Advertisement

Introduction

Chapter
  • 225 Downloads
Part of the Terrestrial Environmental Sciences book series (TERENVSC)

Abstract

This book synthesizes the results of research into water research management conducted in university-based or affiliated institutes, companies and local authorities and their partner. The background is a research and development programme on “Managing Water Resources for Urban Catchments”. It ran between 2015–2018 and was funded by the German Federal Ministry of Education and Research (BMBF). Scientists and company employees worked together in the inter-disciplines and international project.

Keywords

Chao Lake Nanfei River Chaohu City Urban Water Resources Management (UWRM) Microcystin (MCs) 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bo X, Yanchuang Z, Xinyuan W, and Xin Z. Research on algae blooms forecasting based on the multivariate data driven method: a case study of the Chaohu Lake. IOP Conf. Ser.: Earth Environ. Sci. 46(1), 012044 (2016)CrossRefGoogle Scholar
  2. Brown LA. National Symposium, on Urban Hydrology and Sediment Control, in Proceedings: National Symposium on Urban Hydrology, Hydraulics, and Sediment Control, July 27–29, 1976, vol. 111 (College of Engineering, University of Kentucky, ORES Publications, 1976), p. 99Google Scholar
  3. Cai Y, Jiang J, Zhang L, Chen Y, and  Gong Z. Simplification of macrozoobenthic assemblages related to anthropogenic eutrophication and cyanobacterial blooms in two large shallow subtropical lakes in China. Aquat. Ecosyst. Health Manage. 15(1), 81–91 (2012). ISSN 1463–4988.  https://doi.org/10.1080/14634988.2011.627017CrossRefGoogle Scholar
  4. Chen Y, and Liu QQ. On the horizontal distribution of algal-bloom in Chaohu Lake and its formation process. Acta Mech. Sin. 30(5), 656–666 (2014)CrossRefGoogle Scholar
  5. Chen J, and Xie P. Tissue distributions and seasonal dynamics of the hepatotoxic microcystins-LR and -RR in two freshwater shrimps, Palaemon modestus and Macrobrachium nipponensis, from a large shallow, eutrophic lake of the subtropical China. Toxicon 45(5), 615–625 (2005).  https://doi.org/10.1016/j.toxicon.2005.01.003CrossRefGoogle Scholar
  6. Chen J, and Xie P. Accumulation of hepatotoxic microcystes in freshwater mussels, aquatic insect larvae and oligochaetes in a large, shallow eutrophic lake (Lake Chaohu) of subtropical China. Fresenius Environ. Bull. 17(7 A), 849–854 (2008)Google Scholar
  7. Chen J,  Xie P, Guo LG,  Zheng L, and Ni LY. Tissue distributions and seasonal dynamics of the hepatotoxic microcystins-LR and -RR in a freshwater snail (Bellamya aeruginosa) from a large shallow, eutrophic lake of the subtropical China. Environ. Pollut. 134(3), 423–430 (2005). ISSN 0269-7491.  https://doi.org/10.1016/j.envpol.2004.09.014CrossRefGoogle Scholar
  8. Chen J, and Xie P et al. Accumulation of  hepatotoxic microcystins in freshwater mussels, aquatic insect larvae and oligochaetes in a large, shallow eutrophic lake (Lake Chaohu) of subtropical China. Fresenius Environ. Bull. 17, 849–854 (2008)Google Scholar
  9. Chen J, Xie P, Li L, and Xu J. First identification of the hepatotoxic microcystins in the serum of a chronically exposed human population together with indication of hepatocellular damage. Toxicol. Sci. 108(1), 81–89 (2009).  https://doi.org/10.1093/toxsci/kfp009CrossRefGoogle Scholar
