Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 371 Accesses

Abstract

More than \(99\%\) of the known matter in the Universe is in the plasma state (Baumjohann and Treumann 1997), by far the most significant material constituent of stellar, interplanetary, interstellar and intergalactic media. Not only is a deep understanding of plasmas then clearly necessary to understand the physics of our universe, but plasmas are also of real interest to us on Earth. Nuclear fusion experiments—and in principle, future power stations—necessarily exploit the plasma state to work, either using high-temperature plasmas confined by strong magnetic fields, or plasmas formed by the laser ablation of a solid fuel target.

Most important part of doing physics is the knowledge of approximation.

Lev Landau

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • B. Abraham-Shrauner, Exact, stationary wave solutions of the nonlinear Vlasov equation. Phys. Fluids 11, 1162–1167 (1968)

    Google Scholar 

  • B. Abraham-Shrauner, Force-free Jacobian equilibria for Vlasov-Maxwell plasmas. Phys. Plasmas 20(10), 102117 (2013)

    Google Scholar 

  • O. Allanson, T. Neukirch, S. Troscheit, F. Wilson, From onedimensional fields to Vlasov equilibria: theory and application of Hermite polynomials. J. Plasma Phys. 82.3, 905820306 (2016)

    Google Scholar 

  • O. Allanson, T. Neukirch, F. Wilson, S. Troscheit, An exact collisionless equilibrium for the Force-Free Harris Sheet with low plasma beta. Phys. Plasmas 22.10, 102116 (2015)

    Google Scholar 

  • O. Allanson, F. Wilson, T. Neukirch, Neutral and non-neutral collisionless plasma equilibria for twisted flux tubes: The Gold-Hoyle model in a background field. Phys. Plasmas 23(9), 092106 (2016)

    Article  ADS  Google Scholar 

  • W. Alpers, Steady state charge neutral models of the magnetopause. Astrophys. Space Sci. 5, 425–437 (1969)

    Google Scholar 

  • A.V. Artemyev, A model of one-dimensional current sheet with parallel currents and normal component of magnetic field. Phys. Plasmas 18(2), 022104 (2011)

    Google Scholar 

  • A. Artemyev, L. Zelenyi, Kinetic structure of current sheets in the earth magnetotail. Space Sci. Rev. 178, 419–440 (2013)

    Google Scholar 

  • N. Attico, F. Pegoraro, Periodic equilibria of the Vlasov-Maxwell system. Phys. Plasmas 6, 767–770 (1999)

    Google Scholar 

  • N. Aunai, M. Hesse, S. Zenitani, M. Kuznetsova, C. Black, R. Evans, R. Smets, Comparison between hybrid and fully kinetic models of asymmetric magnetic reconnection: coplanar and guide field configurations. Phys. Plasmas 20.2, 022902, 022902 (2013)

    Google Scholar 

  • M. Balikhin, M. Gedalin, Generalization of the Harris current sheet model for non-relativistic, relativistic and pair plasmas. J. Plasma Phys. 74, 749–763 (2008)

    Google Scholar 

  • W. Baumjohann, R.A. Treumann, Basic Space Plasma Physics. (Imperial College Press, 1997)

    Google Scholar 

  • M.T. Beidler, P.A. Cassak, Model for incomplete reconnection in Sawtooth crashes. Phys. Rev. Lett. 107.25, 255002, 255002 (2011)

    Google Scholar 

  • G. Belmont, N. Aunai, R. Smets, Kinetic equilibrium for an asymmetric tangential layer. Phys. Plasmas 19(2), 022108 (2012)

    Google Scholar 

  • I.B. Bernstein, J.M. Greene, M.D. Kruskal, Exact nonlinear plasma oscillations. Phys. Rev. 108, 546–550 (1957)

    Google Scholar 

  • B. Bertotti, Fine structure in current sheaths. Ann. Phys. 25, 271–289 (1963)

    Google Scholar 

  • J. Birn, K. Galsgaard, M. Hesse, M. Hoshino, J. Huba, G. Lapenta, P. L. Pritchett, K. Schindler, L. Yin, J. B?chner, T. Neukirch, E.R. Priest, Forced magnetic reconnection. Geophys. Res. Lett. 32.6, L06105 (2005)

    Google Scholar 

  • J. Birn, M. Hesse, Energy release and transfer in guide field reconnection. Phys. Plasmas 17.1, 012109, 012109 (2010)

