Skip to main content

Biomechanical Properties and Mechanobiology of Cardiac ECM

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1098))

Abstract

The heart is comprised of cardiac cells and extracellular matrix (ECM) which function together to pump blood throughout the body, provide organs with nutrients and oxygen, and remove metabolic wastes. Cardiac ECM provides a scaffold to cardiac cells and contributes to the mechanical properties and function of the cardiac tissue. Recently, more evidence suggests that cardiac ECM plays an active role in cardiac remodeling in response to mechanical loads. To that end, we provide an overview of the structure and function of the heart and the currently available in vivo and ex vivo mechanical measurements of cardiac tissues. We also review the biomechanical properties of cardiac tissues including the myocardium and heart valves, with a discussion on the differences between the right ventricle and left ventricle. Lastly, we go into the mechanical factors involved in cardiac remodeling and review the mechanobiology of cardiac tissues, i.e., the biomechanical responses at the cellular and tissue level, with an emphasis on the impact on the cardiac ECM. The regulation of cardiac ECM on cell function, which is a new and open area of research, is also briefly discussed. Future investigation into the ECM deposition and the interaction of cardiac cells and ECM components for mechanotransduction can assist to understand cardiac remodeling and inspire new therapies for cardiac diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aggarwal A, et al. In-vivo heterogeneous functional and residual strains in human aortic valve leaflets. J Biomech. 2016;49:2481–90. https://doi.org/10.1016/j.jbiomech.2016.04.038.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Atance J, Yost MJ, Carver W. Influence of the extracellular matrix on the regulation of cardiac fibroblast behavior by mechanical stretch. J Cell Physiol. 2004;200:377–86. https://doi.org/10.1002/jcp.20034.

    Article  CAS  PubMed  Google Scholar 

  3. Balasubramanian S, et al. β3 integrin in cardiac fibroblast is critical for extracellular matrix accumulation during pressure overload hypertrophy in mouse. PloS one. 2012;7:e45076. https://doi.org/10.1371/journal.pone.0045076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Banerjee I, Fuseler JW, Price RL, Borg TK, Baudino TA. Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse. Am J Physiol Heart Circ Physiol. 2007;293:H1883–91. https://doi.org/10.1152/ajpheart.00514.2007.

    Article  CAS  PubMed  Google Scholar 

  5. Bashey RI, Donnelly M, Insinga F, Jimenez SA. Growth properties and biochemical characterization of collagens synthesized by adult rat heart fibroblasts in culture. J Mol Cell Cardiol. 1992;24:691–700.

    Article  CAS  Google Scholar 

  6. Berk BC, Fujiwara K, Lehoux S. ECM remodeling in hypertensive heart disease. J Clin Invest. 2007;117:568–75. https://doi.org/10.1172/JCI31044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bishop JE, Laurent GJ. Collagen turnover and its regulation in the normal and hypertrophying heart. Eur Heart J. 1995;16(Suppl C):38–44.

    Article  CAS  Google Scholar 

  8. Bogaard HJ, Abe K, Vonk Noordegraaf A, Voelkel NF. The right ventricle under pressure: cellular and molecular mechanisms of right-heart failure in pulmonary hypertension. Chest. 2009;135:794–804. https://doi.org/10.1378/chest.08-0492.

    Article  CAS  PubMed  Google Scholar 

  9. Borgdorff MAJ, Bartelds B, Dickinson MG, Steendijk P, de Vroomen M, RMF B. Distinct loading conditions reveal various patterns of right ventricular adaptation. Am J Physiol-Heart C. 2013;305:H354–64. https://doi.org/10.1152/ajpheart.00180.2013.

