    Khaddaj Mallat R, Mathew John C, Kendrick DJ, Braun AP. The vascular endothelium: a regulator of arterial tone and interface for the immune system. Crit Rev Clin Lab Sci. 2017;54:458–70. Bartoloni E, Alunno A, Gerli R. Hypertension as a cardiovascular risk factor in autoimmune rheumatic diseases. Nat Rev Cardiol. 2018;15:33–44.Google Scholar
  26. 26.
    Guyton AC. Dominant role of the kidneys and accessory role of whole-body autoregulation in the pathogenesis of hypertension. Am J Hypertens. 1989;2:575–85.CrossRefGoogle Scholar
  27. 27.
    Griffin KA. Hypertensive kidney injury and the progression of chronic kidney disease. Hypertension. 2017;70:687–94.CrossRefGoogle Scholar
  28. 28.
    Kurtz TW, DiCarlo SE, Pravenec M, Morris RC Jr. The pivotal role of renal vasodysfunction in salt sensitivity and the initiation of salt-induced hypertension. Curr Opin Nephrol Hypertens. 2017.  https://doi.org/10.1097/MNH.0000000000000394. [Epub ahead of print].CrossRefGoogle Scholar
  29. 29.
    Epstein M, Duprez DA. Resistant hypertension and the pivotal role for mineralocorticoid receptor antagonists: a clinical update -2016. Am J Med. 2016;129:661–6.CrossRefGoogle Scholar
  30. 30.
    Duprez DA. Aldosterone and the vasculature: mechanisms mediating resistant hypertension. J Clin Hypertens (Greenwich). 2007;9(1 Suppl 1):13–8.CrossRefGoogle Scholar
  31. 31.
    Bristow JD, Honour AJ, Pickering GW, Sleight P, Smyth HS. Diminished baroreflex sensitivity in high blood pressure. Circulation. 1969;39:48–54.CrossRefGoogle Scholar
  32. 32.
    AlGhatrif M, Wang M, Fedorova OV, Bagrov AY, Lakatta EG. The pressure of aging. Med Clin North Am. 2017;101:81–101.CrossRefGoogle Scholar
  33. 33.
    Padmanabhan S, Caulfield M, Dominiczak AF. Genetic and molecular aspects of hypertension. Circ Res. 2015;116:937–59.CrossRefGoogle Scholar
  34. 34.
    Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Cell. 2001;104:545–56.CrossRefGoogle Scholar
  35. 35.
    Stamler J. The INTERSALT study: background, methods, findings, and implications. Am J Clin Nutr. 1997;65:626S–42S.CrossRefGoogle Scholar
  36. 36.
    Whelton PK. Sodium, potassium, blood pressure, and cardiovascular disease in humans. Curr Hypertens Rep. 2014;16:465.CrossRefGoogle Scholar
  37. 37.
    Strazzullo P, D'Elia L, Kandala NB. Salt intake, stroke, and cardiovascular disease: meta-analysis of prospective studies. BMJ. 2009;339:b4567.CrossRefGoogle Scholar
  38. 38.
    Kieneker LM, Gansevoort RT, Mukamal KJ, et al. Urinary potassium excretion and risk of developing hypertension: the prevention of renal and vascular end-stage disease study. Hypertension. 2014;64:769–76.CrossRefGoogle Scholar
  39. 39.
    D’Elia L1, Barba G, Cappuccio FP, Strazzullo P. Potassium intake, stroke, and cardiovascular disease a meta-analysis of prospective studies. J Am Coll Cardiol. 2011;57:1210–9.CrossRefGoogle Scholar
  40. 40.
    Linneberg A, Jacobsen RK, Skaaby T, Taylor AE, Fluharty ME, Jeppesen JL, Bjorngaard JH, Åsvold BO, Gabrielsen ME, Campbell A, Marioni RE, Kumari M, Marques-Vidal P, Kaakinen M, Cavadino A, Postmus I, Ahluwalia TS, Wannamethee SG, Lahti J, Räikkönen K, Palotie A, Wong A, Dalgård C, Ford I, Ben-Shlomo Y, Christiansen L, Kyvik KO, Kuh D, Eriksson JG, Whincup PH, Mbarek H, de Geus EJ, Vink JM, Boomsma DI, Smith GD, Lawlor DA, Kisialiou A, McConnachie A, Padmanabhan S, Jukema JW, Power C, Hyppönen E, Preisig M, Waeber G, Vollenweider P, Korhonen T, Laatikainen T, Salomaa V, Kaprio J, Kivimaki M, Smith BH, Hayward C, Sørensen TI, Thuesen BH, Sattar N, Morris RW, Romundstad PR, Munafò MR, Jarvelin MR, Husemoen LL. Effect of smoking on blood pressure and resting heart rate: a Mendelian randomization meta-analysis in the CARTA consortium. Circ Cardiovasc Genet. 2015;8:832–41.CrossRefGoogle Scholar
  41. 41.