    Google Scholar 

  • J. Birn, E. Priest, Reconnection of Magnetic Fields: Magnetohydrodynamics and Collisionless Theory and Observations. (Cambridge University Press, 2007)

    Google Scholar 

  • J. Birn, J.F. Drake, M.A. Shay, B.N. Rogers, R.E. Denton, M. Hesse, M. Kuznetsova, Z.W. Ma, A. Bhattacharjee, A. Otto, P.L. Pritchett, Geospace environmental modeling (GEM) magnetic reconnection challenge. J. Geophys. Res. Space Phys. 106(A3), 3715–3719 (2001)

    Article  ADS  Google Scholar 

  • J. Birn, K. Schindler, M. Hesse, Thin electron current sheets and their relation to auroral potentials. J. Geophys. Res. Space Phys. 109(A2), A02217 (2004)

    ADS  Google Scholar 

  • D. Biskamp, Magnetic reconnection in plasmas. Magnetic reconnection in plasmas, Cambridge, UK: Cambridge University Press, 2000 xiv, 387 p. Cambridge monographs on plasma physics, vol. 3, ISBN 0521582881 (2000)

    Google Scholar 

  • N.A. Bobrova, S.V. Bulanov, J.I. Sakai, D. Sugiyama, Force-free equilibria and reconnection of the magnetic field lines in collisionless plasma configurations. Phys. Plasmas 8, 759–768 (2001)

    Google Scholar 

  • N.A. Bobrova, S.I. Syrovatskii, Violent instability of one-dimensional forceless magnetic field in a rarefied plasma. Sov. J. Exp. Theor. Phys. Lett. 30, 535-+ (1979)

    Google Scholar 

  • A. Borissov, T. Neukirch, J. Threlfall, Particle acceleration in collapsing magnetic traps with a braking plasma jet. Solar Phys. 291, 1385–1404 (2016)

    Google Scholar 

  • S.I. Braginskii, Transport processes in a plasma. Rev. Plasma Phys. 1, 205 (1965)

    ADS  Google Scholar 

  • S.G. Brush, The kinetic theory of gases. World Sci., 262–349 (2003)

    Google Scholar 

  • D. Burgess, M. Scholer, Collisionless Shocks in Space Plasmas: Structure and Accelerated Particles (Cambridge University Press, Cambridge Atmospheric and Space Science Series, 2015)

    Google Scholar 

  • R.A. Cairns, R. Bingham, P. Norreys, R. Trines, Laminar shocks in high power laser plasma interactions. Phys. Plasmas 21.2, 022112, 022112 (2014)

    Google Scholar 

  • J.R. Cary, A.J. Brizard, Hamiltonian theory of guiding-center motion. Rev. Modern Phys. 81, 693–738 (2009)

    Google Scholar 

  • P.J. Channell, Exact Vlasov-Maxwell equilibria with sheared magnetic fields. Phys. Fluids 19, 1541–1545 (1976)

    Google Scholar 

  • S.C. Cowley, Lecture Notes for the UCLA course. http://plasma.physics.ox.ac.uk/plasma/Courses.html (2003/4)

  • R.C. Davidson, Physics of Nonneutral Plasmas. (World Scientific Press, 2001)

    Google Scholar 

  • C.M. Davies, The boundary layer between a cold plasma and a confined magnetic field when the plasma is not normally incident on the boundary. Planetary Space Sci. 16, 1249-+ (1968)

    Google Scholar 

  • C.M. Davies, The structure of the magnetopause. Planetary Space Sci. 17, 333-+ (1969)

    Google Scholar 

  • C.R. DeVore, S.K. Antiochos, C.E. Black, A.K. Harding, C. Kalapotharakos, D. Kazanas, A.N. Timokhin, A model for the electrically charged current sheet of a pulsar. Astrophys. J. 801(109), 109 (2015)

    Google Scholar 

  • J.F. Drake, Y.C. Lee, Kinetic theory of tearing instabilities. Phys. Fluids 20, 1341–1353 (1977)

    Google Scholar 

  • J.W. Dungey, Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6, 47–48 (1961)

    Google Scholar 

  • B. Eliasson, P.K. Shukla, Formation and dynamics of relativistic electromagnetic solitons in plasmas containing high-and low-energy electron components. Sov. J. Exp. Theor. Phys. Lett. 83, 447–452 (2006)

    Google Scholar 

  • B. Eliasson, P.K. Shukla, M.E. Dieckmann, Theory and simulations of nonlinear kinetic structures in plasmas. Plasma Phys. Controll. Fusion 48, B257–B265 (2006)

