Skip to main content

Genomics of Fungal Disease Resistance

  • Chapter
  • First Online:
Book cover The Maize Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

  • 1458 Accesses

Abstract

Fungal diseases are prevalent on maize, for which resistance is controlled by numerous genes where sequence variation more typically gives rise to quantitative rather than qualitative phenotypes. Genomics is facilitating advances in genetics and systems biology while opening the door for convergence between the two. As this is leading to new perspectives about the nature of functionality versus variability during pathogenesis, changes may be afoot in how maize breeders handle the challenge of crop protection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balint-Kurti PJ, Zwonitzer JC, Wisser RJ et al (2007) Precise mapping of quantitative trait loci for resistance to southern leaf blight, caused by Cochliobolus heterostrophus race O, and flowering time using advanced intercross maize lines. Genetics 176:645–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrangou R, Horvath P (2017) A decade of discovery: CRISPR functions and applications. Nat Microbiol 2:1–9

    Article  Google Scholar 

  • Beavis WD (1997) QTL analysis, power, precision, and accuracy. In: Paterson A (ed) Molecular dissection of complex traits. CRC Press, New York, pp 145–162

    Google Scholar 

  • Bennetzen JL, Qin M-M, Ingels S, Ellingboe AH (1988) Allele-specific and mutator-associated instability at the Rp1 disease-resistance locus of maize. Nature 332:369–370

    Article  Google Scholar 

  • Benson JM, Poland JA, Benson BM et al (2015) Resistance to gray leaf spot of maize: genetic architecture and mechanisms elucidated through nested association mapping and near-isogenic line analysis. PLoS Genet 11:1–23

    Article  Google Scholar 

  • Borrego E, Kolomiets M (2016) Synthesis and functions of jasmonates in maize. Plants 5(4):E41

    Article  PubMed  Google Scholar 

  • Brosch G, Ransom R, Lechner T et al (1995) Inhibition of maize histone deacetylases by HC toxin, the host-selective toxin of Cochliobolus carbonum. Plant Cell 7:1941–1950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary C, Kumar C, Gnad F et al (2009) Lysine acetylation targets protein complexes and co-regulated major cellular functions. Science 325:834–840

    Article  CAS  PubMed  Google Scholar 

  • Christensen SA, Huffaker A, Kaplan F et al (2015) Maize death acids, 9-lipoxygenase–derived cyclopente(a)nones, display activity as cytotoxic phytoalexins and transcriptional mediators. Proc Natl Acad Sci 112:11407–11412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen SA, Kolomiets MV (2011) The lipid language of plant-fungal interactions. Fungal Genet Biol 48:4–14

    Article  CAS  PubMed  Google Scholar 

  • Christensen SA, Nemchenko A, Park Y-S et al (2014) The novel monocot-specific 9-lipoxygenase ZmLOX12 is required to mount an effective jasmonate-mediated defense against Fusarium verticillioides in maize. Mol Plant-Microbe Interact 27:1263–1276

    Article  PubMed  Google Scholar 

  • Christensen SA, Sims J, Vaughan MM et al (2018) Commercial hybrids and mutant genotypes reveal complex protective roles for inducible terpenoid defenses in maize. J Exp Bot 69:1693–1705

    Article  CAS  PubMed  Google Scholar 

  • Christie N, Myburg AA, Joubert F et al (2017) Systems genetics reveals a transcriptional network associated with susceptibility in the maize–grey leaf spot pathosystem. Plant J 89:746–763

    Article  CAS  PubMed  Google Scholar 

  • Corwin JA, Kliebenstein DJ (2017) Quantitative resistance: more than just perception of a pathogen. Plant Cell 29:655–665

    Article  PubMed  PubMed Central  Google Scholar 

  • dos Santos JPR, Pires LPM, de Castro Vasconcellos RC et al (2016) Genomic selection to resistance to Stenocarpella maydis in maize lines using DArTseq markers. BMC Genet 17:1–10

    Article  Google Scholar 

  • French E, Kim BS, Iyer-Pascuzzi AS (2016) Mechanisms of quantitative disease resistance in plants. Semin Cell Dev Biol 56:201–208

    Article  CAS  PubMed  Google Scholar 

  • Gross ML, McCrery D, Crow F et al (1982) The structure of the toxin from helminthosporium carbonum. Tetrahedron Lett 23:5381–5384

    Article  CAS  Google Scholar 

  • Han S, Utz HF, Liu W et al (2016) Choice of models for QTL mapping with multiple families and design of the training set for prediction of Fusarium resistance traits in maize. Theor Appl Genet 129:431–444