  10. Chen C, Börnick H, Cai Q, Dai X, Jähnig SC, Kong Y, Krebs P, Kuenzer C, Kunstmann H, Liu Y, Nixdorf E, Pang Z, Rode M, Schueth C, Song Y, Yue T, Zhou K, Zhang J, and Kolditz O. Challenges and opportunities of German-Chinese cooperation in water science and technology. Environ. Earth Sci. 73(8), 4861–4871 (2015a). ISSN 1866-6299.  https://doi.org/10.1007/s12665-015-4149-5CrossRefGoogle Scholar
  11. Chen C, Sun F, and Kolditz O. Design and integration of a GIS-based data model for the regional hydrologic simulation in Meijiang watershed, China. Environ. Earth Sci. 74(10), 7147–7158 (2015b). ISSN 1866-6299.  https://doi.org/10.1007/s12665-015-4734-7CrossRefGoogle Scholar
  12. DHI, MIKE11. A Modelling System for Rivers and Channels-Reference Manual (DHI: Hørsholm, Denmark, 2015)Google Scholar
  13. Dong G, Xie S, Zhu X, Han D, and Yang Y. Nutri-toxicological effects of cyanobacteria on fish. Shengtai Xuebao/ Acta Ecol. Sin. 32(19), 6233–6241 (2012).  https://doi.org/10.5846/stxb201109061310CrossRefGoogle Scholar
  14. Dou M, Wang Y, and Li C. Oil leak contaminates tap water: a view of drinking water security crisis in China. Environ. Earth Sci. 72(10, SI), 4219–4221 (2014). ISSN 1866-6280.  https://doi.org/10.1007/s12665-014-3556-3CrossRefGoogle Scholar
  15. Fang T, Bao S, Sima X, Jiang H, Zhu W, and Tang W. Study on the application of integrated eco-engineering in purifying eutrophic river waters. Ecol. Eng. 94, 320–328 (2016). ISSN 0925-8574.  https://doi.org/10.1016/j.ecoleng.2016.06.003CrossRefGoogle Scholar
  16. Han YM, Cao JJ, Kenna TC, Yan B, Jin ZD, Wu F, and An ZS. Distribution and ecotoxicological significance of trace element contamination in a 150 yr record of sediments in Lake Chaohu, eastern China. J. Environ. Monit. 13(3), 743–752 (2011)CrossRefGoogle Scholar
  17. Han YM, Wei C, Huang R-J, Bandowe BAM, Ho SSH, Cao JJ, Jin ZD, Xu BQ, Gao SP, Tie XX, An ZS, and Wilcke W. Reconstruction of atmospheric soot history in inland regions from lake sediments over the past 150 years. Sci. Rep. 6, 19151 (2016).  https://doi.org/10.1038/srep19151
  18. He W, Qin N, He Q-S, Wang Y, Kong XZ, and Xu F-L. Characterization, ecological and health risks of DDTs and HCHs in water from a large shallow Chinese lake. Ecol. Inform. 12, 77–84 (2012)CrossRefGoogle Scholar
  19. He W, Bai Z-L, Liu W-X, Kong X-Z, Yang B,  Yang C, Jorgensen SE, and Xu F-L. Occurrence, spatial distribution, sources, and risks of polychlorinated biphenyls and heavy metals in surface sediments from a large eutrophic Chinese lake (Lake Chaohu). Environ. Sci. Pollut. Res. 23(11), 10335–10348 (2016a). ISSN 0944-1344.  https://doi.org/10.1007/s11356-015-6001-6. International Conference on Contaminated Sediments (ContaSed-2015), Ascona, Switzerland, 08–13 Mar 2015CrossRefGoogle Scholar
  20. He W, Yang C, Liu W, He Q, Wang Q, Li Y, Kong X, Lan X, and Xu F. The partitioning behavior of persistent toxicant organic contaminants in eutrophic sediments: coefficients and effects of fluorescent organic matter and particle size. Environ. Pollut. 219, 724–734 (2016b). ISSN 0269-7491.  https://doi.org/10.1016/j.envpol.2016.07.014CrossRefGoogle Scholar
  21. Hu T, and Liao Z. Study on the Integration of Hydrodynamic and Water Quality Model and GIS based on Case Database. Tongji University (2017)Google Scholar
  22. Jiang Y, Cheng B, Liu M, and Nie Y. Spatial and temporal variations of taste and odor compounds in surface water, overlying water and sediment of the Western Lake Chaohu, China. Bull. Environ. Contam. Toxicol. 96(2), 186–191 (2016). ISSN 0007-4861.  https://doi.org/10.1007/s00128-015-1698-yCrossRefGoogle Scholar
