Skip to main content

Physics Object Reconstruction in ATLAS

  • Chapter
  • First Online:
Book cover Searches for Dijet Resonances

Part of the book series: Springer Theses ((Springer Theses))

  • 215 Accesses

Abstract

Object reconstruction is a vital component of all analyses. It is the crucial step in which the electronic signals read out from the detector are combined to form objects which can be identified as particles. Once identified, the objects are then calibrated, such that their physical attributes (for example, their energy) are corrected for known detector effects. The calibrated objects can then be used in physics analyses. This chapter outlines the reconstruction and calibration of the objects utilised in the analyses in this thesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The jet area is calculated using ghost association, where a large number of ‘ghost’ particles with infinitessimal transverse momentum are added uniformly to the event in the \(y-\phi \) plane. The number of these particles clustered to a jet gives a measure of the jet area [16].

References

  1. Blazey GC et al (2000) Run II jet physics. In: QCD and weak boson physics in Run II. Proceedings, Batavia, USA, 4–6 March, 3–4 June, 4–6 November 1999. pp 47–77. arXiv: hep-ex/0005012 [hep-ex]

  2. Kirschenmann H (2012) Jets at CMS and the determination of their energy scale. http://cms.web.cern.ch/news/jets-cms-and-determination-their-energy-scale

  3. ATLAS Collaboration (2016) Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1. arXiv: 1603.02934 [hep-ex]

  4. Lampl W et al (2008) Calorimeter clustering algorithms: description and performance. Technical report, ATL-LARG-PUB-2008-002. Geneva: CERN

    Google Scholar 

  5. Boelaert N (2012) Dijet angular distributions in proton-proton collisions at \(\sqrt{s} = 7\) TeV and \(\sqrt{s} = 14\) TeV. Ph.D. thesis. https://doi.org/10.1007/978-3-642-24597-8, ISBN: 9783642245978

  6. Cacciari M, Salam GP, Soyez G (2008) The anti-kt jet clustering algorithm. J High Energy Phys 2008(04):063. https://doi.org/10.1088/1126-6708/2008/04/063

  7. Rojo J (2014) Lecture notes from ‘The strong interaction and LHC phenomenology’ course. Oxford. http://www2.physics.ox.ac.uk/sites/default/files/2014-03- 31/qcdcourse_juanrojo_tt2014_lect8_pdf_18445.pdf

  8. Sapeta S (2016) QCD and jets at hadron colliders. Prog Part Nucl Phys 89:1–55. https://doi.org/10.1016/j.ppnp.2016.02.002, arXiv: 1511.09336 [hep-ph]

  9. Doglioni C (2012) Measurement of the inclusive jet cross section with the ATLAS detector at the large hadron collider. Springer Theses. Springer, Berlin. https://doi.org/10.1007/978-3-642-30538-2, ISBN: 9783642305382

  10. Cacciari M, Salam GP (2008) Pileup subtraction using jet areas. Phys Lett B659:119–126. https://doi.org/10.1016/j.physletb.2007.09.077, arXiv: 0707.1378 [hep-ph]

  11. ATLAS Collaboration (2017) Jet energy scale measurements and their systematic uncertainties in proton-proton collisions at \(\sqrt{s} = 13\) TeV with the ATLAS detector. Phys Rev D96:072002. https://doi.org/10.1103/PhysRevD.96.072002, arXiv: 1703.09665 [hep-ex]

  12. ATLAS Collaboration (2013) Jet energy measurement with the ATLAS detector in proton-proton collisions at \(\sqrt{s} = 7\) TeV. Eur Phys J C73.3:2304. https://doi.org/10.1140/epjc/s10052-013-2304-2, arXiv: 1112.6426 [hep-ex]

  13. ATLAS Collaboration (2015) Monte Carlo calibration and combination of in-situ measurements of jet energy scale, Jet energy resolution and jet mass in ATLAS. Technical report, ATLAS-CONF-2015-037. Geneva: CERN

    Google Scholar 

  14. ATLAS Collaboration (2015) Jet calibration and systematic uncertainties for jets reconstructed in the ATLAS detector at \(\sqrt{s} = 13\) TeV. Technical report, ATLAS-PHYS-PUB-2015-015. Geneva: CERN