    Article  CAS  PubMed  Google Scholar 

  • Hansen BG, Halkier BA, Kliebenstein DJ (2008) Identifying the molecular basis of QTLs: eQTLs add a new dimension. Trends Plant Sci 13:72–77

    Article  CAS  PubMed  Google Scholar 

  • Huffaker A, Kaplan F, Vaughan MM et al (2011) Novel acidic sesquiterpenoids constitute a dominant class of pathogen-induced phytoalexins in maize. Plant Physiol 156:2082–2097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johal GS, Briggs SP (1992) Reductase activity encoded by the HM1 disease resistance gene in maize. Science 258:985–987

    Article  CAS  PubMed  Google Scholar 

  • Johnson R (1983) Genetic background of durable resistance. Durable resistance in crops. Springer, New York, pp 5–26

    Chapter  Google Scholar 

  • Kou Y, Wang S (2010) Broad-spectrum and durability: understanding of quantitative disease resistance. Curr Opin Plant Biol 13:181–185

    Article  CAS  PubMed  Google Scholar 

  • Krauz JP, Fredericksen RA, Rodrigues-Ballesteros OR (1993) Epidemic of northern corn leaf blight in Texas in 1992. Plant Disease 77:1063

    Article  Google Scholar 

  • Kump KL, Bradbury PJ, Wisser RJ et al (2011) Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet 43:163–169

    Article  CAS  PubMed  Google Scholar 

  • Mafu S, Ding Y, Murphy KM et al (2018) Discovery, biosynthesis and stress-related accumulation of dolabradiene-derived defenses in maize. Plant Physiol 176:2677–2690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMullen M, Simcox KD (1995) Genomic organization of disease and insect resistance genes in maize. Mol Plant-Microbe Interact 8:811–815

    Article  CAS  Google Scholar 

  • Meeley RB, Walton JD (1991) Enzymatic detoxification of HC-toxin, the host-selective cyclic peptide from Cochliobolus carbonum. Plant Physiol 97:1080–1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer J, Berger DK, Christensen SA, Murray SL (2017) RNA-Seq analysis of resistant and susceptible sub-tropical maize lines reveals a role for kauralexins in resistance to grey leaf spot disease, caused by Cercospora zeina. BMC Plant Biol 17:1–20

    Article  Google Scholar 

  • Moscou MJ, Lauter N, Steffenson B, Wise RP (2011) Quantitative and qualitative stem rust resistance factors in barley are associated with transcriptional suppression of defense regulons. PLoS Genet 7(7):e1002208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller DS, Wise KA, Sisson AJ et al (2016) Corn yield loss estimates due to diseases in the United States and Ontario, Canada from 2012 to 2015. Plant Heal Prog 17:211–222

    Article  Google Scholar 

  • Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157(4):1819–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mundt CC (2014) Durable resistance: a key to sustainable management of pathogens and pests. Infect Genet Evol 27:446–455

    Article  PubMed  Google Scholar 

  • Munkvold GP, White DG (2016) Compendium of corn diseases, 4th edn. APS Press, The American Phytopathological Society, St. Paul

    Google Scholar 

  • Nelson R, Wiesner-Hanks T, Wisser R, Balint-Kurti P (2018) Navigating complexity to breed disease-resistant crops. Nat Rev Genet 19:21–33

    Article  CAS  PubMed  Google Scholar 

  • Oerke E-C, Dehne H-W, Schönbeck F et al (1999) Estimated crop losses due to pathogens, animal pests and weeds. Crop production and crop protection. Elsevier, New York, pp 72–741

    Chapter  Google Scholar 

  • Panaccione DG, Scott-Craig JS, Pocard JA, Walton JD (1992) A cyclic peptide synthetase gene required for pathogenicity of the fungus Cochliobolus carbonum on maize. Proc Natl Acad Sci USA 89:6590–6594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poland JA, Balint-Kurti PJ, Wisser RJ et al (2009) Shades of gray: the world of quantitative disease resistance. Trends Plant Sci 14:21–29

    Article  CAS  PubMed  Google Scholar 

  • Poland JA, Bradbury PJ, Buckler ES, Nelson RJ (2011) Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci USA 108:6893–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poland J, Rutkoski J (2016) Advances and challenges in genomic selection for disease resistance. Annu Rev Phytopathol 54:79–98

