Skip to main content

WP-C: A Step Towards Secured Drinking Water: Development of an Early Warning System for Lakes

  • 317 Accesses

Part of the Terrestrial Environmental Sciences book series (TERENVSC)

Abstract

Lakes are important ecosystems that provide a number of ecosystem services including provision of drinking water, flood control, fisheries and in general a high natural, cultural and aesthetic value. Provisioning services from lakes are particularly relevant in regions where lakes supply drinking water. In these water bodies, a high water quality is of utmost importance in order to produce drinking water at required quantities and at affordable prices. High nutrient loading, eutrophication, and toxicant pollution, however, are growing stressors in many places, driving severe water quality deteriorations that harm domestic water supply, quality of life and social welfare. Fast growing urban areas are particularly vulnerable to these deteriorations in surface water resources, because waste, waste water, and chemical pollutants (heavy metals, pesticides, etc.) are affecting nearby aquatic ecosystems. While in river ecosystems these pollution pressures only affect water users further downstream, i.e. not directly the pollution producer responsible for the water quality deterioration, standing water bodies like lakes or reservoirs directly and often negatively feed back to the adjacent urban communities.

Keywords

  • Fast-growing Urban Areas
  • Chao Lake
  • General Estuarine Transport Model (GETM)
  • Fluor Osis
  • Quality Assurance And Quality Control (QA/QC)

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-97568-9_5
  • Chapter length: 47 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-97568-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 5.1
Fig. 5.2

(Source: K. Rinke)

Fig. 5.3

(Source: Z. Ye)

Fig. 5.4

(Source: K. Rinke)

Fig. 5.5

(Source: bbe Moldaenke GmbH)

Fig. 5.6

(Source: M. Rybicki)

Fig. 5.7
Fig. 5.8
Fig. 5.9

(Source: M. Rybicki)

Fig. 5.10
Fig. 5.11
Fig. 5.12

(Source: K. Rinke)

Fig. 5.13
Fig. 5.14
Fig. 5.15
Fig. 5.16
Fig. 5.17
Fig. 5.18
Fig. 5.19
Fig. 5.20
Fig. 5.21
Fig. 5.22

(Source: M. Rybicki)

Fig. 5.23
Fig. 5.24
Fig. 5.25

(Source: M. Rybicki)

Fig. 5.26
Fig. 5.27
Fig. 5.28
Fig. 5.29
Fig. 5.30
Fig. 5.31
Fig. 5.32
Fig. 5.33
Fig. 5.34

References

  • Becherer J, and Umlauf L. Boundary mixing in lakes: 1. Modeling the effect of shear-induced convection. J. Geophys. Res.: Oceans 116(10), (2011). https://doi.org/10.1029/2011JC007119

  • Bruggeman J, and Bolding K. A general framework for aquatic biogeochemical models. Environ. Model. Softw. 61, 249–265 (2014). https://doi.org/10.1016/j.envsoft.2014.04.002

    CrossRef  Google Scholar 

  • Burchard H, and Bolding K. GETM – a General Estuarine Transport Model. Scientific Documentation. Technical Report EUR 20253 EN, European Commission (2002a)

    Google Scholar 

  • Burchard H, Bolding K, and Villarreal MR. GOTM – a General Ocean Turbulence Model. Theory, implementation and test cases. Technical Report EUR 18745 EN, European Commission (1999)

    Google Scholar 

  • Burchard H, Bolding K, and Villarreal MR. Three-dimensional modelling of estuarine turbidity maxima in a tidal estuary. Ocean Dyn. 54, 250–265 (2004). https://doi.org/10.1007/s10236-003-0073-4

    CrossRef  Google Scholar 

  • Campbell JL, Rustad LE, Porter JH, Taylor JR, Dereszynski EW, Shanley JB, Gries C, Henshaw DL, Martin ME, Sheldon WM, and Boose ER. Quantity is nothing without quality: automated QA/QC for streaming environmental sensor data. BioScience 63(7), 574–585 (2013). https://doi.org/10.1525/bio.2013.63.7.10

    CrossRef  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, and Bauer P et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137(656), 553–597 (2011). ISSN 1477-870X. https://doi.org/10.1002/qj.828

    CrossRef  Google Scholar 

  • Frassl MA, Boehrer B, Holtermann PL, Hu W, Klingbeil K, Peng Z, Zhu J, and Rinke K. Opportunities and limits of using meteorological reanalysis data for simulating seasonal to sub-daily water temperature dynamics in a large shallow lake. Water 10(5), 594 (2018). https://doi.org/10.3390/w10050594

    CrossRef  Google Scholar 

  • Green U, Kremer JH, Zillmer M, and Moldaenke C. Detection of chemical threat agents in drinking water by an early warning real-time biomonitor. Environ. Toxicol. 18(6), 368–374 (2003)

