Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 575 Accesses

Abstract

We start our discussion of the fundamental origins of plasmonics by considering the behaviour of electromagnetic waves in metals. Our approach in Sects. 2.1–2.3 largely follows those of Maier (Plasmonics: fundamentals and applications. Springer Science and Business Media, 2007, Maier (Plasmonics: Fundamentals and Applications. Springer Science and BusinessMedia, 2007) [1]) and Raether (Surface plasmons on smooth surfaces. Springer, 1988, Raether (Surface Plasmons on Smooth Surfaces. Springer, 1988) [2]). SI notation is used throughout.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that here \(\epsilon _0\) refers to the dielectric constant for the prism, not the electric permittivity of free space, to provide labelling continuity with the metal (\(\epsilon _1\)) and dielectric (\(\epsilon _2\)).

References

  1. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007)

    Google Scholar 

  2. H. Raether, Surface Plasmons on Smooth Surfaces (Springer, 1988)

    Google Scholar 

  3. P. Drude, Zur elektronentheorie der metalle. Ann. Phys. 306(3), 566–613 (1900)

    Article  Google Scholar 

  4. P. Drude, Zur elektronentheorie der metalle; II. Teil. galvanomagnetische und thermomagnetische effecte. Ann. Phys. 308(11), 369–402 (1900)

    Article  Google Scholar 

  5. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Harcourt Brace, Orlando, 1976)

    Google Scholar 

  6. C.J. Powell, J.B. Swan, Effect of oxidation on the characteristic loss spectra of aluminum and magnesium. Phys. Rev. 118(3), 640 (1960)

    Article  ADS  Google Scholar 

  7. A. Otto, Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys. 216(4), 398–410 (1968)

    Article  ADS  Google Scholar 

  8. E. Kretschmann, H. Raether, Notizen: radiative decay of non radiative surface plasmons excited by light. Z. Naturforsch. A 23(12), 2135–2136 (1968)

    Article  ADS  Google Scholar 

  9. E. Devaux, T.W. Ebbesen, J.-C. Weeber, A. Dereux, Launching and decoupling surface plasmons via micro-gratings. Appl. Phys. Lett. 83(24), 4936–4938 (2003)

    Article  ADS  Google Scholar 

  10. P.R. West, S. Ishii, G.V. Naik, N.K. Emani, V.M. Shalaev, A. Boltasseva, Searching for better plasmonic materials. Laser Photonics Rev. 4(6), 795–808 (2010)

    Google Scholar 

  11. V.G. Kravets, F. Schedin, A.N. Grigorenko, Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. Phys. Rev. Lett. 101(8), 087403 (2008)

    Google Scholar 

  12. B.D. Thackray, P.A. Thomas, G.H. Auton, F.J. Rodriguez, O.P. Marshall, V.G. Kravets, A.N. Grigorenko, Super-narrow, extremely high quality collective plasmon resonances at telecom wavelengths and their application in a hybrid graphene-plasmonic modulator. Nano Lett. 15(5), 3519–3523 (2015)

    Google Scholar 

  13. G. Bemski, Recombination properties of gold in silicon. Phys. Rev. 111(6), 1515 (1958)

    Article  ADS  Google Scholar 

  14. L.D. Yau, C.T. Sah, Measurement of trapped-minority-carrier thermal emission rates from Au, Ag, and Co traps in silicon. Appl. Phys. Lett. 21(4), 157–158 (1972)

    Article  ADS  Google Scholar 

  15. G.V. Naik, V.M. Shalaev, A. Boltasseva, Alternative plasmonic materials: beyond gold and silver. Adv. Mater. 25(24), 3264–3294 (2013)

    Article  Google Scholar 

  16. B.R. Cooper, H. Ehrenreich, H.R. Philipp. Optical properties of noble metals. II. Phys. Rev.138(2A), A494 (1965)

    Google Scholar 

  17. P.B. Johnson, R.W. Christy, Optical constants of the noble metals. Phys. Rev. B 6(12), 4370 (1972)

    Article  ADS  Google Scholar 

  18. M. Futamata, Application of attenuated total reflection surface-plasmon-polariton raman spectroscopy to gold and copper. Appl. Opt. 36(1), 364–375 (1997)

