Skip to main content

Ocimum Species: A Longevity Elixir

  • Chapter
  • First Online:
Book cover The Ocimum Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Aging is a major risk factor associated with the period of morbidity and pain at a later stage of life. Although the average age for initiation of morbidity has delayed, chronic diseases like hypertension, cancer, diabetes, and neurodegenerative disorders are still prevalent in affluent aging societies leading to death. Therefore, studying dietary interventions and pathology of aging can prove as an essential strategy for achieving healthy aging. The recent researches demonstrated an association of aging with remarkable elevation in intracellular reactive oxygen species (ROS) and stress. The plant-based molecules have successfully modulated lifespan and stress level across various species. These phytomolecules are secondary plant metabolites which play a major role in plant defence network and are synthesized as side tracks of plant’s primary metabolism. Despite the recently discovered potential of some phytomolecules in alleviating age-related stress, antiaging and stress modulatory potential of most of them is still unraveled. The natural dietary intervention modulating lifespan and health span in model organisms should be vastly studied for improving later life health. The free-living soil nematode, Caenorhabditis elegans, provides a unique and expedient platform for studying pharmacological interventions and dissecting the genetic mechanism underlying aging. The present chapter highlights the medicinal and therapeutic potential of the various Ocimum species which is commonly known as the “Queen of the herbs.” The antioxidant and antiaging potential of phytomolecules and extracts derived from this genus is thoroughly reported. Basil is the rich repository of many bioactive molecules such as monoterpenes, sesquiterpenes, phenylpropanoids, anthocyanins, and phenolic acids; therefore, the longevity-promoting potential of this herb is highlighted in the present chapter. Furthermore, special attention is given to the employment of C. elegans model system for screening various phytochemicals isolated from Ocimum spp.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas S, Wink M (2009) Epigallocatechin gallate from green tea (Camellia sinensis) increases lifespan and stress resistance in Caenorhabditis elegans. Planta Med 75(3):216–221

    Article  CAS  PubMed  Google Scholar 

  • Asthana J, Pant A, Yadav D, Lal R, Gupta M et al (2015a) Ocimum basilicum (L.) and Premna integrifolia (L.) modulate stress response and lifespan in Caenorhabditis elegans. Indust Crops Prod 76(8):1086–1093

    Article  Google Scholar 

  • Asthana J, Yadav D, Pant A, Yadav A, Gupta M et al (2015b) Acacetin 7-O-α-l-rhamnopyranosyl (1–2) β-D-xylopyranoside elicits life-span extension and stress resistance in Caenorhabditis elegans. J Gerontol Ser A: Biol Sci Med Sci 71(9):1160–1168

    Article  Google Scholar 

  • Asthana J, Yadav AK, Pant A, Pandey S, Gupta MM et al (2015c) Specioside ameliorates oxidative stress and promotes longevity in Caenorhabditis elegans. Comp Biochem Physiol C Toxicol Pharmacol 169:25–34

    CAS  Google Scholar 

  • Bahrami SA, Bakhtiari N (2016) Ursolic acid regulates aging process through enhancing of metabolic sensor proteins level. Biomed Pharmacother 82(8):8–14

    Article  CAS  PubMed  Google Scholar 

  • Baseer M, Jain K (2016) Review of botany, phytochemistry, pharmacology, contemporary applications and toxicology of Ocimum sanctum. Int J Pharm Life Sci 7(2):4918–4929

    CAS  Google Scholar 

  • Bass TM, Weinkove D, Houthoofd K, Gems D, Partridge L (2007) Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans. Mech Age Dev 128(10):546–552

    Article  CAS  Google Scholar 

  • Baumeister R, Schaffitzel E, Hertweck M (2006) Endocrine signaling in Caenorhabditis elegans controls stress response and longevity. J Endocrinol 190(2):191–202

