Skip to main content

Transcriptomic Dissection of Maize Root System Development

  • 1187 Accesses

Part of the Compendium of Plant Genomes book series (CPG)

Abstract

RNA-Seq (RNA-Sequencing) allows for precise quantitative determination of global gene expression patterns and has therefore revolutionized transcriptome analyses in maize. In recent years, genetic analyses have identified numerous genes that control maize root system architecture and root hair elongation. In addition, RNA-Seq has been applied to dissect structure and function of individual roots. In this chapter, we summarize the current state of the transcriptomic dissection of maize root development on the level of whole roots, tissues, and individual cells. Moreover, we highlight the current knowledge of transcriptome responses of maize roots to drought stress and nutrient availability. Finally, we outline novel findings related to gene expression plasticity in primary roots of maize hybrids during the early manifestation of heterosis.

Keywords

  • Genetics
  • Maize
  • Mutants
  • Root
  • Transcriptome

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-97427-9_15
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-97427-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 15.1
Fig. 15.2

References

  • Babé A, Lavigne T, Severin J-P, Nagel KA, Walter A, Chaumont F, Batoko H, Beeckman T, Draye X (2012) Repression of early lateral root initiation events by transient water deficit in barley and maize. Philos Trans R Soc B Biol Sci 367:1534–1541

    CrossRef  Google Scholar 

  • Baldauf JA, Marcon C, Lithio A, Vedder L, Altrogge L, Piepho H-P, Schoof H, Nettleton D, Hochholdinger F (2018) Single-parent expression is a general mechanism driving extensive complementation of non-syntenic genes in maize hybrids. Curr Biol 28:431–437

    Google Scholar 

  • Baldauf JA, Marcon C, Paschold A, Hochholdinger F (2016) Nonsyntenic genes drive tissue-specific dynamics of differential, nonadditive and allelic expression patterns in maize hybrids. Plant Physiol 171:1144–1155

    PubMed  PubMed Central  Google Scholar 

  • Bao Y, Aggarwal P, Robbins NE, Sturrock CJ, Thompson MC, Tan HQ, Tham C, Duan L, Rodriguez PL, Vernoux T et al (2014) Plant roots use a patterning mechanism to position lateral root branches toward available water. Proc Natl Acad Sci 111:9319–9324

    CAS  CrossRef  Google Scholar 

  • Burton AL, Brown KM, Lynch JP (2013) Phenotypic diversity of root anatomical and architectural traits in Zea species. Crop Sci 53:1042–1055

    CrossRef  Google Scholar 

  • Dembinsky D, Woll K, Saleem M, Liu Y, Fu Y, Borsuk LA, Lamkemeyer T, Fladerer C, Madlung J, Barbazuk B et al (2007) Transcriptomic and proteomic analyses of pericycle cells of the maize primary root. Plant Physiol 145: 575–588

    Google Scholar 

  • Forde BG (2014) Nitrogen signalling pathways shaping root system architecture: an update. Curr Opin Plant Biol 21:30–36

    CAS  CrossRef  Google Scholar 

  • Gao Y, Lynch JP (2016) Reduced crown root number improves water acquisition under water deficit stress in maize (Zea mays L.). J Exp Bot 67:4545–4557

    CAS  CrossRef  Google Scholar 

  • Gaudin ACM, Mcclymont SA, Holmes BM, Lyons E, Raizada MN (2011) Novel temporal, fine-scale and growth variation phenotypes in roots of adult-stage maize (Zea mays L.) in response to low nitrogen stress. Plant Cell Environ 34:2122–2137

    CAS  CrossRef  Google Scholar 

  • Giehl RFH, von Wiren N (2014) Root nutrient foraging. Plant Physiol 166:509–517

    CrossRef  Google Scholar 

  • Guo Y, Chen F, Zhang F, Mi G (2005) Auxin transport from shoot to root is involved in the response of lateral root growth to localized supply of nitrate in maize. Plant Sci 169:894–900

    CAS  CrossRef  Google Scholar 

  • He X, Qu B, Li W, Zhao X, Teng W, Ma W, Ren Y, Li B, Li Z, Tong Y (2015) The nitrate-inducible NAC transcription factor TaNAC2-5A controls nitrate response and increases wheat yield. Plant Physiol 169:1991–2005

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hetz W, Hochholdinger F, Schwall M, Feix G (1996) Isolation and characterization of rtcs, a maize mutant deficient in the formation of nodal roots. Plant J 10:845–857

    CAS  CrossRef  Google Scholar 

  • Hey S, Baldauf JA, Opitz N, Lithio A, Pasha A, Provart N, Nettleton D, Hochholdinger F (2017) Complexity and specificity of the maize (Zea mays L.) root hair transcriptome. J Exp Bot 68:2175–2185

