Advertisement

WP-D: Environmental Information System

Chapter
  • 245 Downloads
Part of the Terrestrial Environmental Sciences book series (TERENVSC)

Abstract

The previous chapters gave detailed insight into the collection of environmental data and the use of that data for purposes such as determining and improving water quality, dealing with extreme weather events, or the planning of waste water management systems. However, adequate visualisation techniques are required to communicate the significance of this work and the consequences of research results to stakeholders or laymen. In addition, sustainable management of water resources requires well-engineered software solutions that can be operated by regional authorities and operating companies. To this end, the “Urban Catchments”-project includes the adaption and adjustment of software frameworks for the region around Chao Lake.

Keywords

Environmental Information System (EIS) Chao Lake Waste Water Management Systems Urban Catchment Virtual Geographic Environment (VGE) 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bilke L, Fischer T, and Helbig C et al. TESSIN VISLab - laboratory for scientific visualization. Environ. Earth Sci. 72(10), 3881–3899 (2014).  https://doi.org/10.1007/s12665-014-3785-5CrossRefGoogle Scholar
  2. Blöcher G, Cacace M, Reinsch T, and Watanabe N. Evaluation of three exploitation concepts for a deep geothermal system in the North German Basin. Comput. Geosci. 82, 120–129 (2015)CrossRefGoogle Scholar
  3. Burchard H, and Bolding K. GETM – A General Estuarine Transport Model. Scientific Documentation. Technical Report EUR 20253 EN, European Commission (2002)Google Scholar
  4. Chen Y, and Liu QQ. On the horizontal distribution of algal-bloom in Chaohu Lake and its formation process. Acta. Mech. Sin. 30(5), 656–666 (2014)CrossRefGoogle Scholar
  5. Chen M, Lin H, Wen Y, He L, and Hu M. Sino-VirtualMoon: a 3D web platform using Chang’e-1 data for collaborative research. Planet. Space Sci. 65, 130–136 (2012)CrossRefGoogle Scholar
  6. Chen M, Lin H, Wen Y, He L, and Hu M. Construction of a virtual lunar environment platform. Int. J. Digital Earth 6(5), 469–482 (2013).  https://doi.org/10.1080/17538947.2011.628415CrossRefGoogle Scholar
  7. Chen C, Börnick H, Cai Q, Dai X, Jähnig SC, Kong Y, Krebs P, Kuenzer C, Kunstmann H, Liu Y, Nixdorf E, Pang Z, Rode M, Schueth C, Song Y, Yue T, Zhou K, Zhang J, and Kolditz O. Challenges and opportunities of German-Chinese cooperation in water science and technology. Environ. Earth Sci. 73(8), 4861–4871 (2015a). ISSN 1866-6299.  https://doi.org/10.1007/s12665-015-4149-5CrossRefGoogle Scholar
  8. Chen M, Lin H, Kolditz O, and Chen C. Developing dynamic virtual geographic environments (VGEs) for geographic research. Environ. Earth Sci. 74(10), 6975–6980 (2015b). ISSN 1866-6299.  https://doi.org/10.1007/s12665-015-4761-4CrossRefGoogle Scholar
  9. Chen J, Chen J, and Liao A et al. Global land cover mapping at 30 m resolution: a POK-based operational approch. ISPRES J. Photogrammetry Remote Sens. 103, 7–27 (2015c)CrossRefGoogle Scholar
  10. Dohmann M, Chen C, Grambow M, Kolditz O, Krebs P, Schmidt KR, Subklew G, Tiehm A, Wermter P, Dai XH, Liao ZL, Meng W, Song YH, Yin D, and Zheng BH. German contributions to the Major Water Program in China: “Innovation Cluster-Major Water”. Environ. Earth Sci. 75(8), 703 (2016). ISSN 1866-6299.  https://doi.org/10.1007/s12665-016-5504-x