  23. Jiang Y, Yang Y, Wu Y, Tao J, and Cheng B. Microcystin bioaccumulation in freshwater fish at different trophic levels from the eutrophic Lake Chaohu, China. Bull. Environ. Contam. Toxicol. 1–6 (2017). ISSN 1432-0800.  https://doi.org/10.1007/s00128-017-2047-0CrossRefGoogle Scholar
  24. Jin H, and Chang Z. The pollution way of microcystins and their bioaccumulation in terrestrial plants: a review. Shengtai Xuebao/Acta Ecol. Sin. 33(11), 3298–3310 (2013).  https://doi.org/10.5846/stxb201203160356
  25. Jin X, Xu Q, and Huang C. Current status and future tendency of lake eutrophication in China. Sci. China. Ser. C Life Sci./Chin. Acad. Sci. 48(Spec No. 2), 948–954 (2005)Google Scholar
  26. Jørgensen SE. Ecological Model Types, vol. 28. Elsevier (2016)Google Scholar
  27. Kang L, He Q-S, He W, Kong X-Z, Liu W-X, Wu W-J, Li Y-L, Lan X-Y, and Xu F-L. Current status and historical variations of DDT-related contaminants in the sediments of Lake Chaohu in China and their influencing factors. Environ. Pollut. 219, 883–896 (2016a).  https://doi.org/10.1016/j.envpol.2016.08.072CrossRefGoogle Scholar
  28. Kang L, Wang Q-M, He Q-S, He W, Liu W-X, Kong X-Z, Yang B, Yang C, Jiang Y-J, and Xu F-L. Current status and historical variations of phthalate ester (PAE) contamination in the sediments from a large Chinese lake (Lake Chaohu). Environ. Sci. Pollut. Res. 23(11), 10393–10405 (2016b). ISSN 0944-1344.  https://doi.org/10.1007/s11356-015-5173-4. International Conference on Contaminated Sediments (ContaSed-2015), Ascona, Switzerland, 08–13 Mar 2015CrossRefGoogle Scholar
  29. Kong X, He W, Liu W, Yang B, Xu F, Jorgensen SE, and Mooij WM. Changes in food web structure and ecosystem functioning of a large, shallow Chinese lake during the 1950s, 1980s and 2000s. Ecol. Model. 319(SI), 31–41 (2016). ISSN 0304–3800.  https://doi.org/10.1016/j.ecolmodel.2015.06.045CrossRefGoogle Scholar
  30. Kong X, He Q, Yang B, He W, Xu F, Janssen ABG, Kuiper JJ, van Gerven LPA, Qin N, Jiang Y, Liu W, Yang C, Bai Z, Zhang M, Kong F, Janse JH, and Mooij WM. Hydrological regulation drives regime shifts: evidence from paleolimnology and ecosystem modeling of a large shallow Chinese lake. Glob. Change Biol. 23(2), 737–754 (2017). ISSN 1365-2486.  https://doi.org/10.1111/gcb.13416CrossRefGoogle Scholar
  31. Li T, and Gao X. Ecosystem services valuation of lakeside wetland park beside Chaohu Lake in China. Water 8(7), 301 (2016). ISSN 2073-4441.  https://doi.org/10.3390/w8070301CrossRefGoogle Scholar
  32. Liu J, and Yang W. Water sustainability for China and beyond. Science 337(6095), 649–650 (2012)CrossRefGoogle Scholar
  33. Li D, Zuo Q, and Cui G. Disposal of chemical contaminants into groundwater: viewing hidden environmental pollution in China. Environ. Earth Sci. 70(4), 1933–1935 (2013a). ISSN 1866-6280.  https://doi.org/10.1007/s12665-013-2463-3CrossRefGoogle Scholar
  34. Li X-G, He H-Y, and Sun Q-F. The shallow groundwater pollution’s assessment of west Liaohe plain (eastern). J. Chem. Pharm. Res. 5(11), 290–295 (2013b)Google Scholar
  35. Li C, Huo S, Yu Z, Guo W, Xi B, He Z, Zeng X, and Wu F. Historical records of polycyclic aromatic hydrocarbon deposition in a shallow eutrophic lake: impacts of sources and sedimentological conditions. J. Environ. Sci. 41, 261–269 (2016a). ISSN 1001-0742.  https://doi.org/10.1016/j.jes.2015.05.007CrossRefGoogle Scholar