    Article  CAS  Google Scholar 

  10. Boycott HE, et al. Shear stress triggers insertion of voltage-gated potassium channels from intracellular compartments in atrial myocytes. Proc Natl Acad Sci U S A. 2013;110:E3955–64. https://doi.org/10.1073/pnas.1309896110.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Brower GL, Gardner JD, Forman MF, Murray DB, Voloshenyuk T, Levick SP, Janicki JS. The relationship between myocardial extracellular matrix remodeling and ventricular function. Eur J Cardio-Thorac. 2006;30:604–10. https://doi.org/10.1016/j.ejcts.2006.07.006.

    Article  Google Scholar 

  12. Brower GL, Janicki JS. Contribution of ventricular remodeling to pathogenesis of heart failure in rats. Am J Physiol Heart Circ Physiol. 2001;280:H674–83.

    Article  CAS  Google Scholar 

  13. Buchalter MB, Rademakers FE, Weiss JL, Rogers WJ, Weisfeldt ML, Shapiro EP. Rotational deformation of the canine left ventricle measured by magnetic resonance tagging: effects of catecholamines, ischaemia, and pacing. Cardiovasc Res. 1994;28:629–35.

    Article  CAS  Google Scholar 

  14. Buckberg GD, Coghlan HC, Torrent-Guasp F. The structure and function of the helical heart and its buttress wrapping. . V. Anatomic and physiologic considerations in the healthy and failing heart. Semin Thorac Cardiovasc Surg. 2001a;13:358–85.

    Article  CAS  Google Scholar 

  15. Buckberg GD, Coghlan HC, Torrent-Guasp F. The structure and function of the helical heart and its buttress wrapping. VI. Geometric concepts of heart failure and use for structural correction. Semin Thorac Cardiovasc Surg. 2001b;13:386–401.

    Article  CAS  Google Scholar 

  16. Campbell SE, Gerdes AM, Smith TD. Comparison of regional differences in cardiac myocyte dimensions in rats, hamsters, and guinea pigs. Anat Rec. 1987;219:53–9. https://doi.org/10.1002/ar.1092190110.

    Article  CAS  PubMed  Google Scholar 

  17. Carver W, Nagpal ML, Nachtigal M, Borg TK, Terracio L. Collagen expression in mechanically stimulated cardiac fibroblasts. Circ Research. 1991;69:116–22.

    Article  CAS  Google Scholar 

  18. Chaturvedi RR, et al. Passive stiffness of myocardium from congenital heart disease and implications for diastole. Circulation. 2010;121:979–88. https://doi.org/10.1161/CIRCULATIONAHA.109.850677.

    Article  PubMed  Google Scholar 

  19. Chung CS, Granzier HL. Contribution of titin and extracellular matrix to passive pressure and measurement of sarcomere length in the mouse left ventricle. J Mol Cell Cardiol. 2011;50:731–9. https://doi.org/10.1016/j.yjmcc.2011.01.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Demer LL, Yin FC. Passive biaxial mechanical properties of isolated canine myocardium. J Physiol. 1983;339:615–30.

    Article  CAS  Google Scholar 

  21. Dorn GW 2nd. The fuzzy logic of physiological cardiac hypertrophy. Hypertension. 2007;49:962–70. https://doi.org/10.1161/HYPERTENSIONAHA.106.079426.

    Article  CAS  PubMed  Google Scholar 

  22. Friedberg MK, Redington AN. Right versus left ventricular failure: differences, similarities, and interactions. Circulation. 2014;129:1033–44. https://doi.org/10.1161/CIRCULATIONAHA.113.001375.

    Article  PubMed  Google Scholar 

  23. Gaasch WH, Zile MR. Left ventricular diastolic dysfunction and diastolic heart failure. Annu Rev Med. 2004;55:373–94. https://doi.org/10.1146/annurev.med.55.091902.104417.

    Article  CAS  PubMed  Google Scholar 

  24. Glaser KJ, Manduca A, Ehman RL. Review of MR elastography applications and recent developments Journal of magnetic resonance imaging. JMRI. 2012;36:757–74. https://doi.org/10.1002/jmri.23597.