    Article  ADS  Google Scholar 

  19. N. Tajima, M. Fukui, Y. Shintani, O. Tada, In situ studies on oxidation of copper films by using atr technique. J. Phys. Soc. Jpn. 54(11), 4236–4240 (1985)

    Article  ADS  Google Scholar 

  20. G.H. Chan, J. Zhao, E.M. Hicks, G.C. Schatz, R.P. Van Duyne, Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett. 7(7), 1947–1952 (2007)

    Article  ADS  Google Scholar 

  21. V.G. Kravets, R. Jalil, Y.-J. Kim, D. Ansell, D.E. Aznakayeva, B. Thackray, L. Britnell, B.D. Belle, F. Withers, I.P. Radko, Z. Han, S.I. Bozhevolnyi, K.S. Novoselov, A.K. Geim, A.N. Grigorenko, Graphene-protected copper and silver plasmonics. Sci. Rep.4 (2014)

    Google Scholar 

  22. J.M. McMahon, G.C. Schatz, S.K. Gray, Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi. Phys. Chem. Chem. Phys. 15(15), 5415–5423 (2013)

    Article  Google Scholar 

  23. C. Langhammer, M. Schwind, B. Kasemo, I. Zoric, Localized surface plasmon resonances in aluminum nanodisks. Nano Lett. 8(5), 1461–1471 (2008)

    Article  ADS  Google Scholar 

  24. M.W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N.S. King, H.O. Everitt, P. Nordlander, N.J. Halas, Aluminum plasmonic nanoantennas. Nano Lett. 12(11), 6000–6004 (2012)

    Article  ADS  Google Scholar 

  25. M.W. Knight, N.S. King, L. Liu, H.O. Everitt, P. Nordlander, N.J. Halas, Aluminum for plasmonics. ACS Nano 8(1), 834–840 (2014)

    Article  Google Scholar 

  26. B. Ren, X.-F. Lin, Z.-L. Yang, G.-K. Liu, R.F. Aroca, B.-W. Mao, Z.-Q. Tian, Surface-enhanced raman scattering in the ultraviolet spectral region: UV-SERS on rhodium and ruthenium electrodes. J. Am. Chem. Soc. 125(32), 9598–9599 (2003)

    Article  Google Scholar 

  27. A.M. Watson, X. Zhang, R. Alcaraz de La Osa, J.M. Sanz, F. González, F. Moreno, G. Finkelstein, J. Liu, H.O. Everitt, Rhodium nanoparticles for ultraviolet plasmonics. Nano Lett. 15(2), 1095–1100 (2015)

    Article  ADS  Google Scholar 

  28. M.W. Knight, T. Coenen, Y. Yang, B.J.M. Brenny, M. Losurdo, A.S. Brown, H.O. Everitt, A. Polman, Gallium plasmonics: deep subwavelength spectroscopic imaging of single and interacting gallium nanoparticles. ACS Nano 9(2), 2049–2060 (2015)

    Article  Google Scholar 

  29. M.B. Ross, G.C. Schatz, Aluminum and indium plasmonic nanoantennas in the ultraviolet. J. Phys. Chem. C 118(23), 12506–12514 (2014)

    Article  Google Scholar 

  30. A. Boltasseva, H.A. Atwater, Low-loss plasmonic metamaterials. Science 331(6015), 290–291 (2011)

    Article  ADS  Google Scholar 

  31. M.G. Blaber, M.D. Arnold, M.J. Ford, A review of the optical properties of alloys and intermetallics for plasmonics. J. Phys. Condens. Matter 22(14), 143201 (2010)

    Article  ADS  Google Scholar 

  32. A. Tsiatmas, A.R. Buckingham, V.A. Fedotov, S. Wang, Y. Chen, P.A.J. De Groot, N.I. Zheludev, Superconducting plasmonics and extraordinary transmission. Appl. Phys. Lett. 97(11), 111106 (2010)

