Abstract
We consider the problem of minimizing a convex, separable, nonsmooth function subject to linear constraints. The numerical method we propose is a block-coordinate extension of the Chambolle-Pock primal-dual algorithm. We prove convergence of the method without resorting to assumptions like smoothness or strong convexity of the objective, full-rank condition on the matrix, strong duality or even consistency of the linear system. Freedom from imposing the latter assumption permits convergence guarantees for misspecified or noisy systems.
Keywords
- Saddle-point problems
- First order algorithms
- Primal-dual algorithms
- Coordinate methods
- Randomized methods
AMS Subject Classifications
- 49M29
- 65K10
- 65Y20
- 90C25
This is a preview of subscription content, access via your institution.
Buying options




Notes
- 1.
This means Ax = 0 if and only if x 1 = ⋯ = x p.
- 2.
The left and right problems are also known as Tikhonov and Morozov regularization respectively.
- 3.
All codes can be found on https://gitlab.gwdg.de/malitskyi/coo-pd.git.
References
H. Attouch, J. Bolte, P. Redont, A. Soubeyran, Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-Lojasiewicz inequality. Math. Oper. Res. 35(2), 438–457 (2010)
S. Banert, R.I. Bot, E.R. Csetnek, Fixing and extending some recent results on the ADMM algorithm. arXiv:1612.05057 (2016, Preprint)
D.P. Bertsekas, J.N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods (Prentice-Hall, Upper Saddle River, 1989). ISBN: 0-13-648700-9
P. Bianchi, W. Hachem, I. Franck, A stochastic coordinate descent primal-dual algorithm and applications, in 2014 IEEE International Workshop on Machine Learning for Signal Processing (MLSP) (IEEE, Piscataway, 2014), pp. 1–6
J. Bolte, S. Sabach, M. Teboulle, Proximal alternating linearized minimization for non-convex and nonsmooth problems. Math. Program. 146(1–2), 459–494 (2014)
S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)
E.J. Candès, M.B. Wakin, An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008)
E.J. Candès, J.K. Romberg, T. Tao, Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)
E.J. Candès, X. Li, Y Ma, J. Wright, Robust principal component analysis? J. ACM 58(3), 11 (2011)
A. Chambolle, T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imag. Vis. 40(1), 120–145 (2011)
S.S. Chen, Basis pursuit, Ph.D. thesis, Department of Statistics, Stanford University Stanford, 1995
S.S. Chen, D.L. Donoho, M.A. Saunders, Atomic decomposition by basis pursuit. SIAM Rev. 43(1), 129–159 (2001)
P.L. Combettes, J.-C. Pesquet, Stochastic quasi-Fejér block-coordinate fixed point iterations with random sweeping. SIAM J. Optim. 25(2), 1221–1248 (2015)
A. Defazio, F. Bach, S. Lacoste-Julien, SAGA: a fast incremental gradient method with support for non-strongly convex composite objectives, in Advances in Neural Information Processing Systems (2014), pp. 1646–1654
J.C. Duchi, A. Agarwal, M.J. Wainwright, Dual averaging for distributed optimization: convergence analysis and network scaling. IEEE Trans. Autom. Control 57(3), 592–606 (2012)
J. Eckstein, Some saddle-function splitting methods for convex programming. Optim. Methods Softw. 4(1), 75–83 (1994)
O. Fercoq, P. Bianchi, A coordinate descent primal-dual algorithm with large step size and possibly non separable functions. arXiv:1508.04625 (2015, Preprint)
O. Fercoq, P. Richtaórik, Accelerated, parallel, and proximal coordinate descent. SIAM J. Optim. 25(4), 1997–2023 (2015)
R. Glowinski, A. Marroco, Sur l’approximation, par elements finis d’ordre un, et las resolution, par penalisation-dualite‘ d’une classe de problemes de dirichlet non lineares. Revue Francais d’Automatique Informatique et Recherche Opeórationelle 9(R-2), 41–76 (1975)
B. He, X. Yuan, Convergence analysis of primal-dual algorithms for a saddle-point problem: from contraction perspective. SIAM J. Imag. Sci. 5(1), 119–149 (2012)
R. Hesse, D.R. Luke, S. Sabach, M.K. Tam, Proximal heterogeneous block implicit-explicit method and application to blind ptychographic diffraction imaging. SIAM J. Imag. Sci. 8(1), 426–457 (2015)
