Anandan, B., Clifton, C., Jiang, W., Murugesan, M., Pastrana-Camacho, P., & Si, L. (2012). t-Plausibility: Generalizing words to desensitize text. Transactions on Data Privacy, 5(3), 505–534.
Google Scholar
Brand, R. (2002). Microdata protection through noise addition. In Inference control in statistical databases (pp. 97–116). Springer.
Google Scholar
Casas-Roma, J., Herrera-joancomartí, J., & Torra, V. (2013). Analyzing the impact of edge modifications on networks. In: The 10th International Conference on Modeling Decisions for Artificial Intelligence (Vol. 8234, pp. 296–307). Lecture notes in computer science. Springer.
Google Scholar
Cano, I., & Torra, V. (2009). Generation of synthetic data by means of fuzzy c-regression. In Proceedings of IEEE International Conference on Fuzzy Systems (pp. 1145–1150).
Google Scholar
Chaum, D. L. (1981). Untraceable electronic mail, return addresses, and digital pseudonyms. Communications of the ACM, 24(2), 5.
CrossRef
Google Scholar
Defays, D., & Nanopoulos, P. (1993). Panels of enterprises and confidentiality: The small aggregates method. In Proceedings of the 1992 Symposium on Design and Analysis of Longitudinal Surveys, Ottawa: Statistics Canada (pp. 195–204).
Google Scholar
Domingo-Ferrer, J., & Torra, V. (2001). A quantitative comparison of disclosure control methods for microdata. In Confidentiality, disclosure and data access: Theory and practical applications for statistical agencies (pp. 111–134).
Google Scholar
Domingo-Ferrer, J., Mateo-Sanz, J. M., & Torra, V. (2001). Comparing SDC methods for microdata on the basis of information loss and disclosure risk. In Pre-proceedings of ETK-NTTS, 2001 (Vol. 2, pp. 807–826).
Google Scholar
Domingo-Ferrer, J., & Mateo-Sanz, J. M. (2002). Practical data-oriented microaggregation for statistical disclosure control. IEEE Transactions on Knowledge and Data Engineering, 14(1), 189–201.
CrossRef
Google Scholar
Domingo Ferrer, J., Solanas, A., & Castellà Roca, J. (2009). h(k) private information retrieval from privacy uncooperative queryable databases. Online Information Review, 33(4), 720–744.
CrossRef
Google Scholar
Duncan, G. T., Elliot, M., & Salazar, J. J. (2011). Statistical confidentiality. Springer.
Google Scholar
Dwork, C. (2006). Differential privacy. In Proceedings of ICALP 2006 (Vol. 4052, pp. 1–12). LNCS.
Google Scholar
Dwork, C. (2008). Differential privacy: A survey of results. In Proceedings of TAMC 2008 (Vol. 4978, pp. 1–19). LNCS.
Google Scholar
Fienberg, S. E., Makov, U. E., & Steele, R. J. (1998). Disclosure limitation using perturbation and related methods for categorical data. Journal of Official Statistics, 14(4), 485–502.
Google Scholar
Howe, D., & Nissenbaum, H. (2009). TrackMeNot: Resisting surveillance in web search. In Lessons from the identity trail: Anonymity, privacy, and identity in a networked society. Oxford University Press.
Google Scholar
Hundepool, A., Domingo-Ferrer, J., Franconi, L., Giessing, S., Nordholt, E. S., Spicer, K., & de Wolf, P. -P. (2012). Statistical disclosure control. Wiley.
Google Scholar
Juàrez, M., & Torra, V. (2015). DisPA: An intelligent agent for private web search In G. Navarro-Arribas, V. Torra (Eds.), Advanced research on data privacy (pp. 389–405). Springer.
Google Scholar
Kim, J. J., & Winkler, W. E. (2003). Multiplicative noise for masking continuous data (Research Report Series No. Statistics #2003-01). Statistical Research Division. U.S. Bureau of the Census.
Google Scholar
Kooiman, P., Willenborg, L., & Gouweleeuw, J. (1998). PRAM: A method for disclosure limitation of microdata. Research Report, Voorburg: Statistics Netherlands.