    Google Scholar 

  • A. Erdelyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Tables of integral transforms, vol. I. Based, in part, on notes left by Harry Bateman. (McGraw- Hill Book Company, Inc., New York-Toronto-London, 1954), pp. xx+391

    Google Scholar 

  • D.F. Escande, F. Doveil, Y. Elskens, N-body description of Debye shielding and Landau damping. Plasma Phys. Controll. Fusion 58.1, 014040, 014040 (2016)

    Google Scholar 

  • R. Fitzpatrick, Plasma Physics: An Introduction (CRC Press, Taylor & Francis Group, 2014)

    Google Scholar 

  • D.W. Forslund, J.P. Freidberg, Theory of laminar collisionless shocks. Phys. Rev. Lett. 27, 1189–1192 (1971)

    Google Scholar 

  • D.W. Forslund, C.R. Shonk, Formation and structure of electrostatic Collisionless shocks. Phys. Rev. Lett. 25, 1699–1702 (1970)

    Google Scholar 

  • J.P. Freidberg, Ideal Magnetohydrodynamics. (Plenum Publishing Corportation, 1987)

    Google Scholar 

  • G. Fruit, P. Louarn, A. Tur, D. Le QuAu, On the propagation of magnetohydrodynamic perturbations in a Harris-type current sheet 1. Propagation on discrete modes and signal reconstruction. J. Geophys. Res. (Space Physics) 107, 1411, SMP 39-1-SMP 39–18 (2002)

    Google Scholar 

  • W.-Z. Fu, L.-N. Hau, Vlasov-Maxwell equilibrium solutions for Harris sheet magnetic field with Kappa velocity distribution. Phys. Plasmas 12.7, pp. 070701-+ (2005)

    Google Scholar 

  • H.P. Furth, J. Killeen, M.N. Rosenbluth, Finite-resistivity instabilities of a sheet pinch. Phys. Fluids 6, 459–484 (1963)

    Google Scholar 

  • S.P. Gary, Theory of Space Plasma Microinstabilities (Cambridge University Press, Cambridge Atmospheric and Space Science Series, 2005)

    Google Scholar 

  • A. Ghosh, M.S. Janaki, B. Dasgupta, A. Bandyopadhyay, Chaotic magnetic fields in Vlasov-Maxwell equilibria. Chaos 24.1, 013117, 013117 (2014)

    Google Scholar 

  • H. Grad, Boundary layer between a plasma and a magnetic field. Phys. Fluids 4, 1366–1375 (1961)

    Google Scholar 

  • H. Grad, On the kinetic theory of rarefied gases. Comm. Pure Appl. Math. 2, 331–407 (1949)

    Article  MathSciNet  Google Scholar 

  • J.M. Greene, One-dimensional Vlasov-Maxwell equilibria. Phys. Fluids B 5, 1715–1722 (1993)

    Google Scholar 

  • D.J. Griffiths, Introduction to Electrodynamics. (Pearson, 2013)

    Google Scholar 

  • F. Guo, H. Li, W. Daughton, Y.-H. Liu, Formation of hard power laws in the energetic particle spectra resulting from relativistic magnetic reconnection. Phys. Rev. Lett. 113, 155005 (2014)

    Google Scholar 

  • E.G. Harris, On a plasma sheath separating regions of oppositely directed magnetic field. Nuovo Cimento 23, 115 (1962)

    Article  Google Scholar 

  • M.G. Harrison, Equilibrium and dynamics of collisionless current sheets (2009). The University of St Andrews, PhD thesis

    Google Scholar 

  • M.G. Harrison, T. Neukirch, One-dimensional Vlasov-Maxwell equilibrium for the force-free harris sheet. Phys. Rev. Lett. 102.13, 135003-+ (2009a)

    Google Scholar 

  • M.G. Harrison, T. Neukirch, Some remarks on one-dimensional forcefree Vlasov-Maxwell equilibria. Phys. Plasmas 16.2, 022106-+ (2009b)

    Google Scholar 

  • M. Hesse, N. Aunai, D. Sibeck, J. Birn, On the electron diffusion region in planar, asymmetric, systems. Geophys. Res. Lett. 41, 8673–8680 (2014)

    Google Scholar 

  • M. Hesse, J. Birn, M. Kuznetsova, Collisionless magnetic reconnection: electron processes and transport modeling. J. Geophys. Res. 106, 3721–3736 (2001)