    Taylor B, Irving HM, Baliunas D, Roerecke M, Patra J, Mohapatra S, et al. Alcohol and hypertension: gender differences in dose-response relationships determined through systematic review and meta-analysis. Addiction. 2009;104:1981–90.CrossRefGoogle Scholar
  42. 42.
    Briasoulis A, Agarwal V, Messerli FH. Alcohol consumption and the risk of hypertension in men and women: a systematic review and meta-analysis. J Clin Hypertens. 2012;14:792–8.CrossRefGoogle Scholar
  43. 43.
    Rehm J, Anderson P, Prieto JAA, Armstrong I, Aubin HJ, Bachmann M, Bastus NB, Brotons C, Burton R, Cardoso M, Colom J, Duprez D, Gmel G, Gual A, Kraus L, Kreutz R, Liira H, Manthey J, Møller L, Okruhlica Ľ, Roerecke M, Scafato E, Schulte B, Segura-Garcia L, Shield KD, Sierra C, Vyshinskiy K, Wojnar M, Zarco J. Towards new recommendations to reduce the burden of alcohol-induced hypertension in the European Union. BMC Med. 2017;15(1):173.  https://doi.org/10.1186/s12916-017-0934-1.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Hubert HB, Feinleib M, McNamara PM, Castelli WP. Obesity as an independent risk factor for cardiovascular disease: a 26year follow-up of participants in the Framingham Heart Study. Circulation. 1983;67:968–77.CrossRefGoogle Scholar
  45. 45.
    Huang Z, Willett WC, Manson JE, Rosner B, Stampfer MJ, Speizer FE, olditz GA. Body weight, weight change, and risk for hypertension in women. Ann Intern Med. 1998;128:81–8.CrossRefGoogle Scholar
  46. 46.
    Mertens IL, Van Gaal LF. Overweight, obesity, and blood pressure: the effects of modest weight reduction. Obes Res. 2000;8:270–8.CrossRefGoogle Scholar
  47. 47.
    Lesniak KT, Dubbert PM. Exercise and hypertension. Curr Opin Cardiol. 2001;16:356–69.CrossRefGoogle Scholar
  48. 48.
    Anderson AH, Yang W, Townsend RR, Pan Q, Chertow GM, Kusek JW, Charleston J, He J, Kallem R, Lash JP, Miller ER 3rd, Rahman M, Steigerwalt S, Weir M, Wright JT Jr, Feldman HI. Chronic renal insufficiency cohort study investigators. Time-updated systolic blood pressure and the progression of chronic kidney disease: a cohort study. Ann Intern Med. 2015;162:258–65.CrossRefGoogle Scholar
  49. 49.
    Bavishi C, de Leeuw PW, Messerli FH. Atherosclerotic renal artery stenosis and hypertension: pragmatism, pitfalls, and perspectives. Am J Med. 2016;129(6):635.e5–635.e14.CrossRefGoogle Scholar
  50. 50.
    Cooper CJ, Murphy TP, Cutlip DE, Jamerson K, Henrich W, Reid DM, Cohen DJ, Matsumoto AH, Steffes M, Jaff MR, Prince MR, Lewis EF, Tuttle KR, Shapiro JI, Rundback JH, Massaro JM, Agostino RB D’ Sr, Dworkin LD, CORAL Investigators. Stenting and medical therapy for atherosclerotic renal-artery stenosis. N Engl J Med. 2014;370:13–22.CrossRefGoogle Scholar
  51. 51.
    Anderson JL, Halperin JL, Albert NM, Bozkurt B, Brindis RG, Curtis LH, DeMets D, Guyton RA, Hochman JS, Kovacs RJ, Ohman EM, Pressler SJ, Sellke FW, Shen WK. Management of patients with peripheral artery disease (compilation of 2005 and 2011 ACCF/AHA guideline recommendations): a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2013;127:1425–43.CrossRefGoogle Scholar
  52. 52.
