Advertisement

Current Perspectives on the Application of Bayesian Networks in Different Domains

  • Galina M. NovikovaEmail author
  • Esteban J. Azofeifa
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 838)

Abstract

Bayesian networks are powerful tools for representing relations of dependence among variables of a domain under uncertainty. Over the last decades, applications of Bayesian networks have been developed for a wide variety of subject areas, in tasks such as learning, modeling, forecasting and decision-making. Out of hundreds of related papers found, we picked a sample of 150 to study the trends of such applications over a 16-year interval. We classified the publications according to their corresponding domain of application, and then analyzed the tendency to develop Bayesian networks in determined areas of research. We found a set of indicators that help better explain these tendencies: the levels of formalization, data accuracy and data accessibility of a domain, and the level of human intervention in the primary data. The results and methodology of the current study provide insight into potential areas of research and application of Bayesian networks.

Keywords

Bayesian networks Uncertainty Domain Formalization Human intervention Data accuracy Data accessibility 

Notes

Acknowledgment

The research presented in this paper was supported by the RUDN University Program 5-100.

References

  1. 1.
    Alsheikh-Ali, A.A., Qureshi, W., Al-Mallah, M.H., Ioannidis, J.P.A.: Public availability of published research data in high-impact journals. PLoS ONE 6(9), e24357 (2011).  https://doi.org/10.1371/journal.pone.0024357CrossRefGoogle Scholar
  2. 2.
    Chuang, S.H.: A resource-based perspective on knowledge management capability and competitive advantage: an empirical investigation. Expert Syst. Appl. 27(3), 459–465 (2004).  https://doi.org/10.1016/j.eswa.2004.05.008CrossRefGoogle Scholar
  3. 3.
    Fenton, N., Neil, M., Lagnado, D.A.: A general structure for legal arguments about evidence using Bayesian networks. Cogn. Sci. 37(1), 61–102 (2012).  https://doi.org/10.1111/cogs.12004CrossRefGoogle Scholar
  4. 4.
    Galley, M., McKeown, K., Hirschberg, J., Shriberg, E.: Identifying agreement and disagreement in conversational speech: Use of Bayesian networks to model pragmatic dependencies, pp. 669–676 (2004)Google Scholar
  5. 5.
    Greenspan, R.J.: Biological indeterminacy. Sci. Eng. Ethics 18(3), 447–452 (2012).  https://doi.org/10.1007/s11948-012-9379-2CrossRefGoogle Scholar
  6. 6.
    Harzing, A., van der Wal, R.: Google scholar as a new source for citation analysis. Ethics Sci. Environ. Polit. 8, 61–73 (2008).  https://doi.org/10.3354/esep00076CrossRefGoogle Scholar
  7. 7.
    Xu, S.J., Nourinejad, M., Lai, X., Chow, Y. J.: Network learning via multiagent inverse transportation problems. Transp. Sci. (2017).  https://doi.org/10.1287/trsc.2017.0805
  8. 8.
    Kasper, G., Wagner, J.: Conversation analysis in applied linguistics. Ann. Rev. Appl. Linguist. 34, 171–212 (2014).  https://doi.org/10.1017/S0267190514000014CrossRefGoogle Scholar
  9. 9.
    Katzner, D.W.: Unmeasured Information and the Methodology of Social Scientific Inquiry, 1st edn. Kluwer Academic Publishers, Boston (2001)CrossRefGoogle Scholar
  10. 10.
    van Kerkhoff, L.: Integrated research: concepts of connection in environmental science and policy. Environ. Sci. Policy 8(5), 452–463 (2005).  https://doi.org/10.1016/j.envsci.2005.06.002CrossRefGoogle Scholar
  11. 11.
    Kress, K.: Legal indeterminacy. Calif. Law Rev. 77(2), 283 (1989).  https://doi.org/10.2307/3480606CrossRefGoogle Scholar
  12. 12.
    McCarthy, J.: Generality in artificial intelligence. Commun. ACM 30(12), 1030–1035 (1987).  https://doi.org/10.1145/33447.33448MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Mkrtchyan, L., Podofillini, L., Dang, V.: Bayesian belief networks for human reliability analysis: a review of applications and gaps (2015)Google Scholar
  14. 14.
    Newton, A.C.: Bayesian Belief Networks in Environmental Modelling: A Review of Recent Progress, 1st edn, pp. 13–50. Nova Science Publishers, New York (2009)Google Scholar
  15. 15.
    Okutan, A., Yildiz, O.T.: Software defect prediction using Bayesian networks. Empir. Softw. Eng. 19(1), 154–181 (2012).  https://doi.org/10.1007/s10664-012-9218-8CrossRefGoogle Scholar
  16. 16.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems, 1st edn. Kaufmann, San Mateo (1988)zbMATHGoogle Scholar
  17. 17.
    Prakken, H.: A logical framework for modelling legal argument, pp. 1–9. ACM Press (1993)Google Scholar
  18. 18.
    Rubin, A., Riznichenko, G.Y.: Mathematical Biophysics, 1st edn. Springer, Boston (2014).  https://doi.org/10.1007/978-1-4614-8702-9CrossRefzbMATHGoogle Scholar
  19. 19.
    Russell, S.J., Norvig, P., Davis, E.: Artificial Intelligence, 1st edn. Prentice Hall, Upper Saddle River (2010)zbMATHGoogle Scholar
  20. 20.
    Shackley, S., Wynne, B.: Representing uncertainty in global climate change science and policy: boundary-ordering devices and authority. Sci. Technol. Hum. Values 21(3), 275–302 (1996).  https://doi.org/10.1177/016224399602100302CrossRefGoogle Scholar
  21. 21.
    Xie, P., Li, J.H., Ou, X., Liu, P., Levy, R.: Using Bayesian networks for cyber security analysis, pp. 211–220. IEEE/IFIP (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.RUDN UniversityMoscowRussia

Personalised recommendations