    Google Scholar 

  • M. Hesse, M. Kuznetsova, K. Schindler, J. Birn, Three-dimensional modeling of electron quasiviscous dissipation in guide-field magnetic reconnection. Phys. Plasmas 12.10, pp. 100704-+ (2005)

    Google Scholar 

  • M. Hesse, K. Schindler, A theoretical foundation of general magnetic reconnection. J. Geophys. Res. 93, 5559–5567 (1988)

    Google Scholar 

  • M. Hesse, T. Neukirch, K. Schindler, M. Kuznetsova, S. Zenitani, The diffusion region in collisionless magnetic reconnection. Space Sci. Rev. 160(1), 3–23 (2011)

    Article  ADS  Google Scholar 

  • M. Hesse, N. Aunai, S. Zenitani, M. Kuznetsova, J. Birn, Aspects of collisionless magnetic reconnection in asymmetric systems. Phys. Plasmas 20(6), 061210 (2013)

    Article  ADS  Google Scholar 

  • M. Hesse, N. Aunai, J. Birn, P. Cassak, R.E. Denton, J.F. Drake, T. Gombosi, M. Hoshino, W. Matthaeus, D. Sibeck, S. Zenitani, Theory and modeling for the magnetospheric multiscale mission. Space Sci. Rev. 199(1), 577–630 (2016)

    Article  ADS  Google Scholar 

  • D.W. Hewett, C.W. Nielson, D. Winske, Vlasov confinement equilibria in one dimension. Phys. Fluids 19, 443–449 (1976)

    Google Scholar 

  • F.C. Hoh, Stability of sheet pinch. Phys. Fluids 9, 277–284 (1966)

    Google Scholar 

  • J. Hurley, Analysis of the transition region between a uniform plasma and its confining magnetic field. II. Phys. Fluids 6, 83–88 (1963)

    Google Scholar 

  • I.H. Hutchinson, Electron holes in phase space: What they are and why they matter. Phys. Plasmas 24(5), 055601 (2017)

    Article  ADS  Google Scholar 

  • M.S. Janaki, B. Dasgupta, Vlasov-Maxwell equilibria: examples from higher-curl Beltrami magnetic fields. Phys. Plasmas 19(3), 032113 (2012)

    Google Scholar 

  • J.R. Kan, Non-linear tearing structures in equilibrium current sheet. Planetary Space Sci. 27, 351–354 (1979)

    Google Scholar 

  • J.R. Kan, S.-I. Akasofu, A model of the auroral electric field. J. Geophys. Res. 84, 507–512 (1979)

    Google Scholar 

  • J.R. Kan, L.C. Lee, S.-I. Akasofu, Two-dimensional potential double layers and discrete auroras. J. Geophys. Res. 84, 4305–4315 (1979)

    Google Scholar 

  • A.R. Karimov, H.R. Lewis, Nonlinear solutions of the Vlasov-Poisson equations. Phys. Plasmas 6, 759–761 (1999)

    Google Scholar 

  • V.V. Kocharovsky, V.V. Kocharovsky, V.J. Martyanov, Self-consistent current sheets and filaments in relativistic collisionless plasma with arbitrary energy distribution of particles. Phys. Rev. Lett. 104.21, 215002, 215002 (2010)

    Google Scholar 

  • D.Y. Kolotkov, I.Y. Vasko, V.M. Nakariakov, Kinetic model of forcefree current sheets with non-uniform temperature. Phys. Plasmas 22.11, 112902, 112902 (2015)

    Google Scholar 

  • N.A. Krall, A.W. Trivelpiece, Principles of plasma physics. International Student Edition—International Series in Pure and Applied Physics. (McGraw-Hill, Tokyo Kogakusha, 1973)

    Google Scholar 

  • R.M. Kulsrud, MHD description of plasma, in Handbook of Plasma Physics, vol. 1, ed. by A.A. Galeev, R.N. Sudan (North- Holland, Amsterdam, 1983)

    Google Scholar 

  • G.S. Lakhina, K. Schindler, Tearing modes in the magnetopause current sheet. Astrophys. Space Sci. 97, 421–426 (1983)

    Google Scholar 

  • S.H. Lam, One-dimensional static pinch solutions. Phys. Fluids 10, 2454–2457 (1967)

    Google Scholar 

  • L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields (Elsevier Science, Course of Theoretical Physics, 2013)

    Google Scholar 

  • A. Lazarian, E.M. de Gouveia Dal Pino, C. Melioli (eds.) Magnetic fields in diffuse media, vol. 407 (Astrophysics and Space Science Library, 2015)