  36. Li G, Xie F, Zhang J, Wang J, Yang Y, and Sun R. Occurrence of phosphorus, iron, aluminum, silica, and calcium in a eutrophic lake during algae bloom sedimentation. Water Sci. Technol. 74(6), 1266–1273 (2016b). ISSN 0273-1223.  https://doi.org/10.2166/wst.2016.277CrossRefGoogle Scholar
  37. Li J, Chen F, Liu Z, Zhao X, Yang K, Lu W, and Cui K. Bottom-up versus top-down effects on ciliate community composition in four eutrophic lakes (China). Eur. J. Protistology 53, 20–30 (2016c). ISSN 0932-4739.  https://doi.org/10.1016/j.ejop.2015.12.007CrossRefGoogle Scholar
  38. Li J, Zhang Y, Ma R, Duan H, Loiselle S, Xue K, and Liang Q. Satellite-based estimation of column-integrated algal biomass in nonalgae bloom conditions: a case study of Lake Chaohu, China. IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. 10(2), 450–462 (2017). ISSN 1939-1404.  https://doi.org/10.1109/JSTARS.2016.2601083CrossRefGoogle Scholar
  39. Liu K, Li J, Yan S, Zhang W, Li Y, and Han D. A review of status of tetrabromobisphenol A (TBBPA) in China. Chemosphere 148, 8–20 (2016a). ISSN 0045-6535.  https://doi.org/10.1016/j.chemosphere.2016.01.023CrossRefGoogle Scholar
  40. Liu C, Shao S, Shen Q, Fan C, Zhang L, and Zhou Q. Effects of riverine suspended particulate matter on the post-dredging increase in internal phosphorus loading across the sediment-water interface. Environ. Pollut. 211, 165–172 (2016b). ISSN 0269-7491.  https://doi.org/10.1016/j.envpol.2015.12.045CrossRefGoogle Scholar
  41. Liu W-X, Wang Y, He W, Qin N, Kong X-Z, He Q-S, Yang B, Yang C, Jiang Y-J, Jorgensen SE, and Xu F-L. Aquatic biota as potential biological indicators of the contamination, bioaccumulation and health risks caused by organochlorine pesticides in a large, shallow Chinese lake (Lake Chaohu). Ecol. Indic. 60, 335–345 (2016c). ISSN 1470-160X.  https://doi.org/10.1016/j.ecolind.2015.06.026CrossRefGoogle Scholar
  42. Liu Y-L, Wang J-Z, Peng S-C, and Chen T-H. Modeling the environmental behaviors and ecological risks of permethrin in Chaohu Lake. Huanjing Kexue/Environ. Sci. 37(12), 4644–4650 (2016d).  https://doi.org/10.13227/j.hjkx.201606022
  43. Liu C, Zhang L, Fan C, Xu F, Chen K, and Gu X. Temporal occurrence and sources of persistent organic pollutants in suspended particulate matter from the most heavily polluted river mouth of Lake Chaohu, China. Chemosphere 174, 39–45 (2017). ISSN 0045-6535.  https://doi.org/10.1016/j.chemosphere.2017.01.082CrossRefGoogle Scholar
  44. Peng L, Liu Y, Chen W, Liu L, Kent M, and Song L. Health risks associated with consumption of microcystin-contaminated fish and shellfish in three Chinese lakes: significance for freshwater aquacultures. Ecotoxicol. Environ. Saf. 73(7), 1804–1811 (2010).  https://doi.org/10.1016/j.ecoenv.2010.07.043CrossRefGoogle Scholar
  45. Qian J, Zhao W, Hong T, Lu Y, and Tang C. Spatial variability in hydrochemistry of groundwater and surface water: a case study in Nanfei River catchment, China, in Proceedings of the 12th International Symposium on Water-Rock Interaction, Kunming, China, 31 July–5 August 2007, ed. by Y. Wang, T.D. Bullen, vol. 2 (Taylor & Francis, 2007), pp. 887–890Google Scholar
  46. Shang GP, and Shang JC. Spatial and temporal variations of eutrophication in western Chaohu Lake, China. Environ. Monit. Assess. 130(1–3), 99–109 (2007). ISSN 0167-6369.  https://doi.org/10.1007/s10661-006-9381-8CrossRefGoogle Scholar