F. Iutzeler, P. Bianchi, P. Ciblat, W. Hachem, Asynchronous distributed optimization using a randomized alternating direction method of multipliers, in 2013 IEEE 52nd Annual Conference on Decision and Control (CDC) (IEEE, Piscataway, 2013), pp. 3671–3676
R. Johnson, T. Zhang, Accelerating stochastic gradient descent using predictive variance reduction, in Advances in Neural Information Processing Systems (2013), pp. 315–323
P. Latafat, N.M. Freris, P. Patrinos, A new randomized block-coordinate primal-dual proximal algorithm for distributed optimization. arXiv:1706.02882 (2017, Preprint)
D. Leventhal, A.S. Lewis, Randomized methods for linear constraints: convergence rates and conditioning. Math. Oper. Res. 35(3), 641–654 (2010)
Z. Lin, M. Chen, Y. Ma, The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices. arXiv:1009.5055 (2010, Preprint)
D.A. Lorenz, F. Schoüpfer, S. Wenger, The linearized Bregman method via split feasibility problems: analysis and generalizations. SIAM J. Imag. Sci. 7(2), 1237–1262 (2014)
Y. Malitsky, The primal-dual hybrid gradient method reduces to a primal method for linearly constrained optimization problems. arXiv:1706.02602 (2017, Preprint)
Y. Malitsky, T. Pock, A first-order primal-dual algorithm with linesearch. SIAM J. Optim. 28(1), 411–432 (2018)
A. Nedic, A. Ozdaglar, P.A. Parrilo, Constrained consensus and optimization in multi-agent networks. IEEE Trans. Autom. Control 55(4), 922–938 (2010)
Y. Nesterov, Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM J. Optim. 22(2), 341–362 (2012)
B. Palaniappan, F. Bach, Stochastic variance reduction methods for saddle-point problems, in Advances in Neural Information Processing Systems (2016), pp. 1416–1424
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Z. Peng, Y. Xu, M. Yan, W. Yin, Arock: an algorithmic framework for asynchronous parallel coordinate updates. SIAM J. Sci. Comput. 38(5), A2851–A2879 (2016)
T. Pock, A. Chambolle, Diagonal preconditioning for first order primal-dual algorithms in convex optimization, in 2011 IEEE International Conference on Computer Vision (ICCV) (IEEE, Piscataway, 2011), pp. 1762–1769
G. Poólya, G. Szegoü, Problems and Theorems in Analysis I. : Series. Integral Calculus Theory of Functions (Springer, Berlin, 1978)
F. Santambrogio, Optimal Transport for Applied Mathematicians (Birkaüuser, New York, 2015)
F. Schoüpfer, D.A. Lorenz, Linear convergence of the randomized sparse Kaczmarz method. arXiv:1610.02889 (2016, Preprint)
R. Shefi, M. Teboulle, Rate of convergence analysis of decomposition methods based on the proximal method of multipliers for convex minimization. SIAM J. Optim. 24(1), 269–297 (2014)
M. Solodov, An explicit descent method for bilevel convex optimization. J. Convex Anal. 14(2), 227 (2007)
T. Strohmer, R. Vershynin, A randomized Kaczmarz algorithm with exponential convergence. J. Fourier Anal. Appl. 15(2), 262–278 (2009)
P. Tseng, On accelerated proximal gradient methods for convex-concave optimization (2008), http://www.mit.edu/dimitrib/PTseng/papers/apgm.pdf
S.J. Wright, Coordinate descent algorithms. Math. Program. 151(1), 3–34 (2015)
J. Wright, A. Ganesh, S. Rao, Y. Peng, Y. Ma, Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization, in Advances in Neural Information Processing Systems (2009)
X. Yuan, J. Yang, Sparse and low-rank matrix decomposition via alternating direction methods. Pac. J. Optim. 9, 167–180 (2013)
Y. Zhang, X. Lin, Stochastic primal-dual coordinate method for regularized empirical risk minimization, in Proceedings of the 32nd International Conference on Machine Learning (ICML-15) (2015), pp. 353–361
Acknowledgements
This research was supported by the German Research Foundation grant SFB755-A4.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Luke, D.R., Malitsky, Y. (2018). Block-Coordinate Primal-Dual Method for Nonsmooth Minimization over Linear Constraints. In: Giselsson, P., Rantzer, A. (eds) Large-Scale and Distributed Optimization. Lecture Notes in Mathematics, vol 2227. Springer, Cham. https://doi.org/10.1007/978-3-319-97478-1_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-97478-1_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-97477-4
Online ISBN: 978-3-319-97478-1
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)