Skip to main content

Evolutionary Analysis of a Few Protein Superfamilies in Ocimum tenuiflorum

  • Chapter
  • First Online:
The Ocimum Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

  • 425 Accesses

Abstract

Phytochemicals in the form of secondary metabolites produced by plants have been used for therapeutic purposes, some of the well-known examples being artemisinin for treatment of malaria, vinblastine and vinblastine and vincristine for treatment of cancer. Plants produce several such secondary metabolites having anticancer, cardioprotectant, anti-inflammatory, antidiabetic, artificial sweetener, antimicrobial properties, and plants have evolved elaborate pathways to synthesize these complex biomolecules. Some of these molecules can be highly complex in their chemistry, and it is often impossible to synthesize them in the laboratory, while plants have evolved enzymes with a remarkable capacity to catalyze these reactions with chemo-, regio-, and stereospecificity. Understanding sequence and structural properties of plant enzymes involved in the synthesis of metabolites will help in deciphering the mechanism underlying the synthesis of these phytochemicals. In the present chapter, we describe a computational pipeline for identifying, validating, and analyzing the key components involved in the synthesis of terpenoids and a less studied class of proteases called rhomboids. A bioinformatic study of this nature will have wider implication as not only a tool to understand sequence and structure–function relationships of some of the well-studied metabolites and enzymes, to aid protein engineering for biotechnological utilization of these commercially valuable molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah I, Quax WJ (2017) A glimpse into the biosynthesis of terpenoids. KnE Life Sci 3(5):81–98

    Article  Google Scholar 

  • Afendi FM, Okada T, Yamazaki M, Hirai-Morita A, Nakamura Y, Nakamura K, Ikeda S, Takahashi H, Altaf-Ul-Amin M, Darusman LK, Saito K, Kanaya S (2012) KNApSAcK family databases: Integrated metabolite-plant species databases for multifaceted plant research. Plant Cell Physiol 53(2):1–12

    Article  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  • Baerenfaller K, Hirsch-Hoffmann M, Svozil J, Hull R, Russenberger D, Bischof S, Baginsky S (2011) pep2pro: a new tool for comprehensive proteome data analysis to reveal information about organ-specific proteomes in Arabidopsis thaliana. Integrative Biology: Quantitative Biosciences from Nano to Macro 3(3), 225–237 https://doi.org/10.1039/c0ib00078g

    Article  CAS  Google Scholar 

  • Baldi P, Chauvint Y, Hunkapiller T, Mcclureii M (1994) Hidden Markov models of biological primary sequence information (multiple sequence alignments/protein modeling/adaptive algorithms/sequence Classification). Biochemistry 91:1059–1063

    CAS  Google Scholar 

  • Biegert A, Soding J (2009) Sequence context-specific profiles for homology searching. Proc Natl Acad Sci USA 106(10):3770–3775

    Article  CAS  Google Scholar 

  • Bohlmann J, Meyer-Gauen G, Croteau R (1998) Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc Natl Acad Sci USA 95(8):4126–4133

    Article  CAS  Google Scholar 

  • Boutanaev AM, Moses T, Zi J, Nelson DR, Mugford ST, Peters RJ, Osbourn A (2015) Investigation of terpene diversification across multiple sequenced plant genomes. Proc Natl Acad Sci USA 112(1):E81–E88

    Article  CAS  Google Scholar 

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST +: architecture and applications. BMC Bioinform 9:1–9

    Google Scholar 

  • Caspi R, Altman T, Dreher K, Fulcher CA, Subhraveti P (2016) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucl Acids Res 44(D1):D471–D480

    Article  CAS  Google Scholar 

  • Chapple C (1998) Molecular-genetic analysis of plant cytochrome P450-dependent monooxygenases. Annu Rev Plant Physiol Plant Mol Biol 49:311–343

    Article  CAS  Google Scholar 

  • Chen F, Tholl D, Bohlmann J, Pichersky E (2011) The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J 66(1):212–229

    Article  CAS  Google Scholar 

  • Degenhardt J, Köllner TG, Gershenzon J (2009) Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 70(15–16):1621–1637

    Article  CAS  Google Scholar 

  • Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14(9):755–763

    Article  CAS  Google Scholar 

  • Farnsworth NR (1988) Screening plants for new medicines. In: Wilson EO, Peter FM (eds) Biodiversity. National Academies Press, Washington, D.C.

    Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17(6):368–376

    Article  CAS  Google Scholar 

  • Fox NK, Brenner SE, Chandonia JM (2014) SCOPe: Structural Classification of Proteins—extended, integrating SCOP and ASTRAL data and classification of new structures. Nucleic Acids Res 42(D1):D304–D309. https://doi.org/10.1093/nar/gkt1240

    Article  Google Scholar 

  • GarcĂ­a-Lorenzo M, Sjödin A, Jansson S, Funk C (2006) Protease gene families in Populus and Arabidopsis. BMC Plant Biol 6:1–24

    Article  Google Scholar 

  • Gertz EM, Yu Y-K, Agarwala R, Schäffer AA, Altschul SF (2006) Composition-based statistics and translated nucleotide searches: improving the TBLASTN module of BLAST. BMC Biol 4:41

    Article  Google Scholar 

  • Gotoh O (1992) Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J Biol Chem 267(1):83–90

    CAS  PubMed  Google Scholar 

  • Gotoh O (2012) Evolution of cytochrome P450 genes from the viewpoint of genome informatics. Biol Pharm Bull 812(356):812–817

    Article  Google Scholar 

  • Hofmann K (1993) TMBASE-A database of membrane spanning protein segments. Biol Chem Hoppe-Seyler 374, 166. Retrieved from https://ci.nii.ac.jp/naid/10007774832/en/

  • Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Zimmermann P (2008) Genevestigator V3: A Reference Expression Database for the Meta-Analysis of Transcriptomes. Adv Bioinform. https://doi.org/10.1155/2008/420747

    Article  Google Scholar 

  • Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202

    Article  CAS  Google Scholar 

  • Käll L, Krogh A, Sonnhammer EL (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338(5):1027–1036

    Article  Google Scholar 

  • Kampranis SC, Ioannidis D, Purvis A, Mahrez W, Ninga E, Katerelos NA, Anssour S, Dunwell JM, Degenhardt J, Makris AM, Goodenough PW, Johnson CB (2007) Rational conversion of substrate and product specificity in a Salvia monoterpene synthase: Structural insights into the evolution of terpene synthase function. Plant Cell 19(6):1994–2005

    Article  CAS  Google Scholar 

  • Kanaoka MM, Urban S, Freeman M, Okada K (2005) An Arabidopsis Rhomboid homolog is an intramembrane protease in plants. FEBS Letters. https://doi.org/10.1016/j.febslet.2005.09.049

    Article  CAS  Google Scholar 

  • Kmiec-Wisniewska B, Krumpe K, Urantowka A, Sakamoto W, Pratje E, Janska H (2008) Plant mitochondrial rhomboid, AtRBL12, has different substrate specificity from its yeast counterpart. Plant Mol Biol 68(1–2):159–171

    Article  CAS  Google Scholar 

  • Knopf RR, Adam Z (2012) Rhomboid proteases in plants - still in square one? Physiol Plant 145(1):41–51

    Article  CAS  Google Scholar 

  • Kong DX, Guo MY, Xiao ZH, Chen LL, Zhang HY (2011) Historical variation of structural novelty in a natural product library. Chem Biodivers 8(11):1968–1977

    Article  CAS  Google Scholar 

  • Koonin EV, Makarova KS, Rogozin IB, Davidovic L, Letellier MC, Pellegrini L (2003) The rhomboids: a nearly ubiquitous family of intramembrane serine proteases that probably evolved by multiple ancient horizontal gene transfers. Genome Biol 4(3):R19

    Article  Google Scholar 

  • Lemberg MK, Freeman M (2007) Functional and evolutionary implications of enhanced genomic analysis of rhomboid intramembrane proteases. Genome Res 17(11):1634–1646

    Article  CAS  Google Scholar 

  • Lemberg MK, Menendez J, Misik A, Garcia M, Koth CM, Freeman M (2005) Mechanism of intramembrane proteolysis investigated with purified rhomboid proteases. EMBO J 24(3):464–472

    Article  CAS  Google Scholar 

  • Li Q, Zhang N, Zhang L, Ma H (2015) Differential evolution of members of the rhomboid gene family with conservative and divergent patterns. New Phytol 206(1):368–380

    Article  CAS  Google Scholar 

  • Marchler-Bauer A, Panchenko AR, Shoemaker BA, Thiessen PA, Geer LY, Bryant SH (2002) CDD: a database of conserved domain alignments with links to domain three-dimensional structure. Nucl Acids Res 30(1):281–283