    Google Scholar 

  • A. Lazarian, E.T. Vishniac, Reconnection in a weakly stochastic field. Astrophys. J. 517, 700–718 (1999)

    Google Scholar 

  • L.C. Lee, J.R. Kan, A unified kinetic model of the tangential magnetopause structure. J. Geophys. Res. (Space Physics) 84, 6417–6426 (1979a)

    Google Scholar 

  • L.C. Lee, J.R. Kan, Transition layer between two magnetized plasmas. J. Plasma Phys. 22, 515–524 (1979b)

    Google Scholar 

  • J. Lemaire, L.F. Burlaga, Diamagnetic boundary layers—a kinetic theory. Astrophys. Space Sci. 45, 303–325 (1976)

    Google Scholar 

  • I. Lerche, On the boundary layer between aWarm, Streaming plasma and a confined magnetic field. J. Geophys. Res. (Space Physics) 72, 5295-+ (1967)

    Google Scholar 

  • H.R. Lewis, K.R. Symon, Exact time-dependent solutions of the Vlasov-Poisson equations. Phys. Fluids 27, 192–196 (1984)

    Google Scholar 

  • R.G. Littlejohn, Variational principles of guiding centre motion. J. Plasma Phys. 29, 111–125 (1983)

    Google Scholar 

  • Y.-H. Liu, M. Hesse, Suppression of collisionless magnetic reconnection in asymmetric current sheets. Phys. Plasmas 23.6, 060704, 060704 (2016)

    Google Scholar 

  • N.F. Loureiro, D.A. Uzdensky, Magnetic reconnection: from the Sweet??? Parker model to stochastic plasmoid chains. Plasma Phys. Controll. Fusion 58(1), 014021 (2016)

    Article  ADS  Google Scholar 

  • K. Malakit, M.A. Shay, P.A. Cassak, C. Bard, Scaling of asymmetric magnetic reconnection: kinetic particle-in-cell simulations. J. Geophys. Res. (Space Physics) 115, A10223, A10223 (2010)

    Google Scholar 

  • A. Marcowith, A. Bret, A. Bykov, M. E. Dieckman, L. O’C Drury, B. Lembge, M. Lemoine, G. Morlino, G. Murphy, G. Pelletier, I. Plotnikov, B. Reville, M. Riquelme, L. Sironi, A. Stockem Novo, The microphysics of collisionless shock waves. Reports Progress Phys. 79.4, 046901, 046901 (2016)

    Google Scholar 

  • H.G. Mitchell Jr., J.R. Kan, Current interruption in a collisionless plasma by nonlinear electrostatic waves. Planetary Space Sci. 27, 933–937 (1979)

    Google Scholar 

  • D. Montgomery, G. Joyce, Shock-like solutions of the electrostatic Vlasov equation. J. Plasma Phys. 3, 1–11 (1969)

    Google Scholar 

  • T.E. Moore, J.L. Burch, R.B. Torbert, Magnetic reconnection. Nat. Phys. 11, 611–613 (2015)

    Google Scholar 

  • E. Moratz, E.W. Richter, Elektronen-Geschwindigkeitsverteilungsfunktionen fr kraftfreie bzw. teilweise kraftfreie Magnetfelder. Zeitschrift Naturforschung Teil A 21, 1963 (1966)

    Google Scholar 

  • A.I. Morozov, L.S. Solov’ev, Motion of charged particles in electromagnetic fields. Rev. Plasma Phys. 2, 201 (1966)

    ADS  Google Scholar 

  • F. Mottez, Exact nonlinear analytic Vlasov-Maxwell tangential equilibria with arbitrary density and temperature profiles. Phys. Plasmas 10, 2501–2508 (2003)

    Google Scholar 

  • F. Mottez, The pressure tensor in tangential equilibria. Annales Geophysicae 22, 3033–3037 (2004)

    Google Scholar 

  • L. Muschietti, I. Roth, C.W. Carlson, R.E. Ergun, Transverse instability of magnetized electron holes. Phys. Rev. Lett. 85, 94–97 (2000)

    Google Scholar 

  • H.E. Mynick, W.M. Sharp, A.N. Kaufman, Realistic Vlasov slab equilibria with magnetic shear. Phys. Fluids 22, 1478–1484 (1979)

    Google Scholar 

  • T. Neukirch, F. Wilson, M.G. Harrison, A detailed investigation of the properties of a Vlasov-Maxwell equilibrium for the force-free Harris sheet. Phys. Plasmas 16(12), 122102 (2009)