    Article  CAS  PubMed  Google Scholar 

  • Bilal A, Jahan N, Ahmed A, Bilal SN, Habib S et al (2012) Phytochemical and pharmacological studies on Ocimum basilicum Linn-a review. Int J Curr Res Rev 4(23):73–83

    CAS  Google Scholar 

  • Blagosklonny MV (2009) Validation of anti-aging drugs by treating age-related diseases. Aging 1(3):281–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bora KS, Arora S, Shri R (2011) Role of Ocimum basilicum L. in prevention of ischemia and reperfusion-induced cerebral damage, and motor dysfunctions in mice brain. J Ethnopharmacol 137(3):1360–1365

    Article  PubMed  Google Scholar 

  • Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown MK, Evans JL, Luo Y (2006) Beneficial effects of natural antioxidants EGCG and α-lipoic acid on life span and age-dependent behavioral declines in Caenorhabditis elegans. Pharmacol Biochem Behav 85(3):620–628

    Article  CAS  PubMed  Google Scholar 

  • Chao PY, Lin JA, Ting WJ, Lee HH, Hsieh K et al (2016) Ocimum gratissmum aqueous extract reduces plasma lipid in hypercholesterol-fed hamsters. Int J Med Sci 13(11):819–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang LC, Ng LT, Cheng PW, Chiang W, Lin CC (2005) Antiviral activities of extracts and selected pure constituents of Ocimum basilicum. Clin Exp Pharmac Physiol 32(10):811–816

    Article  CAS  Google Scholar 

  • Chopra A, Doiphode VV (2002) Ayurvedic medicine: core concept, therapeutic principles, and current relevance. Med Clin North Am 86(1):75–89

    Article  PubMed  Google Scholar 

  • Craig WJ (1999) Health-promoting properties of common herbs. Am J Clin Nutr 70(3):491–499

    Article  Google Scholar 

  • da Costa JP, Vitorino R, Silva GM, Vogel C, Duarte AC et al (2016) A synopsis on aging—theories, mechanisms and future prospects. Age Res Rev 29:90–112

    Article  Google Scholar 

  • Dillard CJ, German JB (2000) Phytochemicals: nutraceuticals and human health. J Sci Food Agri 80(12):1744–1756

    Article  CAS  Google Scholar 

  • Fischer B, van Doorn GS, Dieckmann U, Taborsky B (2014) The evolution of age-dependent plasticity. Am Nat 183(1):108–125

    Article  PubMed  Google Scholar 

  • Friedman DB, Johnson TE (1988) A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 118(1):75–86

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garigan D, Hsu AL, Fraser AG, Kamath RS, Ahringer J et al (2002) Genetic analysis of tissue aging in Caenorhabditis elegans: a role for heat-shock factor and bacterial proliferation. Genetics 161(3):1101–1112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gille E, Danila D, Stanescu U, Hancianu M (2007) The phytochemical evaluation of some extracts of Ocimum sp. Planta Med 73(09):374

    Article  Google Scholar 

  • Govindarajan R, Vijayakumar M, Pushpangadan P (2005) Antioxidant approach to disease management and the role of ‘Rasayana’ herbs of Ayurveda. J Ethnopharmacol 99(2):165–178

    Article  CAS  PubMed  Google Scholar 

  • Güez CM, Souza ROD, Fischer P, Leão MFDM, Duarte JA et al (2017) Evaluation of basil extract (Ocimum basilicum L.) on oxidative, anti-genotoxic and anti-inflammatory effects in human leukocytes cell cultures exposed to challenging agents. Braz J Pharmaceut Sci 53(1):1–12

    Google Scholar 

  • Gurib-Fakim A (2006) Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol Aspects Med 27(1):1–93

    Article  CAS  PubMed  Google Scholar 

  • Harman D (1955) Aging: a theory based on free radical and radiation chemistry. Sci Aging Knowl Environ 2002(37):298–300