    Google Scholar 

  15. ATLAS Collaboration (2016) Performance of pile-up mitigation techniques for jets in pp collisions at \(\sqrt{s} = 8\) TeV using the ATLAS detector. Eur Phys J C76.11:581. https://doi.org/10.1140/epjc/s10052-016-4395-z, arXiv: 1510.03823 [hep-ex]

  16. Cacciari M, Salam GP, Soyez G (2008) The catchment area of jets. JHEP 04:005. https://doi.org/10.1088/1126-6708/2008/04/005, arXiv: 0802.1188 [hep-ph]

  17. Gupta S (2015) A study of longitudinal hadronic shower leakage and the development of a correction for its associated effects at \(\sqrt{s} = 8\) TeV with the ATLAS detector. CERN-THESIS-2015-332. Ph.D. thesis. The University of Oxford (2015)

    Google Scholar 

  18. Gupta S, Issever C, Doglioni C (2013) Jet punch-through studies at \(\sqrt{s} = 8\) TeV with the ATLAS detector. Technical report, ATL-COM-PHYS-2013-311. Geneva: CERN

    Google Scholar 

  19. ATLAS Collaboration, Marshall Z (2014) Simulation of pile-up in the ATLAS experiment. J Phys Conf Ser 513:022024. https://doi.org/10.1088/1742-6596/513/2/022024

  20. Fabjan CW, Ludlam T (1982) Calorimetry in high-energy physics. Ann Rev Nucl Part Sci 32:335–389. https://doi.org/10.1146/annurev.ns.32.120182.002003

    Article  ADS  Google Scholar 

  21. ATLAS Collaboration (2008) The ATLAS experiment at the CERN large hadron collider. J. Instrum. 3.08:S08003. https://doi.org/10.1088/1748-0221/3/08/S08003

  22. Bossio J (2017) Private communication

    Google Scholar 

  23. ATLAS Collaboration (2016) Performance of b-jet identification in the ATLAS experiment. JINST 11.04:P04008. https://doi.org/10.1088/1748-0221/11/04/P04008, arXiv:1512.01094 [hep-ex]

  24. ATLAS Collaboration (2016) Optimisation of the ATLAS b-tagging performance for the 2016 LHC Run. Technical report, ATL-PHYS-PUB-2016-012. Geneva: CERN

    Google Scholar 

  25. ATLAS Collaboration (2016) Public plots: Jet energy scale uncertainties updated for ICHEP 2016 using full 13 TeV 2015 dataset. https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/JETM-2016-010

  26. ATLAS Collaboration (2015) Recommendations for early 2015 analysis with pre-recommendation xAOD calibrations. https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/JetUncertainties2015Prerec

  27. ATLAS Collaboration (2016) Uncertainty release for analyses using ICHEP2016 calibration version. https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/JetUncertainties2015ICHEP2016

  28. ATLAS Collaboration (2015) A method for the construction of strongly reduced representations of ATLAS experimental uncertainties and the application thereof to the jet energy scale. Technical report, ATL-PHYS-PUB-2015-014. Geneva: CERN

    Google Scholar 

  29. ATLAS JetEtmiss performance group (2017) JES\(\_\)ResponseFitter. https://svnweb.cern.ch/trac/atlasperf/browser/CombPerf/JetETMiss/JetCalibrationTools/DeriveJES/trunk/JES_ResponseFitter

  30. ATLAS Collaboration (2016) Electron and photon energy calibration with the ATLAS detector using data collected in 2015 at \(\sqrt{s} =13\) TeV. Technical report, ATLAS-PHYS-PUB-2016-015. Geneva: CERN

    Google Scholar 

  31. ATLAS Collaboration (2016) Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run-1 data. Eur Phys J C 76.12:666. https://doi.org/10.1140/epjc/s10052-016-4507-9, arXiv: 1606.01813 [hep-ex], ISSN: 1434-6052

  32. Hance M (2012) Photon physics at the LHC: a measurement of inclusive isolated prompt photon production at \(\sqrt{s} = 7\) TeV with the ATLAS detector (Springer Theses). Springer, Berlin. http://www.springer.com/gp/book/9783642330612, ISBN 9783642330629

  33. ATLAS Collaboration (2014) Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data. Eur Phys J C 74.10:3071. https://doi.org/10.1140/epjc/s10052-014-3071-4, ISSN: 1434-6052

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lydia Audrey Beresford .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beresford, L.A. (2018). Physics Object Reconstruction in ATLAS. In: Searches for Dijet Resonances. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-97520-7_4

Download citation

Publish with us

Policies and ethics