    CAS  CrossRef  Google Scholar 

  • Gurke R, Rößler M, Marx C, Diamond S, Schubert S, Oertel R, and Fauler J. Occurrence and removal of frequently prescribed pharmaceuticals and corresponding metabolites in wastewater of a sewage treatment plant. Sci. Total Environ. 532, 762–770 (2015). ISSN 0048-9697. https://doi.org/10.1016/j.scitotenv.2015.06.067

    CAS  CrossRef  Google Scholar 

  • Hamilton DP. Wave-induced shear stresses, plant nutrients and chlorophyll in seven shallow lakes. Freshw. Biol. 38, 159–168 (1997)

    CrossRef  Google Scholar 

  • Hamilton DP, and Mitchell SF. An empirical model for sediment resuspension in shallow lakes. Hydrobiologia 317(3), 209–220 (1996). ISSN 1573-5117. https://doi.org/10.1007/BF00036471

    CrossRef  Google Scholar 

  • Hawley N, and Lesht BM. Sediment resuspension in lake St. Clair. Limnol. Oceanogr. 37(8), 1720–1737 (1992). ISSN 1939-5590. https://doi.org/10.4319/lo.1992.37.8.1720

    CrossRef  Google Scholar 

  • Hofmeister R, Burchard H, and Beckers J-M. Non-uniform adaptive vertical grids for 3D numerical ocean models. Ocean Modell. 33, 70–86 (2010). https://doi.org/10.1016/j.ocemod.2009.12.003

    CrossRef  Google Scholar 

  • Ihle T, Jähnichen S, and Benndorf J. Wax and wane of Microcystis (Cyanophyceae) and microcystins in lake sediments: a case study in Quitzdorf Reservoir (Germany). J. Phycol. 41(3), 479–488 (2005). https://doi.org/10.1111/j.1529-8817.2005.00071.x

    CrossRef  Google Scholar 

  • Klingbeil K, and Burchard H. Implementation of a direct nonhydrostatic pressure gradient discretisation into a layered ocean model. Ocean Modell. 65, 64–77 (2013). https://doi.org/10.1016/j.ocemod.2013.02.002

    CrossRef  Google Scholar 

  • Klingbeil K, Mohammadi-Aragh M, Gräwe U, and Burchard H. Quantification of spurious dissipation and mixing - discrete variance decay in a finite-volume framework. Ocean Modell. 81, 49–64 (2014). https://doi.org/10.1016/j.ocemod.2014.06.001

    CrossRef  Google Scholar 

  • Klingbeil K, Lemarié F, Debreu L, and Burchard H. The numerics of hydrostatic structured-grid coastal ocean models: state of the art and future perspectives. Ocean Modell. 125, 80–105 (2018). ISSN 1463-5003. https://doi.org/10.1016/j.ocemod.2018.01.007

    CrossRef  Google Scholar 

  • Klingbeil K, Trolle D, Schüler L, Bruggeman J, and Bolding K. A new lake model with state-of-the-art turbulence closure. Environ. Modell. Softw. (2018b in prep)

    Google Scholar 

  • Klüttgen B, Dülmer U, Engels M, and Ratte HT. ADaM, an artificial freshwater for the culture of zooplankton. Water Res. 28(3), 743–746 (1994)

    CrossRef  Google Scholar 

  • Kong X, He Q, Yang B, He W, Xu F, Janssen ABG, Kuiper JJ, van Gerven LPA, Qin N, Jiang Y, Liu W, Yang C, Bai Z, Zhang M, Kong F, Janse JH, and Mooij WM. Hydrological regulation drives regime shifts: evidence from paleolimnology and ecosystem modeling of a large shallow Chinese lake. Glob Change Biol. 23(2), 737–754 (2017). ISSN 1365-2486. https://doi.org/10.1111/gcb.13416

    CrossRef  Google Scholar 

  • Lechelt M, Blohm W, Kirschneit B, Pfeiffer M, Gresens E, Liley J, Holz R, Lüring C, and Moldaenke C. Monitoring of surface water by ultrasensitive Daphnia toximeter. Environ. Toxicol. 15(5), 390–400 (2000)

    Google Scholar 

  • Li Y, Tang C, Wang J, Acharya K, Du W, Gao X, Luo L, Li H, Dai S, Mercy J, Yu Z, and Pan B. Effect of wave-current interactions on sediment resuspension in large shallow Lake Taihu, China. Environ. Sci. Pollut. Res. 24(4), 4029–4039 (2017b). ISSN 1614-7499. https://doi.org/10.1007/s11356-016-8165-0

    CrossRef  Google Scholar 

  • Moghimi S, Klingbeil K, Gräwe U, and Burchard H. A direct comparison of a depth-dependent Radiation stress formulation and a Vortex force formulation within a three-dimensional coastal ocean model. Ocean Modell. 70, 132–144 (2013). https://doi.org/10.1016/j.ocemod.2012.10.002