    Funder JW, Carey RM, Mantero F, Murad MH, Reincke M, Shibata H, Stowasser M, Young WF Jr. The management of primary aldosteronism: case detection, diagnosis, and treatment: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2016;101(5):1889–916.CrossRefGoogle Scholar
  53. 53.
    Brown JM, Robinson-Cohen C, Luque-Fernandez MA, Allison MA, Baudrand R, Ix JH, Kestenbaum B, de Boer IH, Vaidya A. The spectrum of subclinical primary aldosteronism and incident hypertension: a cohort study. Ann Intern Med. 2017;167:630–41.CrossRefGoogle Scholar
  54. 54.
    Farrugia FA, Martikos G, Tzanetis P, Charalampopoulos A, Misiakos E, Zavras N, Sotiropoulos D. Pheochromocytoma, diagnosis and treatment: review of the literature. Endocr Regul. 2017;51:168–81.CrossRefGoogle Scholar
  55. 55.
    Lenders JW, Pacak K, Walther MM, et al. Biochemical diagnosis of pheochromocytoma, which test is best? JAMA. 2002;287:1427–34.CrossRefGoogle Scholar
  56. 56.
    Achelrod D, Wenzel U, Frey S. Systematic review and meta-analysis of the prevalence of resistant hypertension in treated hypertensive populations. Am J Hypertens. 2015;28:355–61.CrossRefGoogle Scholar
  57. 57.
    Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD, White A, Cushman WC, White W, Sica D, Ferdinand K, Giles TD, Falkner B, Carey RM. Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension. 2008;51:1403–19.CrossRefGoogle Scholar
  58. 58.
    Calhoun DA, Booth JN 3rd, Oparil S, Irvin MR, Shimbo D, Lackland DT, Howard G, Safford MM, Muntner P. Refractory hypertension: determination of prevalence, risk factors, and comorbidities in a large, population-based cohort. Hypertension. 2014;63:451–8.CrossRefGoogle Scholar
  59. 59.
    Calhoun D. Use of aldosterone antagonists in resistant hypertension. Prog Cardiovasc Dis. 2006;48:387–96.CrossRefGoogle Scholar
  60. 60.
    Pickering TG, Hall JE, Appel LJ, Falkner BE, Graves J, Hill MN, Jones DW, Kurtz T, Sheps SG, Roccella E. Recommendations for blood pressure measurement in humans and experimental animals: part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Circulation. 2005;111:697–716.CrossRefGoogle Scholar
  61. 61.
    Agarwal R, Bills JE, Hecht TJ, Light RP. Role of home blood pressure monitoring in overcoming therapeutic inertia and improving hypertension control: a systematic review and meta-analysis. Hypertension. 2011;57:29–38.CrossRefGoogle Scholar
  62. 62.
    O’Brien E, Parati G, Stergiou G, Asmar R, Beilin L, Bilo G, Clement D, de la Sierra A, de Leeuw P, Dolan E, Fagard R, Graves J, Head GA, Imai Y, Kario K, Lurbe E, Mallion JM, Mancia G, Mengden T, Myers M, Ogedegbe G, Ohkubo T, Omboni S, Palatini P, Redon J, Ruilope LM, Shennan A, Staessen JA, van Montfrans G, Verdecchia P, Waeber B, Wang J, Zanchetti A, Zhang Y. European Society of Hypertension Working Group on Blood Pressure Monitoring and Cardiovascular Variability. European Society of Hypertension position paper on ambulatory blood pressure monitoring. J Hypertens. 2013;31:1731–68.CrossRefGoogle Scholar
  63. 63.
    Clement DL, De Buyzere ML, De Bacquer DA, de Leeuw PW, Duprez DA, Fagard RH, Gheeraert PJ, Missault LH, Braun JJ, Six RO, Van Der Niepen P, O’Brien E. Office versus Ambulatory Pressure Study Investigators. Prognostic value of ambulatory blood-pressure recordings in patients with treated hypertension. N Engl J Med. 2003;348(24):2407–15.CrossRefGoogle Scholar
  64. 64.
    Investigators ABC-H, Roush GC, Fagard RH, Salles GF, Pierdomenico SD, Reboldi G, Verdecchia P, Eguchi K, Kario K, Hoshide S, Polonia J, de la Sierra A, Hermida RC, Dolan E, Zamalloa H. Prognostic impact from clinic, daytime, and night-time systolic blood pressure in nine cohorts of 13,844 patients with hypertension. J Hypertens. 2014;32:2332–40.Google Scholar
  65. 65.