    Google Scholar 

  • C.S. Ng, A. Bhattacharjee, Bernstein-greene-kruskal modes in a three- dimensional plasma. Phys. Rev. Lett. 95.24, 245004 (2005)

    Google Scholar 

  • C.S. Ng, A. Bhattacharjee, F. Skiff. Weakly collisional Landau damping and three-dimensional Bernstein-Greene-Kruskal modes: new results on old problems). Phys. Plasmas 13.5, 055903, 055903 (2006)

    Google Scholar 

  • C.S. Ng, S.J. Soundararajan, E. Yasin, Electrostatic structures in space plasmas: stability of two-dimensional magnetic bernstein-greenekruskal modes. In: J. Heerikhuisen, G. Li, N. Pogorelov, G. Zank (eds.) American Institute of Physics Conference Series. vol. 1436. American Institute of Physics Conference Series, pp. 55–60 (2012)

    Google Scholar 

  • R.B. Nicholson, Solution of the Vlasov equations for a Plasma in an externally uniform magnetic field. Phys. Fluids 6, 1581–1586 (1963)

    Google Scholar 

  • T.G. Northrop, The guiding center approximation to charged particle motion. Ann. Phys. 15, 79–101 (1961)

    Google Scholar 

  • T.G. Northrop, Adiabatic charged-particle motion. Rev. Geophys. Space Phys. 1, 283–304 (1963)

    Article  ADS  Google Scholar 

  • A. Otto, K. Schindler, An energy principle for two-dimensional collisionless relativistic plasmas. Plasma Phys. Controll. Fusion 26, 1525–1533 (1984)

    Google Scholar 

  • E.V. Panov, A.V. Artemyev, R. Nakamura, W. Baumjohann, Two types of tangential magnetopause current sheets: Cluster observations and theory. J. Geophys. Res. (Space Physics) 116, A12204, A12204 (2011)

    Google Scholar 

  • E.N. Parker, Spontaneous current sheets in magnetic fields: with applications to stellar x-rays. Spontaneous current sheets in magnetic fields: with applications to stellar x-rays. International Series in Astronomy and Astrophysics, vol. 1 (Oxford University Press, New York, 1994)

    Google Scholar 

  • E.N. Parker, Sweet’s mechanism for merging magnetic fields in conducting fluids. J. Geophys. Res. 62(4), 509–520 (1957)

    Article  ADS  Google Scholar 

  • A.L. Peratt, advances in numerical modeling of astrophysical and space Plasmas. Astrophys. Space Sci. 242, 93–163 (1996)

    Google Scholar 

  • H.E. Petschek, Magnetic field annihilation. NASA Spec. Publ. 50, 425 (1964)

    ADS  Google Scholar 

  • T.D. Phan, G. Paschmann, Low-latitude dayside magnetopause and boundary layer for high magnetic shear 1. Structure and motion. J. Geophys. Res. 101, 7801–7816 (1996)

    Google Scholar 

  • D. Pines, D. Bohm, A Collective Description of electron interactions: II. Collective versus individual particle aspects of the interactions. Phys. Rev. 85, 338–353 (1952)

    Google Scholar 

  • J.H. Poynting, On the transfer of energy in the electromagnetic field. Philos. Trans. Royal Soc. Lond. 175, 343–361 (1884)

    Article  ADS  Google Scholar 

  • E. Priest, T. Forbes, Magnetic Reconnection (Cambridge University Press, Cambridge, UK, 2000)

    Google Scholar 

  • E. Priest. Magnetohydrodynamics of the Sun (2014)

    Google Scholar 

  • P.L. Pritchett, Collisionless magnetic reconnection in an asymmetric current sheet. J. Geophys. Res. (Space Physics) 113, A06210, A06210 (2008)

    Google Scholar 

  • K.B. Quest, F.V. Coroniti, Linear theory of tearing in a high-beta plasma. J. Geophys. Res. 86, 3299–3305 (1981)

    Google Scholar 

  • S.H. Rogers, E.C. Whipple, Generalized adiabatic theory applied to the magnetotail current sheet. Astrophys. Space Sci. 144, 231–256 (1988)

    Google Scholar 

  • M. Roth, J. de Keyser, M.M. Kuznetsova, Vlasov theory of the equilibrium structure of tangential discontinuities in space plasmas. Space Sci. Rev. 76, 251–317 (1996)