    Article  PubMed  Google Scholar 

  25. Goldsmith EC, et al. Organization of fibroblasts in the heart. Dev Dyn. 2004;230:787–94. https://doi.org/10.1002/dvdy.20095.

    Article  CAS  PubMed  Google Scholar 

  26. Golob M, Moss RL, Chesler NC. Cardiac tissue structure, properties, and performance: a materials science perspective. Ann Biomed Eng. 2014;42:2003–13. https://doi.org/10.1007/s10439-014-1071-z.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Golob MJ, Wang Z, Prostrollo AJ, Hacker TA, Chesler NC. Limiting collagen turnover via collagenase-resistance attenuates right ventricular dysfunction and fibrosis in pulmonary arterial hypertension. Physiol Rep. 2016;4:e12815. https://doi.org/10.14814/phy2.12815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guo Y, et al. Extracellular Matrix of Mechanically Stretched Cardiac Fibroblasts Improves Viability and Metabolic Activity of Ventricular Cells. In J Med Sci. 2013;10:1837–45. https://doi.org/10.7150/ijms.6786.

    Article  CAS  Google Scholar 

  29. Gupta V, Grande-Allen KJ. Effects of static and cyclic loading in regulating extracellular matrix synthesis by cardiovascular cells. Cardiovas Res. 2006;72:375–83. https://doi.org/10.1016/j.cardiores.2006.08.017.

    Article  CAS  Google Scholar 

  30. Haddad F, Doyle R, Murphy DJ, Hunt SA. Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation. 2008a;117:1717–31. https://doi.org/10.1161/CIRCULATIONAHA.107.653584.

    Article  PubMed  Google Scholar 

  31. Haddad F, Hunt SA, Rosenthal DN, Murphy DJ. Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation. 2008b;117:1436–48. https://doi.org/10.1161/CIRCULATIONAHA.107.653576.

    Article  PubMed  Google Scholar 

  32. Hasan A, et al. Biomechanical properties of native and tissue engineered heart valve constructs. J Biomech. 2014;47:1949–63. https://doi.org/10.1016/j.jbiomech.2013.09.023.

    Article  PubMed  Google Scholar 

  33. Herrmann KL, McCulloch AD, Omens JH. Glycated collagen cross-linking alters cardiac mechanics in volume-overload hypertrophy. Am J Physiol Heart Circ Physiol. 2003;284:H1277–84. https://doi.org/10.1152/ajpheart.00168.2002.

    Article  CAS  PubMed  Google Scholar 

  34. Herum KM, Choppe J, Kumar A, Engler AJ, McCulloch AD. Mechanical regulation of cardiac fibroblast profibrotic phenotypes. Mol Biol Cell. 2017a;28:1871–82. https://doi.org/10.1091/mbc.E17-01-0014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Herum KM, Lunde IG, McCulloch AD, Christensen G. The Soft- and Hard-Heartedness of Cardiac Fibroblasts: Mechanotransduction Signaling Pathways in Fibrosis of the Heart. J Clin Med. 2017b;6:E53. https://doi.org/10.3390/jcm6050053.

    Article  PubMed  Google Scholar 

  36. Hill MR, Simon MA, Valdez-Jasso D, Zhang W, Champion HC, Sacks MS. Structural and mechanical adaptations of right ventricle free wall myocardium to pressure overload. Ann Biomed Eng. 2014;42:2451–65. https://doi.org/10.1007/s10439-014-1096-3.

    Article  PubMed  PubMed Central  Google Scholar 

  37. el Ibrahim SH. Myocardial tagging by cardiovascular magnetic resonance: evolution of techniques--pulse sequences, analysis algorithms, and applications. J Cardiovasc Magn Reson. 2011;13:36. https://doi.org/10.1186/1532-429X-13-36.

    Article  PubMed Central  Google Scholar 

  38. Ishizu T, et al. Left ventricular strain and transmural distribution of structural remodeling in hypertensive heart disease. Hypertension. 2014;63:500–6. https://doi.org/10.1161/HYPERTENSIONAHA.113.02149.

