Advertisement

The Algorithm for Constrained Shortest Path Problem Based on Incremental Lagrangian Dual Solution

  • Boris Novikov
  • Roman GuralnikEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 838)

Abstract

Most of the systems that rely on the solution of shortest path problem or constrained shortest demand real-time response to unexpected real world events that affect the input graph of the problem such as car accidents, road repair works or simply dense traffic. We developed new incremental algorithm that uses data already present in the system in order to quickly update a solution under new conditions. We conducted experiments on real data sets represented by road graphs of the cities of Oldenburg and San Joaquin. We test the algorithm against that of Muhandiramge and Boland [1] and show that it provides up to 50% decrease in computation time compared to solving the problem from scratch.

Keywords

Incremental Constrained shortest path Road graphs 

References

  1. 1.
    Muhandiramge, R., Boland, N.: Simultaneous solution of Lagrangean dual problems interleaved with preprocessing for the weight constrained shortest path problem. Networks 53(4), 358–381 (2009).  https://doi.org/10.1002/net.20292MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Guralnik, R.: Incremental rerouting algorithm for single-vehicle VRPPD. In: Proceedings of the 18th International Conference on Computer Systems and Technologies, pp. 44–51. ACM (2017).  https://doi.org/10.1145/3134302.3134326
  3. 3.
    Jaw, J.J., Odoni, A.R., Psaraftis, H.N., Wilson, N.H.: A heuristic algorithm for the multi-vehicle advance request dial-a-ride problem with time windows. Transp. Res. Part B: Methodol. 20(3), 243–257 (1986).  https://doi.org/10.1016/0191-2615(86)90020-2CrossRefGoogle Scholar
  4. 4.
    Barnhart, C., et al.: Flight string models for aircraft fleeting and routing. Transp. Sci. 32(3), 208–220 (1998).  https://doi.org/10.1287/trsc.32.3.208MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Carlyle, W.M., Royset, J.O., Wood, R.K.: Routing military aircraft with a constrained shortest-path algorithm. Naval Postgraduate School, Monterey CA, Department of Operations Research (2007)Google Scholar
  6. 6.
    Desrochers, M., Soumis, F.: A column generation approach to the urban transit crew scheduling problem. Transp. Sci. 23(1), 1–3 (1989).  https://doi.org/10.1287/trsc.23.1.1CrossRefzbMATHGoogle Scholar
  7. 7.
    Laporte, G., Pascoal, M.M.: The pipeline and valve location problem. Eur. J. Ind. Eng. 6(3), 301–321 (2012).  https://doi.org/10.1504/EJIE.2012.046669CrossRefGoogle Scholar
  8. 8.
    Cabral, E.A., Erkut, E., Laporte, G., Patterson, R.A.: The network design problem with relays. Eur. J. Oper. Res. 80(2), 834–844 (2007).  https://doi.org/10.1016/j.ejor.2006.04.030CrossRefzbMATHGoogle Scholar
  9. 9.
    Smith, O.J., Boland, N., Waterer, H.: Solving shortest path problems with a weight constraint and replenishment arcs. Comput. Oper. Res. 39(5), 964–984 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Pallottino, S., Scutella, M.G.: A new algorithm for reoptimizing shortest paths when the arc costs change. Oper. Res. Lett. 31(2), 149–160 (2003).  https://doi.org/10.1016/S0167-6377(02)00192-XMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Aneja, Y.P., Aggarwal, V., Nair, K.P.: Shortest chain subject to side constraints. Networks 13(2), 295–302 (1983).  https://doi.org/10.1002/net.3230130212MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Beasley, J.E., Christofides, N.: An algorithm for the resource constrained shortest path problem. Networks 19(4), 379–394 (1989).  https://doi.org/10.1002/net.3230190402MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Dumitrescu, I., Boland, N.: Improved preprocessing, labeling and scaling algorithms for the weight constrained shortest path problem. Networks 42(3), 135–153 (2003).  https://doi.org/10.1002/net.10090MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Mehlhorn, K., Ziegelmann, M.: Resource constrained shortest paths. In: Paterson, Mike S. (ed.) ESA 2000. LNCS, vol. 1879, pp. 326–337. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-45253-2_30CrossRefGoogle Scholar
  15. 15.
    Carlyle, W.M., Royset, J.O., Wood, R.K.: Lagrangian relaxation and enumeration for solving constrained shortest path problems. Networks 52(4), 256–270 (2008).  https://doi.org/10.1002/net.20247MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Gallo, G.: Reoptimization procedures in shortest path problem. Rivista di matematica per le scienze economiche e sociali 3(1), 3–13 (1980).  https://doi.org/10.1007/BF02092136MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ramalingam, G., Reps, T.: An incremental algorithm for a generalization of the shortest-path problem. J. Algorithms 21(2), 267–305 (1996).  https://doi.org/10.1006/jagm.1996.0046MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    King, V., Thorup, M.: A space saving trick for directed dynamic transitive closure and shortest path algorithms. In: Wang, J. (ed.) COCOON 2001. LNCS, vol. 2108, pp. 268–277. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44679-6_30CrossRefzbMATHGoogle Scholar
  19. 19.
    Demetrescu, C.: Fully Dynamic Algorithms for Path Problems on Directed Graphs. Ph.D. thesis, Department of Computer and Systems Science, University of Rome “LaSapienza” (2001)Google Scholar
  20. 20.
    Zhu, X.: The Dynamic, Resource-Constrained Shortest Path Problem on an Acyclic Graph with Application in Column Generation and Literature Review on Sequence-Dependent Scheduling. Doctoral dissertation, Texas A&M University (2007)Google Scholar
  21. 21.
    Nguyen, S., Pallottino, S., Scutellà, M.G.: A New Dual Algorithm for Shortest Path Reoptimization. In: Gendreau, M., Marcotte, P. (eds.) Transportation and Network Analysis: Current Trends. Applied Optimization, vol. 63, pp. 221–235. Springer, Boston (2002).  https://doi.org/10.1007/978-1-4757-6871-8_14CrossRefGoogle Scholar
  22. 22.
    Pallottino, S., Scutellà, M.G.: Dual algorithms for the shortest path tree problem. Networks 29(2), 125–133 (1997). https://doi.org/10.1002/(SICI)1097-0037(199703)29:2<125::AID-NET7>3.0.CO;2-LMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Li, F., Cheng, D., Hadjieleftheriou, M., Kollios, G., Teng, S.-H.: On trip planning queries in spatial databases. In: Bauzer Medeiros, C., Egenhofer, Max J., Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 273–290. Springer, Heidelberg (2005).  https://doi.org/10.1007/11535331_16CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Saint Petersburg State UniversitySaint-PetersburgRussia

Personalised recommendations