    Google Scholar 

  • R.Z. Sagdeev, Cooperative phenomena and shock waves in collisionless plasmas. Rev. Plasma Phys. 4, 23 (1966)

    ADS  Google Scholar 

  • H. Schamel, Electron holes, ion holes and double layers. Electrostatic phase space structures in theory and experiment. Phys. Reports 140, 161–191 (1986)

    Google Scholar 

  • H. Schamel, Hole equilibria in Vlasov-Poisson systems: A challenge to wave theories of ideal plasmas. Phys. Plasmas 7, 4831–4844 (2000)

    Google Scholar 

  • H. Schamel, Non-linear electrostatic plasma waves. J. Plasma Phys. 7, 1–12 (1972a)

    Google Scholar 

  • H. Schamel, Stationary solitary, snoidal and sinusoidal ion acoustic waves. Plasma Phys. 14, 905–924 (1972b)

    Google Scholar 

  • H. Schamel, Stationary solutions of the electrostatic Vlasov equation. Plasma Phys. 13, 491–505 (1971)

    Google Scholar 

  • H. Schamel, Theory of electron holes. Physica Scripta 20, 336–342 (1979)

    Google Scholar 

  • K. Schindler, Physics of Space Plasma Activity. (Cambridge University Press, 2007)

    Google Scholar 

  • K. Schindler, J. Birn, Models of two-dimensional embedded thin current sheets from Vlasov theory. J. Geophys. Res. (Space Physics) 107, 20–1 (2002)

    Google Scholar 

  • J. Schmid-Burgk, Zweidimensionale selbstkonsistente Losungen der stationaren Wlassowgleichung fr Zweikomponentplasmen (1965). Max-Planck-Institut fr Physik und Astrophysik, Master’s thesis

    Google Scholar 

  • A. Sestero, Charge separation effects in the Ferraro-Rosenbluth cold plasma sheath model. Phys. Fluids 8, 739–744 (1965)

    Google Scholar 

  • A. Sestero, Self-consistent description of a warm stationary plasma in a uniformly sheared magnetic field. Phys. Fluids 10, 193–197 (1967)

    Google Scholar 

  • A. Sestero, Structure of plasma sheaths. Phys. Fluids 7, 44–51 (1964)

    Google Scholar 

  • A. Sestero, Vlasov equation study of plasma motion across magnetic fields. Phys. Fluids 9, 2006–2013 (1966)

    Google Scholar 

  • K. Shibata, S. Tanuma, Plasmoid-induced-reconnection and fractal reconnection. Earth Planets Space 53(6), 473–482 (2001)

    Article  ADS  Google Scholar 

  • A. Spitkovsky, Particle acceleration in relativistic collisionless shocks: fermi process at last? Astrophys. J. 682(L5), L5 (2008)

    Google Scholar 

  • D.P. Stern, One-dimensional models of quasi-neutral parallel electric fields. Technical report (1981a)

    Google Scholar 

  • D.P. Stern, one-dimensional models of quasi-neutral parallel electric fields. J. Geophys. Res. 86, 5839–5860 (1981b)

    Google Scholar 

  • A. Stockem, F. Fiuza, A. Bret, R.A. Fonseca, L.O. Silva, Exploring the nature of collisionless shocks under laboratory conditions. Sci. Reports 4(3934), 3934 (2014)

    Google Scholar 

  • S.-Y. Su, B.U.O. Sonnerup, On the equilibrium of the magnetopause current layer. J. Geophys. Res. (Space Physics) 76, 5181–5188 (1971)

    Article  ADS  Google Scholar 

  • A. Suzuki, T. Shigeyama, A novel method to construct stationary solutions of the Vlasov-Maxwell system. Phys. Plasmas 15.4, 042107-+ (2008)

    Google Scholar 

  • B. Svedung Wettervik, T.C. DuBois, T. Fulop, Vlasov modelling of laser-driven collisionless shock acceleration of protons. Phys. Plasmas 23.5, 053103, 053103 (2016)

    Google Scholar 

  • P.A. Sweet, The neutral point theory of solar flares. In: B. Lehnert (ed.) Electromagnetic Phenomena in Cosmical Physics, vol. 6. (IAU Symposium, p. 123 1958)

    Google Scholar 

  • M. Swisdak, B.N. Rogers, J.F. Drake, M.A. Shay, Diamagnetic suppression of component magnetic reconnection at the magnetopause. J. Geophys. Res. (Space Physics) 108, 1218, 1218 (2003)

