Skip to main content

Machine Learning: A Concise Overview

  • Chapter
  • First Online:
Data Science in Practice

Part of the book series: Studies in Big Data ((SBD,volume 46))

Abstract

Machine learning is a sub-field of computer science that aims to make computers learn. It is a simple view of this field, but since the first computer was built, we have wondered whether or not they can learn as we do.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There are other classes of machine learning algorithms: semi-supervised, reinforcement learning, recommender system. In this chapter, we focus on the two most popular ones. We refer [32] to the readers for classes not covered here.

  2. 2.

    For some representations, zero is not a good initial value. Random values from 0 to 1 work in most of cases.

  3. 3.

    Select a small value to \(\alpha \), say 0.01, plot \(J(\varTheta )\) to identify how the gradient is converging, increase \(\alpha \) (e.g., doubling its value) up to have an expected convergence.

  4. 4.

    Multiplication is \(O(n^2)\), and inverse is \(O(n^3)\).

  5. 5.

    F\(_1\)-score is a specialization of F\(_{\beta }\)-score that is not covered in this chapter.

  6. 6.

    Definition of eigenvectors can be found in traditional books of linear algebra.

  7. 7.

    For the sake of simplicity, we consider an invalid value (e.g., mixed characters and numerical values) for a feature as missing data too.

  8. 8.

    Also known as multivariate or multi-output regression.

References

  1. Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1798–1828.

    Article  Google Scholar 

  2. Boutell, M. R., Luo, J., Shen, X., & Brown, C. M. (2004). Learning multi-label scene classification. Pattern Recognition, 37(9), 1757–1771.

    Article  Google Scholar 

  3. Bratko, I., Michalski, R. S., & Kubat, M. (1999). Machine learning and data mining: Methods and applications.

    Google Scholar 

  4. Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2015). Gated feedback recurrent neural networks. In International Conference on Machine Learning (pp. 2067–2075).

    Google Scholar 

  5. Connor, J. T., Martin, R. D., & Atlas, L. E. (1994). Recurrent neural networks and robust time series prediction. IEEE Transactions on Neural Networks, 5(2), 240–254.

    Article  Google Scholar 

  6. De Houwer, J., Barnes-Holmes, D., & Moors, A. (2013). What is learning? On the nature and merits of a functional definition of learning. Psychonomic Bulletin & Review, 20(4), 631–642.

    Article  Google Scholar 

  7. Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977) Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 1–38.

    Google Scholar 

  8. Domingos, P. (2012). A few useful things to know about machine learning. Communications of the ACM, 55(10), 78–87.

    Article  Google Scholar 

  9. Erhan, D., Bengio, Y., Courville, A., Manzagol, P. A., Vincent, P., & Bengio, S. (2010). Why does unsupervised pre-training help deep learning? Journal of Machine Learning Research 11, 625–660.

    Google Scholar 

  10. Färber, I., Günnemann, S., Kriegel, H. P., Kröger, P., Müller, E., & Schubert, E., et al. (2010). On using class-labels in evaluation of clusterings. In Multiclust: 1st International Workshop on Discovering, Summarizing and Using Multiple Clusterings Held in Conjunction with KDD (p. 1)

    Google Scholar 

  11. Fujita, A., Takahashi, D. Y., & Patriota, A. G. (2014). A non-parametric method to estimate the number of clusters. Computational Statistics & Data Analysis, 73, 27–39.

    Article  MathSciNet  Google Scholar 

  12. Gauthier, J. (2014). Conditional generative adversarial nets for convolutional face generation. In Class Project for stanford CS231N: Convolutional neural networks for visual recognition (Vol. 2014, No. 5, p. 2). Winter Semester

    Google Scholar 

  13. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., & Ozair, S., et al. (2014). Generative adversarial nets. In Advances in neural information processing systems (pp. 2672–2680).

    Google Scholar 

  14. Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv:1308.0850.

  15. Gunn, S. R. (1998). Support vector machines for classification and regression. Technical report, Faculty of Engineering, Science and Mathematics–School of Electronics and Computer Science.

    Google Scholar 

  16. Hebb, D. (1949). The organization of behavior: A neuropsychological theory. Wiley

    Google Scholar 

  17. Izenman, A. J. (2008). Modern multivariate statistical techniques. Regression, classification and manifold learning.

    Google Scholar 

  18. Jain, A. K. (2010). Data clustering: 50 years beyond k-means. Pattern Recognition Letters, 31(8), 651–666.

    Article  Google Scholar 

  19. Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: A review. ACM Computing Surveys (CSUR), 31(3), 264–323.

