Skip to main content

Parallel and Distributed Computing for Processing Big Image and Video Data

  • Chapter
  • First Online:
Multimodal Analytics for Next-Generation Big Data Technologies and Applications

Abstract

This chapter presents two approaches for addressing the challenges of processing and analysis for Big image or video data. The first approach exploits the intrinsic data-parallel nature of common image processing techniques for processing large images or dataset of images in a distributed manner on a multi-node cluster. The implementation is done using Apache Hadoop’s MapReduce framework and Hadoop Image Processing Interface (HIPI) which facilitates efficient and high-throughput image processing. It also includes a description of a Parallel Image Processing Library (ParIPL) developed by the authors on this framework which is aimed to significantly simplify image processing using Hadoop. The library exploits parallelism at various levels—frame level and intra-frame level. The second approach uses high-end GPUs for efficient parallel implementation of specialized applications with high performance and real-time processing requirements. Parallel implementation of video object detection algorithm, which is the fundamental step in any surveillance-related analysis, is presented on GPU architecture along with fine-grain optimization techniques and algorithm innovation. Experimental results show significant speedups of the algorithms resulting in real-time processing of HD and panoramic resolution videos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sankaranarayanan, A.C., Veeraraghavan, A., Chellappa, R.: Object detection, tracking and recognition for multiple smart cameras. Proc. IEEE. 96(10), 1606–1624 (2008)

    Article  Google Scholar 

  2. Bibby, C., Reid, I.D.: Robust real-time visual tracking using pixelwise posteriors. In: European Conference on Computer Vision, pages II:831–844 (2008)

    Google Scholar 

  3. Stauffer, C., Grimson, W.: Adaptive background mixture models for real-time tracking, In: Proceedings CVPR, pp. 246–252 (1999)

    Google Scholar 

  4. Sweeney, C., Liu, L., Arietta, S., Lawrence, J.: HIPI for image processing using MapReduce, http://homes.cs.washington.edu/~csweeney/papers/undergrad_thesis.pdf, Site: http://hipi.cs.virginia.edu/ (last accessed on 15th October, 2017)

  5. Fiorio, C., Gustedt, J.: Two linear time union-find strategies for image processing. Theor. Comput. Sci. 154(2), 165–181 (1996)

    Article  MathSciNet  Google Scholar 

  6. Demir, A.S.: Hadoop optimization for massive image processing: case study face detection. univagora.ro/jour/index.php/ijccc/article/download/285/pdf_142 (last accessed on 15th October, 2017)

  7. Chang, F., Chen, C.-J., Lu, C.-J.: A linear-time component-labeling algorithm using contour tracing technique. Comput. Vis. Underst. 93(2), 206–220 (2004)

    Article  Google Scholar 

  8. Sugano, H., Miyamoto, R.: Parallel implementation of morphological processing on CELL BE with OpenCV interface. Communications, Control and Signal Processing, 2008. ISCCSP 2008, pp. 578–583 (2008)

    Google Scholar 

  9. Squyres, J.M., Lumsdaine, A., Mccandless, B.C., Stevenson, R.L.: Parallel and distributed algorithms for high speed image processing sliding window technique. https://www.researchgate.net/publication/2820345_Parallel_and_Distributed_Algorithms_for_High_Speed_Image_Processing

  10. Park, J.M., Looney, C.G., Chen, H.C.: Fast connected component labeling algorithm using a divide and conquer technique. Computer Science Department University of Alabama and University of Nevada, Reno (2004)

    Google Scholar 

  11. Jefferson, K., Lee, C.: Computer vision workload analysis: case study of video surveillance systems. Intel Technol. J. 09(02), (2005)

    Google Scholar 

  12. Wu, K., Otoo, E., Shoshani, A.: Optimizing connected component labeling algorithms. In: Proceedings of SPIE Medical Imaging Conference 2005, San Diego, CA (2005). LBNL report LBNL-56864

    Google Scholar 

  13. Boyer, M., Tarjan, D., Acton, S.T., Skadron, K.: Accelerating leukocyte tracking using CUDA: a case study in leveraging manycore coprocessors (2009)

    Google Scholar 

  14. Manohar, M., Ramapriyan, H.K.: Connected component labeling of binary images on a mesh connected massively parallel processor. Comput. Vis. Graph. Image Process. 45(2), 133–149 (1989)

    Article  Google Scholar 

  15. Sonawane, M.M., Pandure, S.D., Kawthekar, S.S.: A Review on Hadoop MapReduce using image processing and cloud computing. IOSR J Comput Eng (IOSR-JCE) e-ISSN: 2278-0661, p-ISSN: 2278-872. http://www.iosrjournals.org/iosr-jce/papers/Conf.17003/Volume-1/13.%2065-68.pdf?id=7557 (last accessed on 15th October, 2017)

  16. Sozykin, A., Epanchintsev, T.: MIPr Framework, https://www.researchgate.net/publication/301656009_MIPr_-_a_Framework_for_Distributed_Image_Processing_Using_Hadoop

  17. Kumar, P., Palaniappan, K., Mittal, A., Seetharaman, G.: Parallel blob extraction using multi-core cell processor. Advanced concepts for intelligent vision systems (ACIVS) 2009. LNCS 5807, pp. 320–332 (2009)

    Google Scholar 

  18. Kumar, P., Mehta, S., Goyal, A., Mittal, A.: Real-time moving object detection algorithm on high resolution videos using GPUs. J. Real-Time Image Proc. 11(1), 93–109 (2016). https://doi.org/10.1007/s11554-012-0309-y)

    Article  Google Scholar 

  19. Momcilovic, S., Sousa, L.: A parallel algorithm for advanced video motion estimation on multi-core architectures. In: International Conference Complex, Intelligent and Software Intensive Systems, pp. 831–836 (2008)

    Google Scholar 

  20. Banaei, S.M., Moghaddam, H.K.: Apache Hadoop for image processing using distributed systems. https://file.scirp.org/pdf/OJMS_2014101515502691.pdf

  21. Toyama, K., Krumm, J., Brumitt, B., Meyers, B., Wallflower: Principles and practice of background maintenance. The proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 1, pp. 255–261, 20–25 September, 1999, Kerkyra, Corfu, Greece

    Google Scholar 

  22. Zivkovic, Z.: Improved adaptive Gaussian mixture model for background subtraction. In: Proc. ICPR, pp. 28–31 vol. 2, 2004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, P., Bodade, A., Kumbhare, H., Ashtankar, R., Arsh, S., Gosar, V. (2019). Parallel and Distributed Computing for Processing Big Image and Video Data. In: Seng, K., Ang, Lm., Liew, AC., Gao, J. (eds) Multimodal Analytics for Next-Generation Big Data Technologies and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-97598-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97598-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97597-9

  • Online ISBN: 978-3-319-97598-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics