Advertisement

A Multi-channel EMG-Driven FES Solution for Stroke Rehabilitation

  • Yu ZhouEmail author
  • Yinfeng Fang
  • Jia Zeng
  • Kairu Li
  • Honghai Liu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10984)

Abstract

Functional electrical stimulation (FES) has been applied to stroke rehabilitation for many years. However, users are usually involved in open-loop fixed cycle FES systems in clinical, which is easy to cause muscle fatigue and reduce rehabilitation efficacy. This paper proposes a multi-surface EMG-driven FES integration solution for enhancing upper-limb stroke rehabilitation. This wireless portable system consists of sEMG data acquisition module and FES module, the former is used to capture sEMG signals, the latter of multi-channel FES output can be driven by the sEMG. Preliminary experiments proved that the system has outperformed existing similar systems and that sEMG can be effectively employed to achieve different FES intensity, demonstrating the potential for active stroke rehabilitation.

Keywords

Functional electrical stimulation (FES) Surface electromyography (sEMG) Integration system Stroke rehabilitation 

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. 51575338, 51575407, 51475427) and the Fundamental Research Funds for the Central Universities (17JCYB03).

References

  1. 1.
    Lynch, C.L., Popovic, M.R.: Functional electrical stimulation. IEEE Control Syst. 28(2), 40–50 (2008)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Liberson, W.: Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch. Phys. Med. Rehabil. 42, 101 (1961)Google Scholar
  3. 3.
    Popović, D.B.: Advances in functional electrical stimulation (FES). J. Electromyogr. Kinesiol. 24(6), 795–802 (2014)CrossRefGoogle Scholar
  4. 4.
    Lyons, G.M., Sinkjær, T., Burridge, J.H., Wilcox, D.J.: A review of portable FES-based neural orthoses for the correction of drop foot. IEEE Trans. Neural Syst. Rehabil. Eng. 10(4), 260–279 (2002)CrossRefGoogle Scholar
  5. 5.
    Edgerton, V.R., Roy, R.R.: Robotic training and spinal cord plasticity. Brain Res. Bull. 78(1), 4–12 (2009)CrossRefGoogle Scholar
  6. 6.
    Lotze, M., Braun, C., Birbaumer, N., Anders, S., Cohen, L.G.: Motor learning elicited by voluntary drive. Brain 126(4), 866–872 (2003)CrossRefGoogle Scholar
  7. 7.
    Quandt, F., Hummel, F.C.: The influence of functional electrical stimulation on hand motor recovery in stroke patients: a review. Exp. Trans. Stroke Med. 6(1), 9 (2014)CrossRefGoogle Scholar
  8. 8.
    Hong, I.K., Choi, J.B., Lee, J.H.: Cortical changes after mental imagery training combined with electromyography-triggered electrical stimulation in patients with chronic stroke. Stroke 43(9), 2506–2509 (2012)CrossRefGoogle Scholar
  9. 9.
    Fujiwara, T.: Motor improvement and corticospinal modulation induced by hybrid assistive neuromuscular dynamic stimulation (hands) therapy in patients with chronic stroke. Neurorehabilitation Neural Repair 23(2), 125–132 (2009)CrossRefGoogle Scholar
  10. 10.
    Fang, Y., Zhu, X., Liu, H.: Development of a surface EMG acquisition system with novel electrodes configuration and signal representation. In: Lee, J., Lee, M.C., Liu, H., Ryu, J.-H. (eds.) ICIRA 2013. LNCS (LNAI), vol. 8102, pp. 405–414. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40852-6_41CrossRefGoogle Scholar
  11. 11.
    Forvi, E., et al.: Preliminary technological assessment of microneedles-based dry electrodes for biopotential monitoring in clinical examinations. Sens. Actuators A Phys. 180, 177–186 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Yu Zhou
    • 1
    Email author
  • Yinfeng Fang
    • 2
  • Jia Zeng
    • 1
  • Kairu Li
    • 2
  • Honghai Liu
    • 1
  1. 1.State Key Laboratory of Mechanical System and VibrationShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Group of Intelligent System and Biomedical Robotics, School of Creative TechnologiesUniversity of PortsmouthPortsmouthUK

Personalised recommendations