    CAS  CrossRef  Google Scholar 

  • Hochholdinger F (2009) The maize root system: morphology, anatomy, and genetics. In: Bennetzen JL, Hake SC (eds) Handb. Maize, Springer, pp 145–160

    Google Scholar 

  • Hochholdinger F, Feix G (1998) Early post-embryonic root formation is specifically affected in the maize mutant lrt1. Plant J 16:247–255

    CAS  CrossRef  Google Scholar 

  • Hochholdinger F, Hoecker N (2007) Towards the molecular basis of heterosis. Trends Plant Sci 12:427–432

    CAS  CrossRef  Google Scholar 

  • Hochholdinger F, Marcon C, Baldauf JA, Frey F, Yu P (2018b) Proteomics of maize root development. Front Plant Sci 9:143

    Google Scholar 

  • Hochholdinger F, Park WJ, Sauer M, Woll K (2004a) From weeds to crops: genetic analysis of root development in cereals. Trends Plant Sci 9:42–48

    CAS  CrossRef  Google Scholar 

  • Hochholdinger F, Woll K, Sauer M, Dembinsky D (2004b) Genetic dissection of root formation in maize (Zea mays) reveals root type specific developmental programmes. Ann Bot 93:359–368

    CAS  CrossRef  Google Scholar 

  • Hochholdinger F, Yu P, Marcon C (2018a) Genetic control of root system development in maize. Trends Plant Sci 23:79–88

    Google Scholar 

  • Hoecker N, Keller B, Muthreich N (2008) Comparison of maize (Zea mays L.) F1-hybrid and parental inbred line primary root transcriptomes suggests organ-specific patterns of nonadditive gene expression and conserved expression trends. Genetics 179:1275–1283

    CAS  CrossRef  Google Scholar 

  • Hoecker N, Keller B, Piepho HP, Hochholdinger F (2006) Manifestation of heterosis during early maize (Zea mays L.) root development. Theor Appl Genet 112:421–429

    CrossRef  Google Scholar 

  • Ishikawa H, Evans ML (1995) Specialized zones of development in roots. Plant Physiol 109:725–727

    CAS  CrossRef  Google Scholar 

  • Jansen L, Hollunder J, Roberts I, Forestan C, Fonteyne P, Van Quickenborne C, Zhen RG, Mckersie B, Parizot B, Beeckman T (2013) Comparative transcriptomics as a tool for the identification of root branching genes in maize. Plant Biotechnol J 11:1092–1102

    CAS  CrossRef  Google Scholar 

  • Jiao Y, Peluso P, Shi J, Liang T, Stitzer MC, Wang B, Campbell MS, Stein JC, Wei X, Chin C et al (2017) Improved maize reference genome with single-molecule technologies. Nature 546:524–527

    CAS  PubMed  Google Scholar 

  • Jones DF (1917) Dominance of linked factors as a means of accounting for heterosis. Genetics 2:466–479

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, An X, Cheng L, Chen F, Bao J, Yuan L, Zhang F, Mi G (2010) Auxin transport in maize roots in response to localized nitrate supply. Ann Bot 106:1019–1026

    CAS  CrossRef  Google Scholar 

  • Ludwig Y, Hochholdinger F (2014) Laser microdissection of plant cells. In: Žárský V, Cvrčková F (eds) Plant cell morphogenesis. Methods in molecular biology. Humana Press, Totowa, pp 249–258

    Google Scholar 

  • Lynch JP (2011) Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol 156:1041–1049

    CAS  CrossRef  Google Scholar 

  • Lynch JP (2013) Steep, cheap and deep: an ideotype to optimize water and N acquisition by maize root systems. Ann Bot 112:347–357

    CAS  CrossRef  Google Scholar 

  • Manoli A, Begheldo M, Genre A, Lanfranco L, Trevisan S, Quaggiotti S (2014) NO homeostasis is a key regulator of early nitrate perception and root elongation in maize. J Exp Bot 65:185–200

    CAS  CrossRef  Google Scholar 

  • Marcon C, Paschold A, Malik WA, Lithio A, Baldauf JA, Altrogge L, Opitz N, Lanz C, Schoof H, Nettleton D et al (2017) Stability of single parent gene expression complementation in maize hybrids upon water deficit stress. Plant Physiol 173:1247–1257

    CAS  CrossRef  Google Scholar 

  • Muthreich N, Majer C, Beatty M, Paschold A, Schutzenmeister A, Fu Y, Malik WA, Schnable PS, Piepho H-P, Sakai H et al (2013) Comparative transcriptome profiling of maize coleoptilar nodes during shoot-borne root initiation. Plant Physiol 163:419–430