    Google Scholar 

  • Harrington LA, Harley CB (1988) Effect of vitamin E on lifespan and reproduction in Caenorhabditis elegans. Mech Age Dev 43(1):71–78

    Article  CAS  Google Scholar 

  • Honda Y, Fujita Y, Maruyama H, Araki Y, Ichihara K et al (2011) Lifespan-extending effects of royal jelly and its related substances on the nematode Caenorhabditis elegans. PLoS ONE 6(8):e23527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jadoon S, Karim S, Asad MHHB, Akram MR, Kalsoom Khan A et al (2015) Anti-aging potential of phytoextract loaded-pharmaceutical creams for human skin cell longetivity. Oxid Med Cell Longetivity 3:1–12 2015

    Google Scholar 

  • Jakobsen H, Bojer MS, Marinus MG, Xu T, Struve C et al (2013) The alkaloid compound harmane increases the lifespan of Caenorhabditis elegans during bacterial infection, by modulating the nematode’s innate immune response. PLoS ONE 8(3):e60519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi RK (2017) Phytoconstituents, traditional, medicinal and bioactive uses of Tulsi (Ocimum sanctum Linn.): a review. J Pharmacognosy Phytochem 6(2):261–264

    CAS  Google Scholar 

  • Kampkötter A, Nkwonkam CG, Zurawski RF, Timpel C, Chovolou Y et al (2007) Investigations of protective effects of the flavonoids quercetin and rutin on stress resistance in the model organism Caenorhabditis elegans. Toxicology 234(1):113–123

    Article  PubMed  Google Scholar 

  • Karthikeyan K, Gunasekaran P, Ramamurthy N, Govindasamy S (1999) Anticancer activity of Ocimum sanctum. Pharmaceut Biol 37(4):285–290

    Article  Google Scholar 

  • Kavitha S, John F, Indira M (2015) Amelioration of inflammation by phenolic rich methanolic extract of Ocimum sanctum Linn. leaves in isoproterenol induced myocardial infarction. Indian J Exp Biol 53(10):632–640

    CAS  PubMed  Google Scholar 

  • Kennedy DO, Wightman EL (2011) Herbal extracts and phytochemicals: plant secondary metabolites and the enhancement of human brain function. Adv Nutr Int Rev J 2(1):32–50

    Article  CAS  Google Scholar 

  • Kenyon CJ (2010) The genetics of ageing. Nature 464(7288):504–512

    Article  CAS  PubMed  Google Scholar 

  • Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366(6454):461–464

    Article  CAS  PubMed  Google Scholar 

  • Khan S, Balick MJ (2001) Therapeutic plants of Ayurveda: a review of selected clinical and other studies for 166 species. J Alt Comp Med 7(5):405–515

    Article  CAS  Google Scholar 

  • Khosla M (1995) Sacred tulsi (Ocimum sanctum L.) in traditional medicine and pharmacology. Anc Sci Life 15(1):53

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkwood TB (2005) Understanding the odd science of aging. Cell 120(4):437–447

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Andola HC, Lohani H, Chauhan N (2011) Pharmacological review on Ocimum sanctum Linnaeus: a queen of herbs. J Pharm Res 4(2):366–368

    Google Scholar 

  • Lewis WH, Elvin-Lewis MP (1995) Medicinal plants as sources of new therapeutics. Ann Mo Bot Gard 82(1):16–24

    Article  Google Scholar 

  • Liao VHC, Yu CW, Chu YJ, Li WH, Hsieh YC et al (2011) Curcumin-mediated lifespan extension in Caenorhabditis elegans. Mech Age Dev 132(10):480–487

    Article  CAS  Google Scholar 

  • Liu J (1995) Pharmacology of oleanolic acid and ursolic acid. J Ethnopharmacol 49(2):57–68

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Li X, Simoneau AR, Jafari M, Zi X (2012) Rhodiola rosea extracts and salidroside decrease the growth of bladder cancer cell lines via inhibition of the mTOR pathway and induction of autophagy. Mol Carc 51(3):257–267