  11. Fletcher K. Sentinel-3 – ESA’s Global Land and Ocean Mission for GMES Operational Services. Technical Report ESA SP-1322/3, European Space Agency (2012)Google Scholar
  12. Goldstone W. Unity 3.x Game Development Essentials, 2nd edn. (Packt Publishing, Birmingham, 2011)Google Scholar
  13. Google Earth, Chao Lake, Anhui Province, China. Google Inc., Earthstar Geographics, CNES/Airbus DS, 2016. Accessed 26 Sept 2016Google Scholar
  14. Helbig C, Bauer H-S, Rink K, Wulfmeyer V, Frank M, and Kolditz O. Concept and workflow for 3D visualization of atmospheric data in a virtual reality environment for analytical approaches. Environ. Earth Sci. 72(10), 3767–3780 (2014). ISSN 1866-6299.  https://doi.org/10.1007/s12665-014-3136-6CrossRefGoogle Scholar
  15. Helbig C, Dransch D, and Böttinger M et al. Challenges and strategies for the visual exploration of complex environmental data. Int. J. Digital Earth pp. 1–7 (2017).  https://doi.org/10.1080/17538947.2017.1327618CrossRefGoogle Scholar
  16. Koch F, Bilke L, Helbig C, and Schlink U. Compact or cool? The impact of brownfield redevelopment on inner-city micro climate. Sustain. Cities Soc. 38, 31–41 (2018). ISSN 2210-6707.  https://doi.org/10.1016/j.scs.2017.11.021CrossRefGoogle Scholar
  17. Kolditz O, Rink K, and Shao H et al. International viewpoint and news: data and modelling platforms in environmental earth sciences. Environ. Earth Sci. 66(4), 1279–1284 (2012a).  https://doi.org/10.1007/s12665-012-1661-8CrossRefGoogle Scholar
  18. Kolditz O, Bauer S, and Bilke L et al. OpenGeoSys: an open source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ. Earth Sci. 67(2), 589–599 (2012b).  https://doi.org/10.1007/s12665-012-1546-xCrossRefGoogle Scholar
  19. Li X-G, He H-Y, and Sun Q-F. The shallow groundwater pollutions assessment of west Liaohe plain (eastern). J. Chem. Pharm. Res. 5(11), 290–295 (2013)Google Scholar
  20. Liao Z, Zhi G, Zhou Y, Xu Z, and Rink K. To analyze the urban water pollution discharge system using the tracking and tracing approach. Environ. Earth Sci. 75(14), 1080 (2016). ISSN 1866-6299.  https://doi.org/10.1007/s12665-016-5881-1
  21. Lin H, Chen M, and Lu G. Virtual geographic environment: a workspace for computer-aided geographic experiments. Ann. Assoc. Am. Geogr. 103(3), 465–482 (2013a).  https://doi.org/10.1080/00045608.2012.689234CrossRefGoogle Scholar
  22. Lin H, Chen M, Lu G, Zhu Q, Gong J, You X, Wen Y, Xu B, and Hu M. Virtual geographic environments (VGEs): a new generation of geographic analysis tool. Earth-Sci. Rev. 126, 74–84 (2013b). ISSN 0012-8252.  https://doi.org/10.1016/j.earscirev.2013.08.001CrossRefGoogle Scholar
  23. Lin H, Batty M, Jørgensen SE, Fu B, Konecny M, Voinov A, Torrens P, Lu G, Zhu A-X, Wilson JP, Gong J, Kolditz O, Bandrova T, and Chen M. Virtual environments begin to embrace process-based geographic analysis. Trans. GIS 19(4), 493–498 (2015). ISSN 1467-9671.  https://doi.org/10.1111/tgis.12167CrossRefGoogle Scholar
  24. Lü G. Geographic analysis-oriented virtual geographic environment: framework, structure and functions. Sci. China Earth Sci. 54(5), 733–743 (2011). ISSN 1869-1897.  https://doi.org/10.1007/s11430-011-4193-2CrossRefGoogle Scholar