    CAS  CrossRef  Google Scholar 

  • Nakazono M, Qiu F, Borsuk LA, Schnable PS (2003) Laser-capture microdissection, a tool for the global analysis of gene expression in specific plant cell types: identification of genes expressed differentially in epidermal cells or vascular tissues of maize. Plant Cell 15:583–596

    CAS  CrossRef  Google Scholar 

  • Nestler J, Liu S, Wen TJ, Paschold A, Marcon C, Tang HM, Li D, Li L, Meeley RB, Sakai H et al (2014) Roothairless5, which functions in maize (Zea mays L.) root hair initiation and elongation encodes a monocot-specific NADPH oxidase. Plant J 79:729–740

    CAS  CrossRef  Google Scholar 

  • Opitz N, Marcon C, Paschold A, Malik WA, Lithio A, Brandt R, Piepho HP, Nettleton D, Hochholdinger F (2016) Extensive tissue-specific transcriptomic plasticity in maize primary roots upon water deficit. J Exp Bot 67:1095–1107

    CAS  CrossRef  Google Scholar 

  • Opitz N, Paschold A, Marcon C, Malik WA, Lanz C, Piepho H-P, Hochholdinger F (2014) Transcriptomic complexity in young maize primary roots in response to low water potentials. BMC Genom 15:741

    CrossRef  Google Scholar 

  • Paschold A, Jia Y, Marcon C, Lund S, Larson NB, Yeh C-T, Ossowski S, Lanz C, Nettleton D, Schnable PS et al (2012) Complementation contributes to transcriptome complexity in maize (Zea mays L.) hybrids relative to their inbred parents. Genome Res 22:2445–2454

    Google Scholar 

  • Paschold A, Larson NB, Marcon C, Schnable JC, Yeh CT, Lanz C, Nettleton D, Piepho H-P, Schnable PS, Hochholdinger F (2014) Nonsyntenic genes drive highly dynamic complementation of gene expression in maize hybrids. Plant Cell 26:3939–3948

    Google Scholar 

  • Peter R, Eschholz TW, Stamp P, Liedgens M (2009) Early growth of flint maize landraces under cool conditions. Crop Sci 49:169–178

    Google Scholar 

  • Ribaut JM, Betran J, Monneveux P, Setter T (2009) Drought tolerance in maize. In: Bennetzen JL, Hake SC (eds) Handb. Maize, Springer, pp 311–344

    Google Scholar 

  • Robbins NE, Dinneny JR (2018) Growth is required for perception of water availability to pattern root branches in plants. Proc Natl Acad Sci 201710709

    Google Scholar 

  • Rogers ED, Benfey PN (2015) Regulation of plant root system architecture: implications for crop advancement. Curr Opin Biotechnol 32:93–98

    CAS  CrossRef  Google Scholar 

  • Saleem M, Lamkemeyer T, Schützenmeister A, Fladerer C, Piepho HP, Nordheim A, Hochholdinger F (2009) Tissue specific control of the maize (Zea mays L.) embryo, cortical parenchyma, and stele proteomes by RUM1 which regulates seminal and lateral root initiation. J Proteome Res 8:2285–2297

    CAS  CrossRef  Google Scholar 

  • Schnable PS, Springer NM (2013) Progress toward understanding heterosis in crop plants. Annu Rev Plant Biol 64:13.1–13.18

    Google Scholar 

  • Schnable JC, Springer NM, Freeling M (2011) Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. Proc Nat Acad Sci 108:4069–4074

    CAS  CrossRef  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    CAS  CrossRef  Google Scholar 

  • Sebastian J, Yee M-C, Goudinho Viana W, Rellán-Álvarez R, Feldman M, Priest HD, Trontin C, Lee T, Jiang H, Baxter I et al (2016) Grasses suppress shoot-borne roots to conserve water during drought. Proc Natl Acad Sci 113:8861–8866

    CAS  CrossRef  Google Scholar 

  • Stelpflug SC, Rajandeep S, Vaillancourt B, Hirsch CN, Buell CR, De Leon N, Kaeppler SM (2015) An expanded maize gene expression atlas based on RNA-sequencing and its use to explore root development. Plant Genome 9:314–362

    Google Scholar 

  • Tai H, Lu X, Opitz N, Marcon C, Paschold A, Lithio A, Nettleton D, Hochholdinger F (2016) Transcriptomic and anatomical complexity of primary, seminal, and crown roots highlight root type-specific functional diversity in maize (Zea mays L.). J Exp Bot 67:1123–1135