  47. Shang L, Feng M, Liu F, Xu X, Ke F, Chen X, and Li W. The establishment of preliminary safety threshold values for cyanobacteria based on periodic variations in different microcystin congeners in Lake Chaohu, China. Environ. Sci. Processes Impacts 17(4), 728–739 (2015). ISSN 2050-7887.  https://doi.org/10.1039/c5em00002eGoogle Scholar
  48. Shiguang S, Lianqing X, Cheng L, Jingge S, Zhaode W, Xiang H, and Chengxin F. Assessment of heavy metals in sediment in a heavily polluted urban river in the Chaohu Basin, China. Chin. J. Oceanol. Limnol. 34(3), 526–538 (2016). ISSN 0254-4059.  https://doi.org/10.1007/s00343-015-4240-5CrossRefGoogle Scholar
  49. Sun H, Cheng X, and Dai M. Regional flood disaster resilience evaluation based on analytic network process: a case study of the Chaohu Lake Basin, Anhui Province, China. Nat. Hazards 82(1), 39–58 (2016). ISSN 0921-030X.  https://doi.org/10.1007/s11069-016-2178-3CrossRefGoogle Scholar
  50. Tang DL, Kawamura H, Oh IS, and Baker J. Satellite evidence of harmful algal blooms and related oceanographic features in the Bohai Sea during autumn 1998. Adv. Space Res. 37, 681–689 (2006)CrossRefGoogle Scholar
  51. Tang W, Shan B, Zhang H, and Mao Z. Heavy metal sources and associated risk in response to agricultural intensification in the estuarine sediments of Chaohu Lake Valley. East China. J. Hazard. Mater. 176(1–3), 945–951 (2010).  https://doi.org/10.1016/j.jhazmat.2009.11.131CrossRefGoogle Scholar
  52. Wang SF, Tang DL, and He FL et al. Occurrences of Harmful Algal Blooms (HABs) associated with ocean environments in the South China Sea. Hydrobiologia 596, 79–93 (2008).CrossRefGoogle Scholar
  53. Wang Q, Gu Y, and Sun D. Spatial and seasonal variations of nitrate-N concentration in groundwater within Chao Lake watershed. Shengtai Xuebao/Acta Ecol. Sin. 34(15), 4372–4379 (2014).  https://doi.org/10.5846/stxb201212111779
  54. Wang J-Z, Bai Y-S, Wu Y, Zhang S, Chen T-H, Peng S-C, Xie Y-W, and Zhang X-W. Occurrence, compositional distribution, and toxicity assessment of pyrethroid insecticides in sediments from the fluvial systems of Chaohu Lake, Eastern China. Environ. Sci. Pollut. Res. 23(11), 10406–10414 (2016a). ISSN 0944-1344.  https://doi.org/10.1007/s11356-015-5831-6. International Conference on Contaminated Sediments (ContaSed-2015), Ascona, Switzerland, 08-13 Mar 2015CrossRefGoogle Scholar
  55. Wang J-Z, Peng S-C, Chen T-H, and Zhang L. Occurrence, source identification and ecological risk evaluation of metal elements in surface sediment: toward a comprehensive understanding of heavy metal pollution in Chaohu Lake, Eastern China. Environ. Sci. Pollut. Res. 23(1), 307–314 (2016b). ISSN 0944-1344.  https://doi.org/10.1007/s11356-015-5246-4CrossRefGoogle Scholar
  56. Weigen J, Chengqin Y, and Seuffert O. Nonpoint pollution controlled by a multi-pond agroecosystem in a subwatershed of Chaohu Lake. China. Geoökodynamik 11(2–3), 191–212 (1990)Google Scholar
  57. Wohlfart C, Kuenzer C, Chen C, and Liu G. Social-ecological challenges in the Yellow River basin (China): a review. Environ. Earth Sci. 75, 1066 (2016)Google Scholar
  58. Wu P, Gao C, Chen F, and Yu S. Response of organic carbon burial to trophic level changes in a shallow eutrophic lake in SE China. J. Environ. Sci. 46, 220–228 (2016). ISSN 1001-0742.  https://doi.org/10.1016/j.jes.2016.05.003CrossRefGoogle Scholar