    Neter JE, Stam BE, Kok FJ, Grobbee DE, Geleijnse JM. Influence of weight reduction on blood pressure: a meta-analysis of randomized controlled trials. Hypertension. 2003;42:878–84.CrossRefGoogle Scholar
  66. 66.
    Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, Obarzanek E, Conlin PR, Miller ER 3rd, Simons-Morton DG, Karanja N, Lin PH. DASH-Sodium Collaborative Research Group. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N Engl J Med. 2001;344:3–10.CrossRefGoogle Scholar
  67. 67.
    He FJ, Li J, MacGregor GA. Effect of longer term modest salt reduction on blood pressure: Cochrane systematic review and meta-analysis of randomised trials. BMJ. 2013;346:f1325.CrossRefGoogle Scholar
  68. 68.
    Aburto NJ, Hanson S, Gutierrez H, Hooper L, Elliott P, Cappuccio FP. Effect of increased potassium intake on cardiovascular risk factors and disease: systematic review and meta-analyses. BMJ. 2013;346:f1378.CrossRefGoogle Scholar
  69. 69.
    Cornelissen VA, Smart NA. Exercise training for blood pressure: a systematic review and meta-analysis. J Am Heart Assoc. 2013;2:e004473.CrossRefGoogle Scholar
  70. 70.
    Roerecke M, Kaczorowski J, Tobe SW, Gmel G, Hasan OSM, Rehm J. The effect of a reduction in alcohol consumption on blood pressure: a systematic review and meta-analysis. Lancet Public Health. 2017;2:e108–20.CrossRefGoogle Scholar
  71. 71.
    SPRINT Research Group, Wright JT Jr, Williamson JD, Whelton PK, Snyder JK, Sink KM, Rocco MV, Reboussin DM, Rahman M, Oparil S, Lewis CE, Kimmel PL, Johnson KC, Goff DC Jr, Fine LJ, Cutler JA, Cushman WC, Cheung AK, Ambrosius WT. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015;373:2103–16.CrossRefGoogle Scholar
  72. 72.
    Ambrosius WT, Sink KM, Foy CG, et al. The design and rationale of a multicenter clinical trial comparing two strategies for control of systolic blood pressure: the Systolic Blood Pressure Intervention Trial (SPRINT). Clin Trials. 2014;11:532–46.CrossRefGoogle Scholar
  73. 73.
    Cushman WC, Grimm RH Jr, Cutler JA, et al. Rationale and design for the blood pressure intervention of the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. Am J Cardiol. 2007;99:44i–55i.CrossRefGoogle Scholar
  74. 74.
    Bosworth HB, Powers BJ, Olsen MK, et al. Home blood pressure management and improved blood pressure control: results from a randomized controlled trial. Arch Intern Med. 2011;171:1173–80.CrossRefGoogle Scholar
  75. 75.
    Yancy CW, Jessup M, Bozkurt B, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation. 2017;136:e137–61.CrossRefGoogle Scholar
  76. 76.
    Liu K, Colangelo LA, Daviglus ML, Goff DC, Pletcher M, Schreiner PJ, Sibley CT, Burke GL, Post WS, Michos ED, Lloyd-Jones DM. Can antihypertensive treatment restore the risk of cardiovascular disease to ideal levels?: the Coronary Artery Risk Development in Young Adults (CARDIA) study and the Multi-Ethnic Study of Atherosclerosis (MESA). J Am Heart Assoc. 2015;4(9):e002275.  https://doi.org/10.1161/JAHA.115.002275.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Julius S, Nesbitt SD, Egan BM, Weber MA, Michelson EL, Kaciroti N, Black HR, Grimm RH Jr, Messerli FH, Oparil S, Schork MA, Trial of Preventing Hypertension (TROPHY) Study Investigators. Feasibility of treating prehypertension with an angiotensin-receptor blocker. N Engl J Med. 2006;354:1685–97.CrossRefGoogle Scholar
  78. 78.
    Duprez DA, Cohn JN. Monitoring vascular health beyond blood pressure. Curr Hypertens Rep. 2006;8:287–91.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Cardiovascular Division, Department of MedicineUniversity of MinnesotaMinneapolisUSA

Personalised recommendations