Skip to main content

Block-Coordinate Primal-Dual Method for Nonsmooth Minimization over Linear Constraints

Part of the Lecture Notes in Mathematics book series (LNM,volume 2227)

Abstract

We consider the problem of minimizing a convex, separable, nonsmooth function subject to linear constraints. The numerical method we propose is a block-coordinate extension of the Chambolle-Pock primal-dual algorithm. We prove convergence of the method without resorting to assumptions like smoothness or strong convexity of the objective, full-rank condition on the matrix, strong duality or even consistency of the linear system. Freedom from imposing the latter assumption permits convergence guarantees for misspecified or noisy systems.

Keywords

  • Saddle-point problems
  • First order algorithms
  • Primal-dual algorithms
  • Coordinate methods
  • Randomized methods

AMS Subject Classifications

  • 49M29
  • 65K10
  • 65Y20
  • 90C25

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-97478-1_6
  • Chapter length: 27 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-97478-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.99
Price excludes VAT (USA)
Fig. 6.1
Fig. 6.2
Fig. 6.3
Fig. 6.4

Notes

  1. 1.

    This means Ax = 0 if and only if x 1 = ⋯ = x p.

  2. 2.

    The left and right problems are also known as Tikhonov and Morozov regularization respectively.

  3. 3.

    All codes can be found on https://gitlab.gwdg.de/malitskyi/coo-pd.git.

References

  1. H. Attouch, J. Bolte, P. Redont, A. Soubeyran, Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-Lojasiewicz inequality. Math. Oper. Res. 35(2), 438–457 (2010)

    CrossRef  MathSciNet  Google Scholar 

  2. S. Banert, R.I. Bot, E.R. Csetnek, Fixing and extending some recent results on the ADMM algorithm. arXiv:1612.05057 (2016, Preprint)

    Google Scholar 

  3. D.P. Bertsekas, J.N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods (Prentice-Hall, Upper Saddle River, 1989). ISBN: 0-13-648700-9

    MATH  Google Scholar 

  4. P. Bianchi, W. Hachem, I. Franck, A stochastic coordinate descent primal-dual algorithm and applications, in 2014 IEEE International Workshop on Machine Learning for Signal Processing (MLSP) (IEEE, Piscataway, 2014), pp. 1–6

    Google Scholar 

  5. J. Bolte, S. Sabach, M. Teboulle, Proximal alternating linearized minimization for non-convex and nonsmooth problems. Math. Program. 146(1–2), 459–494 (2014)

    CrossRef  MathSciNet  Google Scholar 

  6. S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    CrossRef  Google Scholar 

  7. E.J. Candès, M.B. Wakin, An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008)

    CrossRef  Google Scholar 

  8. E.J. Candès, J.K. Romberg, T. Tao, Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)

    CrossRef  MathSciNet  Google Scholar 

  9. E.J. Candès, X. Li, Y Ma, J. Wright, Robust principal component analysis? J. ACM 58(3), 11 (2011)

    Google Scholar 

  10. A. Chambolle, T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imag. Vis. 40(1), 120–145 (2011)

    CrossRef  MathSciNet  Google Scholar 

  11. S.S. Chen, Basis pursuit, Ph.D. thesis, Department of Statistics, Stanford University Stanford, 1995

    Google Scholar 

  12. S.S. Chen, D.L. Donoho, M.A. Saunders, Atomic decomposition by basis pursuit. SIAM Rev. 43(1), 129–159 (2001)

    CrossRef  MathSciNet  Google Scholar 

  13. P.L. Combettes, J.-C. Pesquet, Stochastic quasi-Fejér block-coordinate fixed point iterations with random sweeping. SIAM J. Optim. 25(2), 1221–1248 (2015)

    CrossRef  MathSciNet  Google Scholar 

  14. A. Defazio, F. Bach, S. Lacoste-Julien, SAGA: a fast incremental gradient method with support for non-strongly convex composite objectives, in Advances in Neural Information Processing Systems (2014), pp. 1646–1654

    Google Scholar 

  15. J.C. Duchi, A. Agarwal, M.J. Wainwright, Dual averaging for distributed optimization: convergence analysis and network scaling. IEEE Trans. Autom. Control 57(3), 592–606 (2012)

    CrossRef  MathSciNet  Google Scholar 

  16. J. Eckstein, Some saddle-function splitting methods for convex programming. Optim. Methods Softw. 4(1), 75–83 (1994)

    CrossRef  Google Scholar 

  17. O. Fercoq, P. Bianchi, A coordinate descent primal-dual algorithm with large step size and possibly non separable functions. arXiv:1508.04625 (2015, Preprint)

    Google Scholar 

  18. O. Fercoq, P. Richtaórik, Accelerated, parallel, and proximal coordinate descent. SIAM J. Optim. 25(4), 1997–2023 (2015)

    CrossRef  MathSciNet  Google Scholar 

  19. R. Glowinski, A. Marroco, Sur l’approximation, par elements finis d’ordre un, et las resolution, par penalisation-dualite‘ d’une classe de problemes de dirichlet non lineares. Revue Francais d’Automatique Informatique et Recherche Opeórationelle 9(R-2), 41–76 (1975)

    CrossRef  Google Scholar 

  20. B. He, X. Yuan, Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective. SIAM J. Imag. Sci. 5(1), 119–149 (2012)

    CrossRef  MathSciNet  Google Scholar 

  21. R. Hesse, D.R. Luke, S. Sabach, M.K. Tam, Proximal heterogeneous block implicit-explicit method and application to blind ptychographic diffraction imaging. SIAM J. Imag. Sci. 8(1), 426–457 (2015)