    Article  Google Scholar 

  20. Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–260.

    Article  MathSciNet  Google Scholar 

  21. Keogh, E., & Mueen, A. (2010). Curse of dimensionality. US: Springer.

    Google Scholar 

  22. Le Cun, Y., Touresky, D., Hinton, G., & Sejnowski, T. (1988). A theoretical framework for back-propagation. In The connectionist models summer school (Vol. 1, pp. 21–28).

    Google Scholar 

  23. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

    Article  Google Scholar 

  24. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

    Article  Google Scholar 

  25. LeCun, Y., Jackel, L., Bottou, L., Brunot, A., Cortes, C., & Denker, J., et al. (1995). Comparison of learning algorithms for handwritten digit recognition. In International Conference on Artificial Neural Networks, Perth, Australia (Vol. 60, pp. 53–60).

    Google Scholar 

  26. Loh, W. Y. (2011). Classification and regression trees. In Wiley interdisciplinary reviews: Data mining and knowledge discovery (Vol. 1, No. 1, pp. 14–23).

    Google Scholar 

  27. Maaten, L. V. D., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research 9, 2579–2605.

    Google Scholar 

  28. McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115–133.

    Article  MathSciNet  Google Scholar 

  29. Mikolov, T., & Zweig, G. (2012). Context dependent recurrent neural network language model. SLT, 12, 234–239.

    Google Scholar 

  30. Minsky, M., & Papert, S. (1969). Perceptrons.

    Google Scholar 

  31. Mirza, M., & Osindero, S. (2014). Conditional generative adversarial nets. arXiv:1411.1784.

  32. Mitchell, T. M. (1997). Machine learning (1st ed.). New York, NY, USA: McGraw-Hill Inc.

    MATH  Google Scholar 

  33. Molina, L. C., Belanche, L., & Nebot, A. (2002). Feature selection algorithms: A survey and experimental evaluation. In Proceedings of the 2002 IEEE International Conference on Data Mining (pp. 306–313).

    Google Scholar 

  34. Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning (ICML 2010) (pp. 807–814).

    Google Scholar 

  35. Oja, E. (1997). The nonlinear PCA learning rule in independent component analysis. Neurocomputing, 17(1), 25–45.

    Article  MathSciNet  Google Scholar 

  36. Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training recurrent neural networks. ICML, 3(28), 1310–1318.

    Google Scholar 

  37. Pineda, F. J. (1987). Generalization of back-propagation to recurrent neural networks. Physical Review Letters, 59(19), 2229.

    Article  MathSciNet  Google Scholar 

  38. Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv:1511.06434.

  39. Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386.

    Article  Google Scholar 

  40. Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Journal of Research and Development, 3(3), 210–229.

    Article  MathSciNet  Google Scholar 

  41. Smola, A. J., Vishwanathan, S. V. N., & Hofmann, T. (2005). Kernel methods for missing variables. In R. G. Cowell, & Z. Ghahramani (eds.) Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics (pp. 325–332). Society for Artificial Intelligence and Statistics.

    Google Scholar 

  42. Weisberg, S. (2005). Applied linear regression (Vol. 528). Wiley

    Google Scholar 

  43. Willmott, C. J. (1982). Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society, 63(11), 1309–1313.

    Article  Google Scholar 

  44. Zeiler, M. D., & Fergus, R. (2014) Visualizing and understanding convolutional networks. In European Conference on Computer Vision (pp. 818–833). Springer.

    Google Scholar 

  45. Zhang, S. (2011). Shell-neighbor method and its application in missing data imputation. Applied Intelligence, 35(1), 123–133.

    Article  Google Scholar 

Download references

Acknowledgements

Denio Duarte is partially funded by Coordenadoria de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) under process number 88881.119081/2016-01—Brazil during his visit to Skövde Artificial Intelligence Laboratory (SAIL) at University of Skövde (HiS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denio Duarte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Duarte, D., Ståhl, N. (2019). Machine Learning: A Concise Overview. In: Said, A., Torra, V. (eds) Data Science in Practice. Studies in Big Data, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-319-97556-6_3

Download citation

Publish with us

Policies and ethics