    Article  CAS  Google Scholar 

  • Longo VD, Antebi A, Bartke A, Barzilai N, Brown-Borg HM et al (2015) Interventions to slow aging in humans: are we ready? Aging Cell 14(4):497–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malve HO, Raut SB, Marathe PA, Rege NN (2014) Effect of combination of Phyllanthus emblica, Tinospora cordifolia, and Ocimum sanctum on spatial learning and memory in rats. J Ayurveda Int Med 5(4):209–215

    Article  Google Scholar 

  • Mondal S, Varma S, Bamola VD, Naik SN, Mirdha BR et al (2011) Double-blinded randomized controlled trial for immunomodulatory effects of Tulsi (Ocimum sanctum Linn.) leaf extract on healthy volunteers. J Ethnopharmacol 136(3):452–456

    Article  PubMed  Google Scholar 

  • Monga S, Dhanwal P, Kumar R, Kumar A, Chhokar V (2017) Pharmacological and physico-chemical properties of Tulsi (Ocimum gratissimum L.): An updated review. Pharma Innov 6(4):181–186

    CAS  Google Scholar 

  • Muralikrishnan G, Pillai S, Shakeel F (2012) Protective effects of Ocimum sanctum on lipid peroxidation and antioxidant status in streptozocin-induced diabetic rats. Nat Prod Res 26(5):474–478

    Article  CAS  PubMed  Google Scholar 

  • Negi H, Shukla A, Khan F, Pandey R (2016) 3β-Hydroxy-urs-12-en-28-oic acid prolongs lifespan in C. elegans by modulating JNK-1. Biochem Biophys Res Comm 480(4):539–543

    Article  CAS  PubMed  Google Scholar 

  • Negi H, Saikia SK, Pandey R (2017) 3β-Hydroxy-urs-12-en-28-oic acid modulates dietary restriction mediated longevity and ameliorates toxic protein aggregation in C. elegans. J Gerontol Ser A: Biomed Sci Med Sci 72(12):1614–1619

    Article  Google Scholar 

  • Pandey R, Gupta S, Shukla V, Tandon S, Shukla V (2013) Antiaging, antistress and ROS scavenging activity of crude extract of Ocimum sanctum (L.) in Caenorhabditis elegans (Maupas, 1900). Indian J Exp Biol 51:515–521

    PubMed  Google Scholar 

  • Pant A, Pandey R (2015) Bioactive phytomolecules and aging in Caenorhabditis elegans. Healthy Aging Res 4(19):1–15

    Google Scholar 

  • Pant A, Saikia SK, Shukla V, Asthana J, Akhoon BA, Pandey R (2014) Beta-caryophyllene modulates expression of stress response genes and mediates longevity in Caenorhabditis elegans. Exp Gerontol 57:81–95

    Article  CAS  PubMed  Google Scholar 

  • Peng C, Zuo Y, Kwan KM, Liang Y, Ma KY et al (2012) Blueberry extract prolongs lifespan of Drosophila melanogaster. Exp Gerontol 47(2):170–178

    Article  CAS  PubMed  Google Scholar 

  • Pietsch K, Saul N, Chakrabarti S, Stürzenbaum SR, Menzel R et al (2011) Hormetins, antioxidants and prooxidants: defining quercetin-, caffeic acid-and rosmarinic acid-mediated life extension in C. elegans. Biogerontology 12(4):329–347

    Article  CAS  PubMed  Google Scholar 

  • Pingale SS, Firke NP, Markandetya A (2012) Therapeutic activities of Ocimum tenuiflorum accounted in last decade: a review. J Pharm Res 5(4):2215–2220