    Article  CAS  PubMed  Google Scholar 

  • Scheffer RP, Nelson RR, Ullstrup AJ (1967) Inheritance of toxin production and pathogenicity in Cochliobolus carbonum and Cochliobolus victoriae. Phytopathology 57:1288

    Google Scholar 

  • Schmelz EA, Huffaker A, Sims JW et al (2014) Biosynthesis, elicitation and roles of monocot terpenoid phytoalexins. Plant J 79:659–678

    Article  CAS  PubMed  Google Scholar 

  • Schmelz EA, Kaplan F, Huffaker A et al (2011) Identity, regulation, and activity of inducible diterpenoid phytoalexins in maize. Proc Natl Acad Sci 108:5455–5460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Scott-Craig JS, Panaccione DG, Pocard JA, Walton JD (1992) The cyclic peptide synthetase catalyzing HC-toxin production in the filamentous fungus Cochliobolus carbonum is encoded by a 15.7-kilobase open reading frame. J Biol Chem 267:26044–26049

    CAS  PubMed  Google Scholar 

  • St Clair DA (2010) Quantitative disease resistance and quantitative resistance Loci in breeding. Annu Rev Phytopathol 48:247–68

    Article  CAS  PubMed  Google Scholar 

  • Tatum LA (1971) The southern corn leaf blight epidemic. Science 171:1113–1116

    Article  CAS  PubMed  Google Scholar 

  • Technow F, Bürger A, Melchinger AE (2013) Genomic prediction of northern corn leaf blight resistance in maize with combined or separated training sets for heterotic groups. G3 Genes Genomes Genet 3:197–203

    Google Scholar 

  • Tsuda K, Somssich IE (2015) Transcriptional networks in plant immunity. New Phytol 206:932–947

    Article  CAS  PubMed  Google Scholar 

  • Ullstrup AJ (1972) The impacts of the southern corn leaf blight epidemics of 1970–1971. Annu Rev Phytopathol 10:37–50

    Article  Google Scholar 

  • Van Der Plank JE (1963) Plant diseases: epidemics and control. Academic Press, New York

    Google Scholar 

  • Van Der Plank JE (1966) Horizontal (polygenic) and vertical (oligogenic) resistance against blight. Am Potato J 43:43–52

    Article  Google Scholar 

  • Wallace JG, Bradbury PJ, Zhang N et al (2014) Association mapping across numerous traits reveals patterns of functional variation in maize. PLoS Genet 10(12):e1004845

    Article  PubMed  PubMed Central  Google Scholar 

  • Walley JW, Shen Z, McReynolds MR et al (2018) Fungal-induced protein hyperacetylation in maize identified by acetylome profiling. Proc Natl Acad Sci 115:210–215

    Article  CAS  PubMed  Google Scholar 

  • Walton JD, Akimitsu K, Ahn JH, Pitkin JW (1994) Towards an understanding of the TOX2 gene of Cochliobolus carbonum. In: Kohmoto K, Yoder OC (eds.) Proceedings of the second Tottori University international symposium on host-specific toxin: biosynthesis, receptor and molecular biology, pp 227–237

    Google Scholar 

  • Walton JD, Earle ED, Gibson BW (1982) Purification and structure of the host-specific toxin from Helminthosporium carbonum race 1. Biochem Biophys Res Commun 107:785–794

    Article  CAS  PubMed  Google Scholar 

  • Wisser RJ, Balint-Kurti PJ, Nelson RJ (2006) The genetic architecture of disease resistance in maize: a synthesis of published studies. Phytopathology 96:120–129

    Article  CAS  PubMed  Google Scholar 

  • Yan Y, Christensen S, Isakeit T et al (2012) Disruption of OPR7 and OPR8 reveals the versatile functions of jasmonic acid in maize development and defense. Plant Cell 24:1420–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Q, Balint-Kurti P, Xu M (2017) Quantitative disease resistance: dissection and adoption in maize. Mol Plant 10:402–413

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Li X, Guo T et al (2016) Genomic prediction contributing to a promising global strategy to turbocharge gene banks. Nat Plants 2:1–7

    Google Scholar 

Download references

Acknowledgements

This work was made possible by the US NSF Plant Genome Research Program IOS-1127076 and the US Department of Agriculture—Agricultural Research Service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall J. Wisser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wisser, R.J., Lauter, N. (2018). Genomics of Fungal Disease Resistance. In: Bennetzen, J., Flint-Garcia, S., Hirsch, C., Tuberosa, R. (eds) The Maize Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-97427-9_13

Download citation

Publish with us

Policies and ethics