  25. Michalakes J, Dudhia J, and Gill D. The weather research and forecast model: software architecture and performance, in Proceedings of Eleventh ECMWF Workshop on the Use of High Performance Computing in Meteorology. (World Scientific, Singapore, 2005), pp. 25–29. ISBN ISBN 978-9812563545Google Scholar
  26. MiddleVR Developers. MiddleVR SDK – a generic immersive virtual reality plugin (2017). Accessed 15 Feb 2017Google Scholar
  27. OpenStreetMap contributors. Planet dump retrieved from https://planet.osm.org (2016)
  28. Rew R, and Davis G. NetCDF: an interface for scientific data access. IEEE Comput. Graphics Appl. 10(4), 76–82 (1990)CrossRefGoogle Scholar
  29. Rink K, Bilke L, and Kolditz O. Setting up virtual geographic environments in unity, in Proceedings of EuroVis Workshop on Visualization in Environmental Sciences, pp. 1–5. EuroGraphics Digital Library (2017). ISBN 978-3-03868-040-6.  https://doi.org/10.2312/envirvis.20171096
  30. Rink K, Bilke L, and Kolditz O. Visualisation strategies for environmental modelling data. Environ. Earth Sci. 72(10), 3857–3868 (2014). ISSN 1866-6299.  https://doi.org/10.1007/s12665-013-2970-2CrossRefGoogle Scholar
  31. Rink K, Fischer T, Selle B, and Kolditz O. A data exploration framework for validation and setup of hydrological models. Environmental Earth Sciences 69(2), 469–477 (2013).  https://doi.org/10.1007/s12665-012-2030-3CrossRefGoogle Scholar
  32. Rossman L. SWMM-CAT User’s Guide. Technical Report EPA 600-R-14-428, Environmental Protection Agency (2014)Google Scholar
  33. Schroeder W, Martin K, and Lorensen B. Visualization Toolkit: An Object-Oriented Approach to 3D Graphics, 4th edn. (Kitware Inc., New York, 2006)Google Scholar
  34. Tachikawa T, Kaku M, and Iwasaki A et al. ASTER Global Digital Elevation Model Version 2 - Summary of Validation Results. Technical report (NASA Jet Propulsion Laboratory, California Institute of Technology, 2011)Google Scholar
  35. Tang DL, Kawamura H, Oh IS, and Baker J. Satellite evidence of harmful algal blooms and related oceanographic features in the Bohai Sea during autumn 1998. Adv. Space Res. 37, 681–689 (2006)CrossRefGoogle Scholar
  36. Walther M, Bilke L, Delfs J-O, Graf T, Grundmann J, Kolditz O, and Liedl R. Assessing the saltwater remediation potential of a three-dimensional, heterogeneous, coastal aquifer system. Environ. Earth Sci. 72(10), 3827–3837 (2014). ISSN 1866-6299.  https://doi.org/10.1007/s12665-014-3253-2CrossRefGoogle Scholar
  37. Wang SF, Tang DL, and He FL et al. Occurrences of Harmful Algal Blooms (HABs) associated with ocean environments in the South China Sea. Hydrobiologia 596, 79–93 (2008)CrossRefGoogle Scholar
  38. Weller HG, Tabor G, Jasak H, and Fureby C. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12(6), 620–631 (1998). ISSN 0894-1866.  https://doi.org/10.1063/1.168744CrossRefGoogle Scholar
  39. Wulder MA, White JC, and Loveland T et al. The global landsat archive: status, consolidation, and direction. Remote Sens. Environ. 185, 271–283 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.AMC–Analytik & Messtechnik GmbH ChemnitzChemnitzGermany
  2. 2.WISUTEC Umwelttechnik GmbHChemnitzGermany
  3. 3.Department of Environmental InformaticsHelmholtz Centre of Environmental Research–UFZLeipzigGermany
  4. 4.Applied Environmental System AnalysisTechnische Universität DresdenDresdenGermany

Personalised recommendations