    Article  CAS  Google Scholar 

  • Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21:796–802

    Article  CAS  Google Scholar 

  • Mayer U, NĂĽsslein-Volhard C (1988) A group of genes required for pattern formation in the ventral ectoderm of the Drosophila embryo. Genes Dev 2(11):1496–1511

    Article  CAS  Google Scholar 

  • Nebert DW, Nelson DR, Coon MJ, Estabrook RW, Feyereisen R, Fujii-Kuriyama Y, Gonzalez FJ, Guengerich FP, Gunsalus IC, Johnson EF et al (1991) The P450 superfamily: update on new sequences, gene mapping, and recommended nomenclature. DNA Cell Biol 10(1):1–14

    Article  CAS  Google Scholar 

  • Nelson DR (2009) The cytochrome p450 homepage. Hum Genom 4(1):59–65

    CAS  Google Scholar 

  • Pazouki L, Niinemets Ăś (2016) Multi-substrate terpene synthases: their occurrence and physiological significance. Front Plant Sci 7:1019

    Article  Google Scholar 

  • Radivojac P, Clark WT, Oron TR, Schnoes AM, Wittkop T et al (2013) A large-scale evaluation of computational protein function prediction. Nat Meth 10(3):221–227

    Article  CAS  Google Scholar 

  • Rambaut A (2009). FigTree. Tree Figure Drawing Tool. http://Tree.Bio.Ed.Ac.Uk/Software/Figtree/

  • Schuler MA (1996) The role of cytochrome P450 monooxygenases in plant-insect interactions. Plant Physiol 112(4):1411–1419

    Article  CAS  Google Scholar 

  • Sonnhammer EL, Eddy SR, Birney E, Bateman A, Durbin R (1998) Pfam: multiple sequence alignments and HMM-profiles of protein domains. Nucl Acids Res 26(1):320–322

    Article  CAS  Google Scholar 

  • Stevenson LG, Strisovsky K, Clemmer KM, Bhatt S, Freeman M, Rather PN (2007) Rhomboid protease AarA mediates quorum-sensing in Providencia stuartii by activating TatA of the twin-arginine translocase. Proc Natl Acad Sci 104(3):1003–1008

    Article  CAS  Google Scholar 

  • Tholl D (2006) Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol 9(3):297–304

    Article  CAS  Google Scholar 

  • Thompson EP, Llewellyn Smith SG, Glover BJ (2012) An arabidopsis rhomboid protease has roles in the chloroplast and in flower development. J Exp Bot 63(10):3559–3570

    Article  CAS  Google Scholar 

  • Tripathi LP, Sowdhamini R (2006) Cross genome comparisons of serine proteases in arabidopsis and rice. BMC Genom 7:1–31

    Article  Google Scholar 

  • Upadhyay AK, Chacko AR, Gandhimathi A, Ghosh P, Harini K, Joseph AP, Joshi AG (2015) Genome sequencing of herb Tulsi (Ocimum tenuiflorum) unravels key genes behind its strong medicinal properties. BMC Plant Biol 15(1):1–20

    Article  CAS  Google Scholar 

  • Urban S, Freeman M (2003) Substrate specificity of rhomboid intramembrane proteases is governed by helix-breaking residues in the substrate transmembrane domain. Mol Cell 11(6):1425–1434

    Article  CAS  Google Scholar 

  • Urban S, Lee JR, Freeman M (2001) Drosophila rhomboid-1 defines a family of putative intramembrane serine oroteases. Cell 107(2):173–182

    Article  CAS  Google Scholar 

  • Wasserman JD, Urban S, Freeman M (2000) A family of rhomboid-like genes : Drosophila Rhomboid-1 and Roughoid/ Rhomboid-3 cooperate to activate EGF receptor signaling. Genes Dev 14(13):1651–1663

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Schäffer AA, Miller W, Madden TL, Lipman DJ, Koonin EV, Altschul SF (1998) Protein sequence similarity searches using patterns as seeds. Nucl Acids Res 26(17):3986–3990

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sowdhamini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gandhimathi, A., Sathyanarayanan, N., Iyer, M., Gupta, R., Sowdhamini, R. (2018). Evolutionary Analysis of a Few Protein Superfamilies in Ocimum tenuiflorum. In: Shasany, A., Kole, C. (eds) The Ocimum Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-97430-9_4

Download citation

Publish with us

Policies and ethics