  59. Xie J. Comparative Research of Different Transformation Strategies for Urban Drainage System Based on Model (Tongji University, College of Environmental Science and Engineering, 2017)Google Scholar
  60. Xie P, and Liu J. Practical success of biomanipulation using filter-feeding Fish to control cyanobacteria blooms: a synthesis of decades of research and application in a subtropical hypereutrophic lake. Sci. World J. [electronic resource] 1, 337–356 (2001)CrossRefGoogle Scholar
  61. Xie L, Xie P, Guo L, Li L, Miyabara Y, and Park H-D. Organ distribution and bioaccumulation of microcystins in freshwater fish at different trophic levels from the eutrophic Lake Chaohu. China. Environ. Toxicol. 20(3), 293–300 (2005).  https://doi.org/10.1002/tox.20120CrossRefGoogle Scholar
  62. Xie J, Liao Z, and Gu X. Prediction and evaluation of waterlogging in highly urbanized areas based on Mike Urban: demonstrated on the example of Huoshan-Huimin Drainage System in Shanghai. Energy Environ. Prot. 30(5), 44–49 (2016)Google Scholar
  63. Xie J, Chen H, Liao Z, Gu X, Zhu D, and Zhang J. An integrated assessment of urban flooding mitigation strategies for robust decision making. Environ. Model. Softw. 95:143–155 (2017). ISSN 1364-8152.  https://doi.org/10.1016/j.envsoft.2017.06.027CrossRefGoogle Scholar
  64. Xu F-L, Yang C, He W, He Q-S, Li Y-L, Kang L, Liu W-X, Xiong Y-Q, and Xing B. Bias and association of sediment organic matter source apportionment indicators: a case study in a eutrophic Lake Chaohu, China. Sci. Total Environ. 581582, 874–884 (2017). ISSN 0048-9697.  https://doi.org/10.1016/j.scitotenv.2017.01.037CrossRefGoogle Scholar
  65. Xue K, Zhang Y, Duan H, and Ma R. Variability of light absorption properties in optically complex inland waters of Lake Chaohu, China. J. Great Lakes Res. 43(1), 17–31 (2017). ISSN 0380-1330.  https://doi.org/10.1016/j.jglr.2016.10.006CrossRefGoogle Scholar
  66. Yang H, Tang J, Hu A, Yang Y, and Xie L. Identification and denitrification characteristics of a denitrifier. Chin. J. Environ. Eng. 8(1), 366–371 (2014)Google Scholar
  67. Yang B, Jiang Y-J, He W, Liu W-X, Kong X-Z, Jorgensen SE, and Xu F-L. The tempo-spatial variations of phytoplankton diversities and their correlation with trophic state levels in a large eutrophic Chinese lake. Ecol. Indic. 66, 153–162 (2016a). ISSN 1470-160X.  https://doi.org/10.1016/j.ecolind.2016.01.013CrossRefGoogle Scholar
  68. Yang F, Geng D, Wei C, Ji H, and Xu H. Distribution of arsenic between the particulate and aqueous phases in surface water from three freshwater lakes in China. Environ. Sci. Pollut. Res. 23(8), 7452–7461 (2016b). ISSN 0944-1344.  https://doi.org/10.1007/s11356-015-5998-xCrossRefGoogle Scholar
  69. Yang Z, Kong F, and Zhang M. Groundwater contamination by microcystin from toxic cyanobacteria blooms in Lake Chaohu, China. Environ. Monit. Assess. 188(5), 280 (2016c). ISSN 0167-6369.  https://doi.org/10.1007/s10661-016-5289-0
  70. You D-J, Chen X-G, Xiang H-Y, Ouyang L, and Yang B. Isolation, identification and characterization of a microcystin-degrading bacterium Paucibacter sp. strain CH. Huanjing Kexue/Environ. Sci. 35(1), 313–318 (2014)Google Scholar
  71. Yu L, Kong F, Zhang M, Yang Z, Shi X, and Du M. The dynamics of Microcystis genotypes and microcystin production and associations with environmental factors during blooms in Lake Chaohu, China. Toxins 6(12), 3238–3257 (2014). ISSN 2072-6651.  https://doi.org/10.3390/toxins6123238CrossRefGoogle Scholar