    Google Scholar 

  • E. Tassi, F. Pegoraro, G. Cicogna, Solutions and symmetries of forcefree magnetic fields. Phys. Plasmas 15.9, pp. 092113-+ (2008)

    Google Scholar 

  • H. Tasso, G. Throumoulopoulos, Tokamak-like Vlasov equilibria. Eur. Phys. J. D 68(175), 175 (2014)

    Google Scholar 

  • J. Threlfall, T. Neukirch, C.E. Parnell, S. Eradat, Oskoui, Particle acceleration at a reconnecting magnetic separator. Astron. Astrophys. 574(A7), A7 (2015)

    Google Scholar 

  • D. Tong, Lectures on Classical Dynamics. http://www.damtp.cam.ac.uk/user/tong/dynamics.html (2004)

  • D. Tong, Lectures on Kinetic Theory. http://www.damtp.cam.ac.uk/user/tong/kinetic.html (2012)

  • L. Tonks, Trajectory-wise analysis of cylindrical and plane plasmas in a magnetic field and without collisions. Phys. Rev. 113, 400–407 (1959)

    Google Scholar 

  • A. Vaivads, A. Retin?, J. Soucek, Yu. V. Khotyaintsev, F. Valentini, C.P. Escoubet, O. Alexandrova, M. Andr?, S.D. Bale, M. Balikhin et al., Turbulence heating ObserveR—satellite mission proposal. J. Plasma Phys. 82.5 (2016)

    Google Scholar 

  • I.Y. Vasko, A.V. Artemyev, V.Y. Popov, H.V. Malova, Kinetic models of two-dimensional plane and axially symmetric current sheets: group theory approach. Phys. Plasmas 20.2, 022110, 022110 (2013)

    Google Scholar 

  • I.Y. Vasko, O.V. Agapitov, F.S. Mozer, A.V. Artemyev, J.F. Drake, Electron holes in inhomogeneous magnetic field: Electron heating and electron hole evolution. Phys. Plasmas 23(5), 052306 (2016)

    Article  ADS  Google Scholar 

  • G.E. Vekstein, N.A. Bobrova, S.V. Bulanov, On the motion of charged particles in a sheared force-free magnetic field. J. Plasma Phys. 67, 215–221 (2002)

    Google Scholar 

  • A.A. Vinogradov, I.Y. Vasko, A. V. Artemyev, E.V. Yushkov, A.A. Petrukovich, L.M. Zelenyi, Kinetic models of magnetic flux ropes observed in the Earth magnetosphere. Phys. Plasmas 23.7, 072901, 072901 (2016)

    Google Scholar 

  • A.A. Vlasov, The vibrational properties of an electron gas. Phys. Uspekhi 10(6), 721–733 (1968)

    Article  ADS  Google Scholar 

  • F. Wilson, T. Neukirch, A family of one-dimensional Vlasov-Maxwell equilibria for the force-free Harris sheet. Phys. Plasmas 18(8), 082108 (2011)

    Google Scholar 

  • M. Yamada, R. Kulsrud, H. Ji, Magnetic reconnection. Rev. Modern Phys. 82, 603–664 (2010)

    Google Scholar 

  • P.H. Yoon, A.T.Y. Lui, A class of exact two-dimensional kinetic current sheet equilibria. J. Geophys. Res. (Space Physics) 110, 1202-+ (2005)

    Google Scholar 

  • P.H. Yoon, A.T.Y. Lui, R.B. Sheldon, On the current sheet model with distribution. Phys. Plasmas 13.10, 102108-+ (2006)

    Google Scholar 

  • A.I. Zayed, Handbook of function and generalized function transformations. Math. Sci. Ref. Ser. (CRC Press, Boca Raton, FL, 1996), pp. xxiv+643

    Google Scholar 

  • L.M. Zelenyi, H.V. Malova, A.V. Artemyev, V.Y. Popov, A. Petrukovich, Thin current sheets in collisionless plasma: equilibrium structure, plasma instabilities, and particle acceleration. Plasma Phys. Reports 37(2), 118–160 (2011)

    Article  ADS  Google Scholar 

  • S. Zenitani, M. Hesse, A. Klimas, M. Kuznetsova, New measure of the dissipation region in Collisionless magnetic reconnection. Phys. Rev. Lett. 106.19, 195003, 195003 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Allanson .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Allanson, O. (2018). Introduction. In: Theory of One-Dimensional Vlasov-Maxwell Equilibria. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-97541-2_1

Download citation

Publish with us

Policies and ethics