Google Scholar
Lee, J., & Clifton, C. (2011). How much is enough? Choosing \(\epsilon \) for differential privacy. In Proceeding of ISC 2011 (Vol. 7001, pp. 325–340). LNCS
Google Scholar
Li, N., Lyu, M., Su, D., & Yang, W. (2016). Differential privacy: From theory to practice. Morgan and Claypool Publishers.
Google Scholar
Navarro Arribas, G., & Torra, V. (2010). Privacy preserving data mining through Microaggregation for Webbased E-commerce. Internet Research, 20(3), 366–84.
CrossRef
Google Scholar
Moore, R., (1996). Controlled data swapping techniques for masking public use microdata sets. U. S. Bureau of the Census (unpublished manuscript).
Google Scholar
Mülle, Y., Clifton, C., & Böhm, K. (2015). Privacy-integrated graph clustering through differential privacy. In EDBT/ICDT Workshops (pp. 247–254).
Google Scholar
Navarro-Arribas, G., Torra, V., Erola, A., & Castellà-Roca, J. (2012). User K-Anonymity for privacy preserving data mining of query logs. Information Processing & Management, 48(3): 476–487. (May 2012).
CrossRef
Google Scholar
Nettleton, D. F. (2012). Information loss evaluation based on fuzzy and crisp clustering of graph statistics. IEEE International Conference on Fuzzy Systems (pp. 1–8).
Google Scholar
Raghunathan, T. J., Reiter, J. P., & Rubin, D. (2003). Multiple imputation for statistical disclosure limitation. Journal of Official Statistics, 19(1), 1–16.
Google Scholar
Reiter, M. K., & Rubin, A. D. (1998). Crowds: Anonymity for web transactions. ACM Transactions on Information and System Security, 1(1), 66–92.
CrossRef
Google Scholar
Sakuma, J., & Osame, T. (2018). Recommendation with k-Anonymized Ratings. Transactions on Data Privacy, 11(1), 47–60.
Google Scholar
Samarati, P., & Sweeney, L. (1998). Protecting privacy when disclosing information: k-anonymity and its enforcement through generalization and suppression. Rep: SRI Intl. Tech.
Google Scholar
Samarati, P. (2001). Protecting respondents’ identities in microdata release. IEEE Transactions on Knowledge and Data Engineering, 13(6), 1010–1027.
CrossRef
Google Scholar
Sánchez, D., & Batet, M. (2017). Toward sensitive document release with privacy guarantees. Engineering Applications of Artificial Intelligence, 59(Supplement C), 23–34.
CrossRef
Google Scholar
Stokes, K., & Bras-Amorós, M. (2011). On query self-submission in peer-to-peer user-private information retrieval. In Proceedings of 4th PAIS 2011.
Google Scholar
Stokes, K., & Farràs, O. (2014). Linear spaces and transversal designs: \(k\)-anonymous combinatorial configurations for anonymous database search. Designs, Codes and Cryptography, 71, 503–524.
Google Scholar
Sweeney, L. (2002). Achieving \(k\)-anonymity privacy protection using generalization and suppression. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(5), 571–588.
MathSciNet
CrossRef
Google Scholar
Torra, V. (2017). Data privacy. Springer.
Google Scholar
Torra, V., & Navarro-Arribas, G. (2016). Integral privacy. In Proceedings of CANS 2016 (Vol. 10052, pp. 661–669). LNCS.
Google Scholar
Vaidya, J., Clifton, C. W., & Zhu, Y. M. (2006). Privacy preserving data mining. Springer.
Google Scholar
Van den Hout, A. (2004). Analyzing misclassified data: Randomized response and post randomization. Ph.D. thesis, Utrecht University.
Google Scholar
Willenborg, L., & de Waal, T. (2001). Elements of statistical disclosure control. Springer.
Google Scholar
Winkler, W. E. (2004). Masking and re-identification methods for public-use microdata: Overview and research problems. In Privacy in statistical databases (pp. 231–246). Springer.
Google Scholar