    CrossRef  MathSciNet  Google Scholar 

  22. F. Iutzeler, P. Bianchi, P. Ciblat, W. Hachem, Asynchronous distributed optimization using a randomized alternating direction method of multipliers, in 2013 IEEE 52nd Annual Conference on Decision and Control (CDC) (IEEE, Piscataway, 2013), pp. 3671–3676

    Google Scholar 

  23. R. Johnson, T. Zhang, Accelerating stochastic gradient descent using predictive variance reduction, in Advances in Neural Information Processing Systems (2013), pp. 315–323

    Google Scholar 

  24. P. Latafat, N.M. Freris, P. Patrinos, A new randomized block-coordinate primal-dual proximal algorithm for distributed optimization. arXiv:1706.02882 (2017, Preprint)

    Google Scholar 

  25. D. Leventhal, A.S. Lewis, Randomized methods for linear constraints: convergence rates and conditioning. Math. Oper. Res. 35(3), 641–654 (2010)

    CrossRef  MathSciNet  Google Scholar 

  26. Z. Lin, M. Chen, Y. Ma, The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices. arXiv:1009.5055 (2010, Preprint)

    Google Scholar 

  27. D.A. Lorenz, F. Schoüpfer, S. Wenger, The linearized Bregman method via split feasibility problems: analysis and generalizations. SIAM J. Imag. Sci. 7(2), 1237–1262 (2014)

    CrossRef  MathSciNet  Google Scholar 

  28. Y. Malitsky, The primal-dual hybrid gradient method reduces to a primal method for linearly constrained optimization problems. arXiv:1706.02602 (2017, Preprint)

    Google Scholar 

  29. Y. Malitsky, T. Pock, A first-order primal-dual algorithm with linesearch. SIAM J. Optim. 28(1), 411–432 (2018)

    CrossRef  MathSciNet  Google Scholar 

  30. A. Nedic, A. Ozdaglar, P.A. Parrilo, Constrained consensus and optimization in multi-agent networks. IEEE Trans. Autom. Control 55(4), 922–938 (2010)

    CrossRef  MathSciNet  Google Scholar 

  31. Y. Nesterov, Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM J. Optim. 22(2), 341–362 (2012)

    CrossRef  MathSciNet  Google Scholar 

  32. B. Palaniappan, F. Bach, Stochastic variance reduction methods for saddle-point problems, in Advances in Neural Information Processing Systems (2016), pp. 1416–1424

    Google Scholar 

  33. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  34. Z. Peng, Y. Xu, M. Yan, W. Yin, Arock: an algorithmic framework for asynchronous parallel coordinate updates. SIAM J. Sci. Comput. 38(5), A2851–A2879 (2016)

    CrossRef  MathSciNet  Google Scholar 

  35. T. Pock, A. Chambolle, Diagonal preconditioning for first order primal-dual algorithms in convex optimization, in 2011 IEEE International Conference on Computer Vision (ICCV) (IEEE, Piscataway, 2011), pp. 1762–1769

    Google Scholar 

  36. G. Poólya, G. Szegoü, Problems and Theorems in Analysis I. : Series. Integral Calculus Theory of Functions (Springer, Berlin, 1978)

    Google Scholar 

  37. F. Santambrogio, Optimal Transport for Applied Mathematicians (Birkaüuser, New York, 2015)

    CrossRef  Google Scholar 

  38. F. Schoüpfer, D.A. Lorenz, Linear convergence of the randomized sparse Kaczmarz method. arXiv:1610.02889 (2016, Preprint)

    Google Scholar 

  39. R. Shefi, M. Teboulle, Rate of convergence analysis of decomposition methods based on the proximal method of multipliers for convex minimization. SIAM J. Optim. 24(1), 269–297 (2014)

    CrossRef  MathSciNet  Google Scholar 

  40. M. Solodov, An explicit descent method for bilevel convex optimization. J. Convex Anal. 14(2), 227 (2007)

    Google Scholar 

  41. T. Strohmer, R. Vershynin, A randomized Kaczmarz algorithm with exponential convergence. J. Fourier Anal. Appl. 15(2), 262–278 (2009)

    CrossRef  MathSciNet  Google Scholar 

  42. P. Tseng, On accelerated proximal gradient methods for convex-concave optimization (2008), http://www.mit.edu/dimitrib/PTseng/papers/apgm.pdf

  43. S.J. Wright, Coordinate descent algorithms. Math. Program. 151(1), 3–34 (2015)

    CrossRef  MathSciNet  Google Scholar 

  44. J. Wright, A. Ganesh, S. Rao, Y. Peng, Y. Ma, Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization, in Advances in Neural Information Processing Systems (2009)

    Google Scholar 

  45. X. Yuan, J. Yang, Sparse and low-rank matrix decomposition via alternating direction methods. Pac. J. Optim. 9, 167–180 (2013)

    MathSciNet  MATH  Google Scholar 

  46. Y. Zhang, X. Lin, Stochastic primal-dual coordinate method for regularized empirical risk minimization, in Proceedings of the 32nd International Conference on Machine Learning (ICML-15) (2015), pp. 353–361

    Google Scholar 

Download references

Acknowledgements

This research was supported by the German Research Foundation grant SFB755-A4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Russell Luke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Luke, D.R., Malitsky, Y. (2018). Block-Coordinate Primal-Dual Method for Nonsmooth Minimization over Linear Constraints. In: Giselsson, P., Rantzer, A. (eds) Large-Scale and Distributed Optimization. Lecture Notes in Mathematics, vol 2227. Springer, Cham. https://doi.org/10.1007/978-3-319-97478-1_6

Download citation