    Google Scholar 

  • Powolny AA, Singh SV, Melov S, Hubbard A, Fisher AL (2011) The garlic constituent diallyl trisulfide increases the lifespan of C. elegans via skn-1 activation. Exp Gerontol 46(6):441–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prakash P, Gupta N (2005) Therapeutic uses of Ocimum sanctum Linn (Tulsi) with a note on eugenol and its pharmacological actions: a short review. Indian J Physiol Pharmacol 49(2):659–666

    Google Scholar 

  • Rai D, Bhatia G, Sen T, Palit G (2003) Anti-stress effects of Ginkgo biloba and Panax ginseng: a comparative study. J Pharmacol Sci 93(4):458–464

    Article  CAS  PubMed  Google Scholar 

  • Raskin I, Ribnicky DM, Komarnytsky S, Ilic N, Poulev A et al (2002) Plants and human health in the twenty-first century. Trends Biotechnol 20(12):522–531

    Article  CAS  PubMed  Google Scholar 

  • Rattan SI (2006) Theories of biological aging: genes, proteins, and free radicals. Free Rad Res 40(12):1230–1238

    Article  CAS  Google Scholar 

  • Rege A, Chowdhary AS (2014) Evaluation of Ocimum sanctum and Tinospora cordifolia as probable HIV protease inhibitors. Int J Pharmaceut Sci Re Res 25(1):315–318

    Google Scholar 

  • Saul N, Pietsch K, Menzel R, Stürzenbaum SR, Steinberg CE (2009) Catechin induced longevity in C. elegans: from key regulator genes to disposable soma. Mech Ageing Dev 130(8):477–486

    Article  CAS  PubMed  Google Scholar 

  • Shukla V, Yadav D, Phulara SC, Gupta M, Saikia SK, Pandey R (2012) Longevity-promoting effects of 4-hydroxy-E-globularinin in Caenorhabditis elegans. Free Rad Biol Med 53(10):1848–1856

    Article  CAS  PubMed  Google Scholar 

  • Srivastava D, Arya U, SoundaraRajan T, Dwivedi H, Kumar S, Subramaniam JR (2008) Reserpine can confer stress tolerance and lifespan extension in the nematode C. elegans. Biogerontology 9(5):309–316

    Article  CAS  PubMed  Google Scholar 

  • Tissenbaum HA (2015) Using C. elegans for aging research. Inv Repro Dev 59(12):59–63

    Article  Google Scholar 

  • Wang F, Liu QD, Wang L, Zhang Q, Hua ZT (2012) The molecular mechanism of rosmarinic acid extending the lifespan of Caenorhabditis elegans. App Mech Mat 140(11):469–472

    CAS  Google Scholar 

  • Wilson MA, Shukitt Hale B, Kalt W, Ingram DK, Joseph JA (2006) Blueberry polyphenols increase lifespan and thermotolerance in Caenorhabditis elegans. Aging Cell 5(1):59–68

    Article  CAS  PubMed  Google Scholar 

  • Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430(7000):686–689

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Smith JV, Paramasivam V, Butko P, Khan I (2002) Ginkgo biloba extract EGb 761 increases stress resistance and extends life span of Caenorhabditis elegans. Cell Mol Biol 48(6):725–731

    CAS  PubMed  Google Scholar 

  • Yu YB, Dosanjh L, Lao L, Tan M, Shim BS (2010) Cinnamomum cassia bark in two herbal formulas increases life span in Caenorhabditis elegans via insulin signaling and stress response pathways. PLoS ONE 5(2):e9339

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Lu L, Zhou L (2015) Oleanolic acid activates daf-16 to increase lifespan in Caenorhabditis elegans. Biochem Biophys Res Comm 468(4):843–849

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Jie G, Zhang J, Zhao B (2009) Significant longevity-extending effects of EGCG on Caenorhabditis elegans under stress. Free Rad Bio Med 46(3):414–421

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Pandey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pant, A., Pandey, R. (2018). Ocimum Species: A Longevity Elixir. In: Shasany, A., Kole, C. (eds) The Ocimum Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-97430-9_2

Download citation

Publish with us

Policies and ethics