  72. Yue T-X, Xu B, and Zhao N et al. Thematic issue: environment and health in China-I. Environ. Earth Sci. 74(8), 6361–6365 (2015)CrossRefGoogle Scholar
  73. Zan F, Huo S, Xi B, Li Q, Liao H, and Zhang J. Phosphorus distribution in the sediments of a shallow eutrophic lake, Lake Chaohu, China. Environ. Earth Sci. 62(8), 1643–1653 (2011). ISSN 1866-6299.  https://doi.org/10.1007/s12665-010-0649-5CrossRefGoogle Scholar
  74. Zan F, Huo S, Xi B, Zhu C, Liao H, Zhang J, and Yeager KM. A 100-year sedimentary record of natural and anthropogenic impacts on a shallow eutrophic lake, Lake Chaohu. China. J. Environ. Monit. 14(3), 804–816 (2012)CrossRefGoogle Scholar
  75. Zhang G, and Liao Z. Research and Application of Hydrodynamic and Water Quality Model in Small and Medium Cities of Inland, a case study of Chaohu City (2016)Google Scholar
  76. Zhang Z, and Gao J. Linking landscape structures and ecosystem service value using multivariate regression analysis: a case study of the Chaohu Lake Basin. China. Environ. Earth Sci. 75(1), 3 (2016)Google Scholar
  77. Zhang L, Bai Y-S, Wang J-Z, Peng S-C, Chen T-H, and Yin D-Q. Identification and determination of the contribution of iron–steel manufacturing industry to sediment-associated polycyclic aromatic hydrocarbons (PAHs) in a large shallow lake of eastern China. Environ. Sci. Pollut. Res. 23(21), 22037–22046 (2016a). ISSN 1614-7499.  https://doi.org/10.1007/s11356-016-7328-3CrossRefGoogle Scholar
  78. Zhang L, Yin D-Q, Wu Y, Peng S-C, Chen T-H, and Wang J-Z. Organochlorine pesticides in sediments around Chaohu Lake: concentration levels and vertical distribution. Soil Sediment Contam. 25(2), 195–209 (2016b). ISSN 1532-0383.  https://doi.org/10.1080/15320383.2016.1112767CrossRefGoogle Scholar
  79. Zhang M, Zhang Y, Yang Z, Wei L, Yang W, Chen C, and Kong F. Spatial and seasonal shifts in bloom-forming cyanobacteria in Lake Chaohu: patterns and driving factors. Phycol. Res. 64(1), 44–55 (2016c). ISSN 1440-1835.  https://doi.org/10.1111/pre.12112CrossRefGoogle Scholar
  80. Zhi G, Chen Y, Liao Z, Walther M, and Yuan X. Comprehensive assessment of eutrophication status based on Monte Carlo–triangular fuzzy numbers model: site study of Dongting Lake, Mid-South China. Environ. Earth Sci. 75(12), 1011 (2016). ISSN 1866-6299.  https://doi.org/10.1007/s12665-016-5819-7
  81. Zhou Y, and Liao Z. Review of GIS-Based Domestic Urban Water Environment Management (Environmental Science and Management, Sept, 2014)Google Scholar
  82. Zhou Q, Liu C, and Fan C. Application of plow-tillage as an innovative technique for eliminating overwintering cyanobacteria in eutrophic lake sediments. Environ. Pollut. 219, 425–431 (2016). ISSN 0269-7491.  https://doi.org/10.1016/j.envpol.2016.05.026CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.OpenGeoSys e.VLeipzigGermany
  2. 2.College of Environmental Science and Engineering, UNEP-Tongji Institute of Environment for Sustainable DevelopmentTongji UniversityShanghaiChina
  3. 3.NIGLAS, Nanjing Institute of Geography & LimnologyChinese Academy of SciencesNanjingChina
  4. 4.Department of Environmental InformaticsHelmholtz Centre of Environmental Research–UFZLeipzigGermany
  5. 5.Applied Environmental System AnalysisTechnische Universität DresdenDresdenGermany

Personalised recommendations