    Article  ADS  Google Scholar 

  33. V.A. Fedotov, A. Tsiatmas, J.H. Shi, R. Buckingham, P. De Groot, Y. Chen, S. Wang, N.I. Zheludev, Temperature control of fano resonances and transmission in superconducting metamaterials. Opt. Exp. 18(9), 9015–9019 (2010)

    Article  ADS  Google Scholar 

  34. H. Tompkins, E.A. Irene, Handbook of Ellipsometry (William Andrew, Springer, 2005)

    Google Scholar 

  35. B.D. Thackray, V.G. Kravets, F. Schedin, G. Auton, P.A. Thomas, A.N. Grigorenko, Narrow collective plasmon resonances in nanostructure arrays observed at normal light incidence for simplified sensing in asymmetric air and water environments. ACS Photonics 1(11), 1116–1126 (2014)

    Google Scholar 

  36. H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9(3), 205–213 (2010)

    Article  ADS  Google Scholar 

  37. W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424(6950), 824–830 (2003)

    Google Scholar 

  38. E. Ozbay, Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758), 189–193 (2006)

    Article  ADS  Google Scholar 

  39. K.A. Willets, R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007)

    Article  ADS  Google Scholar 

  40. S. Link, M.A. El-Sayed, Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods (1999)

    Google Scholar 

  41. P. Evans, W.R. Hendren, R. Atkinson, G.A. Wurtz, W. Dickson, A.V. Zayats, R.J. Pollard, Growth and properties of gold and nickel nanorods in thin film alumina. Nanotechnology 17(23), 5746 (2006)

    Article  ADS  Google Scholar 

  42. C.L. Haynes, R.P. Van Duyne, Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B 105(24), 5599–5611 (2001)

    Article  Google Scholar 

  43. L. Malassis, P. Massé, M. Tréguer-Delapierre, S. Mornet, P. Weisbecker, P. Barois, C.R. Simovski, V.G. Kravets, A.N. Grigorenko, Topological darkness in self-assembled plasmonic metamaterials. Adv. Mater. 26(2), 324–330 (2014)

    Google Scholar 

  44. S. Gomez-Graña, A. Le Beulze, M. Treguer-Delapierre, S. Mornet, E. Duguet, E. Grana, E. Cloutet, G. Hadziioannou, J. Leng, J.-B. Salmon, V.G. Kravets, A.N. Grigorenko, N.A. Peyyety, V. Ponsinet, P. Richetti, A. Baron, D. Torrent, P. Barois, Hierarchical self-assembly of a bulk metamaterial enables isotropic magnetic permeability at optical frequencies. Mater. Horiz. 3(6), 596–601 (2016)

    Article  Google Scholar 

  45. V.G. Kravets, F. Schedin, A.N. Grigorenko, Fine structure constant and quantized optical transparency of plasmonic nanoarrays. Nat. Commun. 3, 640 (2012)

    Google Scholar 

  46. M.-L. Thèye, Investigation of the optical properties of au by means of thin semitransparent films. Phys. Rev. B 2(8), 3060 (1970)

    Article  ADS  Google Scholar 

  47. S.R. Nagel, S.E. Schnatterly, Frequency dependence of the Drude relaxation time in metal films. Phys. Rev. B 9(4), 1299 (1974)

    Article  ADS  Google Scholar 

  48. J.B. Smith, H. Ehrenreich, Frequency dependence of the optical relaxation time in metals. Phys. Rev. B 25(2), 923 (1982)

    Article  ADS  Google Scholar 

  49. S.J. Youn, T.H. Rho, B.I. Min, K.S. Kim, Extended Drude model analysis of noble metals. Phys. Status Solidi (b) 244(4), 1354–1362 (2007)

    Article  ADS  Google Scholar 

  50. R.N. Gurzhi, Mutual electron correlations in metal optics. Sov. Phys. JETP 8(4), 673–675 (1959)

    Google Scholar 

  51. B. Luk’yanchuk, N.I. Zheludev, S.A. Maier, N.J. Halas, P. Nordlander, H. Giessen, C.T. Chong, The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9(9), 707–715 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip A. Thomas .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thomas, P.A. (2018). Plasmonics. In: Narrow Plasmon Resonances in Hybrid Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-97526-9_2

Download citation

Publish with us

Policies and ethics