    CrossRef  Google Scholar 

  • Ouyang H-L, He W, Qin N, Kong X-Z, Liu W-X, He Q-S, Wang Q-M, Jiang Y-J, Yang C, Yang B, and Xu F-L. Levels, temporal-spatial variations, and sources of organochlorine pesticides in ambient air of Lake Chaohu, China. Sci. World J. (2012). ISSN 1537-744X. https://doi.org/10.1100/2012/504576

    Google Scholar 

  • Porter JH, Hanson PC, and Lin C-C. Staying afloat in the sensor data deluge. Trends Ecol. Evol. 27(2), 121–129 (2012). https://doi.org/10.1016/j.tree.2011.11.009

    CrossRef  Google Scholar 

  • Umlauf L, and Burchard H. Second-order turbulence closure models for geophysical boundary layers. A review of recent work. Cont. Shelf Res. 25, 795–827 (2005). https://doi.org/10.1016/j.csr.2004

  • Umlauf L, and Lemmin U. Interbasin exchange and mixing in the hypolimnion of a large lake: the role of long internal waves. Limnol. Oceanogr. 50, 1601–1611 (2005). https://doi.org/10.4319/lo.2005.50.5.1601

    CrossRef  Google Scholar 

  • US-EPA. Aquatic life ambient water quality criteria for ammonia - freshwater, Technical report, United States Environmental Protection Agency - Office of Water & Office of Science and Technology (Washington, DC, USA, 2013), p. 2013

    Google Scholar 

  • Wagner M, Schmidt W, Imhof L, Grübel A, Jähn C, Georgi D, and Petzoldt H. Characterization and quantification of humic substances 2D-Fluorescence by usage of extended size exclusion chromatography. Water Res. 93, 98–109 (2016)

    CAS  CrossRef  Google Scholar 

  • Wang H-J, Wang H-Z, Liang X-M, and Wu S-K. Total phosphorus thresholds for regime shifts are nearly equal in subtropical and temperate shallow lakes with moderate depths and areas. Freshw. Biol. 59(8), 1659–1671 (2014a). ISSN 1365-2427. https://doi.org/10.1111/fwb.12372

    CAS  CrossRef  Google Scholar 

  • Wang H-J, Xiao X-C, Wang H-Z, Li Y, Yu Q, Liang X-M, Feng W-S, Shao J-C, Rybicki M, Jungmann D, and Jeppesen E. Effects of high ammonia concentrations on three cyprinid fish: acute and whole-ecosystem chronic tests. Sci. Total Environ. 598, 900–909 (2017). ISSN 0048-9697. https://doi.org/10.1016/j.scitotenv.2017.04.070

    CAS  CrossRef  Google Scholar 

  • Watson SB, Jüttner F, and Köster O. Daphnia behavioural responses to taste and odour compounds: ecological significance and application as an inline treatment plant monitoring tool. Water Sci. Technol. 55(5), 23 (2007)

    Google Scholar 

  • Williamson RB, Dam LFV, Bell RG, Green MO, and Kim JP. Heavy metal and suspended sediment fluxes from a contaminated, intertidal inlet (Manukau Harbour, New Zealand). Mar. Pollut. Bull. 32(11), 812–822 (1996). ISSN 0025-326X. https://doi.org/10.1016/S0025-326X(96)00044-6

    CAS  CrossRef  Google Scholar 

  • Zan F, Huo S, Xi B, Li Q, Liao H, and Zhang J. Phosphorus distribution in the sediments of a shallow eutrophic lake, Lake Chaohu, China. Environ. Earth Sci. 62(8), 1643–1653 (2011). ISSN 1866-6299. https://doi.org/10.1007/s12665-010-0649-5

    CrossRef  Google Scholar 

Download references

Acknowledgements

We are grateful to the German Academic Exchange Service for the financial support provided in the project “Water systems of the Yangtze River Basin”. We thank Burkhard Kuehn for sustained technical support and for preparing the deployment of the buoy. The Collaborative Research Centre TRR 181 on Energy Transfers in Atmosphere and Ocean, funded by the German Research Foundation, is thanked for the financial support of Knut Klingbeil. Chen Yun is thanked for technical support of the buoy deployment in Chao Lake and finally Wu Fengfu is thanked for the technical support at the mesocosm facility at the Bao’an Lake.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Rybicki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Rybicki, M. et al. (2019). WP-C: A Step Towards Secured Drinking Water: Development of an Early Warning System for Lakes. In: Sachse, A., Liao, Z., Hu, W., Dai, X., Kolditz, O. (eds) Chinese Water Systems. Terrestrial Environmental Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-97568-9_5

Download citation