    CAS  CrossRef  Google Scholar 

  • Tai H, Opitz N, Lithio A, Lu X, Nettleton D, Hochholdinger F (2017) Non-syntenic genes drive RTCS-dependent regulation of the embryo transcriptome during formation of seminal root primordia in maize (Zea mays L.). J Exp Bot 68:403–414

    CAS  PubMed  Google Scholar 

  • Taramino G, Sauer M, Stauffer JL, Multani D, Niu X, Sakai H, Hochholdinger F (2007) The maize (Zea mays L.) RTCS gene encodes a LOB domain protein that is a key regulator of embryonic seminal and post-embryonic shoot-borne root initiation. Plant J 50:649–659

    CAS  CrossRef  Google Scholar 

  • Tian Q, Chen F, Liu J, Zhang F, Mi G (2008) Inhibition of maize root growth by high nitrate supply is correlated with reduced IAA levels in roots. J Plant Physiol 165:942–951

    CAS  CrossRef  Google Scholar 

  • Trachsel S, Kaeppler SM, Brown KM, Lynch JP (2013) Maize root growth angles become steeper under low N conditions. Field Crop Res 140:18–31

    CrossRef  Google Scholar 

  • Trevisan S, Manoli A, Begheldo M, Nonis A, Enna M, Vaccaro S, Caporale G, Ruperti B, Quaggiotti S (2011) Transcriptome analysis reveals coordinated spatiotemporal regulation of hemoglobin and nitrate reductase in response to nitrate in maize roots. New Phytol 192:338–352

    CAS  CrossRef  Google Scholar 

  • Trevisan S, Manoli A, Ravazzolo L, Botton A, Pivato M, Masi A, Quaggiotti S (2015) Nitrate sensing by the maize root apex transition zone: a merged transcriptomic and proteomic survey. J Exp Bot 66:3699–3715

    CAS  CrossRef  Google Scholar 

  • Wang Y, Mi G, Chen F, Zhang J, Zhang F (2005) Response of root morphology to nitrate supply and its contribution to nitrogen accumulation in maize. J Plant Nutr 27:2189–2202

    CrossRef  Google Scholar 

  • Woll K, Borsuk L a, Stransky H, Nettleton D, Schnable PS, Hochholdinger F (2005) Isolation, characterization, and pericycle-specific transcriptome analyses of the novel maize lateral and seminal root initiation mutant rum1. Plant Physiol 139:1255–1267

    Google Scholar 

  • Yu P, Baldauf JA, Lithio A, Marcon C, Nettleton D, Li C, Hochholdinger F (2016) Root type-specific reprogramming of maize pericycle transcriptomes by local high nitrate results in disparate lateral root branching patterns. Plant Physiol 170:1783–1798

    CAS  CrossRef  Google Scholar 

  • Yu P, Eggert K, von Wirén N, Li C, Hochholdinger F (2015) Cell type-specific gene expression analyses by RNA sequencing reveal local high nitrate-triggered lateral root initiation in shoot-borne roots of maize by modulating auxin-related cell cycle regulation. Plant Physiol 169:690–704

    CAS  CrossRef  Google Scholar 

  • Yu P, White PJ, Hochholdinger F, Li C (2014) Phenotypic plasticity of the maize root system in response to heterogeneous nitrogen availability. Planta 240:667–678

    CAS  CrossRef  Google Scholar 

  • Zhang Y, Paschold A, Marcon C, Liu S, Tai H, Nestler J, Yeh C, Opitz N, Lanz C, Schnable PS et al (2014) The Aux/IAA gene rum1 involved in seminal and lateral root formation controls vascular patterning in maize (Zea mays L.) primary roots. J Exp Bot 65:4919–4930

    CAS  CrossRef  Google Scholar 

  • Zhu J, Kaeppler SM, Lynch JP (2005) Topsoil foraging and phosphorus acquisition efficiency in maize (Zea mays). Funct Plant Biol 32:749–762

    CAS  CrossRef  Google Scholar 

Download references

Acknowledgements

Root research in FH’s laboratory supported by the DFG (German Research Foundation) and the BMBF (German Federal Ministry of Education and Research).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing of this book chapter.

Corresponding author

Correspondence to Frank Hochholdinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Yu, P., Marcon, C., Baldauf, J.A., Frey, F., Baer, M., Hochholdinger, F. (2018). Transcriptomic Dissection of Maize Root System Development. In: Bennetzen, J., Flint-Garcia, S., Hirsch, C., Tuberosa, R. (eds) The Maize Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-97427-9_15

Download citation