    Article  CAS  PubMed  Google Scholar 

  39. Khan JN, Singh A, Nazir SA, Kanagala P, Gershlick AH, McCann GP. Comparison of cardiovascular magnetic resonance feature tracking and tagging for the assessment of left ventricular systolic strain in acute myocardial infarction. Eur J Radiol. 2015;84:840–8. https://doi.org/10.1016/j.ejrad.2015.02.002.

    Article  PubMed  Google Scholar 

  40. Krishnamurthy G, et al. Material properties of the ovine mitral valve anterior leaflet in vivo from inverse finite element analysis. Am J Physiol Heart Circ Physiol. 2008;295:H1141–9. https://doi.org/10.1152/ajpheart.00284.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Leonard BL, Smaill BH, LeGrice IJ. Structural remodeling and mechanical function in heart failure. Microsc Microanal. 2012;18:50–67. https://doi.org/10.1017/S1431927611012438.

    Article  CAS  PubMed  Google Scholar 

  42. Lopez B, Gonzalez A, Querejeta R, Larman M, Diez J. Alterations in the pattern of collagen deposition may contribute to the deterioration of systolic function in hypertensive patients with heart failure. J Am Coll Cardiol. 2006;48:89–96. https://doi.org/10.1016/j.jacc.2006.01.077.

    Article  CAS  PubMed  Google Scholar 

  43. Lopez B, Querejeta R, Gonzalez A, Beaumont J, Larman M, Diez J. Impact of treatment on myocardial lysyl oxidase expression and collagen cross-linking in patients with heart failure. Hypertension. 2009;53:236–42. https://doi.org/10.1161/HYPERTENSIONAHA.108.125278.

    Article  CAS  PubMed  Google Scholar 

  44. Luo Y, Sun Y, Zhu Z, Li F. Is the change of integrin alpha(v)beta(3) expression in the infarcted myocardium related to the clinical outcome? Clin Nucl Med. 2014;39:655–7. https://doi.org/10.1097/RLU.0000000000000426.

    Article  PubMed  Google Scholar 

  45. MacKenna D, Summerour SR, Villarreal FJ. Role of mechanical factors in modulating cardiac fibroblast function and extracellular matrix synthesis. Cardiovasc Res. 2000;46:257–63.

    Article  CAS  Google Scholar 

  46. McMahon WS, Mukherjee R, Gillette PC, Crawford FA, Spinale FG. Right and left ventricular geometry and myocyte contractile processes with dilated cardiomyopathy: myocyte growth and beta-adrenergic responsiveness. Cardiovasc Res. 1996;31:314–23.

    CAS  PubMed  Google Scholar 

  47. Namba T, et al. Regulation of fibrillar collagen gene expression and protein accumulation in volume-overloaded cardiac hypertrophy. Circulation. 1997;95:2448–54.

    Article  CAS  Google Scholar 

  48. Novak VP, Yin FC, Humphrey JD. Regional mechanical properties of passive myocardium. J Biomech. 1994;27:403–12.

    Article  CAS  Google Scholar 

  49. Park DW, Sebastiani A, Yap CH, Simon MA, Kim K. Quantification of coupled stiffness and Fiber orientation remodeling in hypertensive rat right-ventricular myocardium using 3D ultrasound speckle tracking with biaxial testing. PloS one. 2016;11:e0165320. https://doi.org/10.1371/journal.pone.0165320.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Pasipoularides A. Right and left ventricular diastolic pressure-volume relations: a comprehensive review. J Cardiovasc Transl Res. 2013;6:239–52. https://doi.org/10.1007/s12265-012-9424-1.

    Article  PubMed  Google Scholar 

  51. Pauschinger M, et al. Dilated cardiomyopathy is associated with significant changes in collagen type I/III ratio. Circulation. 1999;99:2750–6.

    Article  CAS  Google Scholar 

  52. Perreault CL, Bing OH, Brooks WW, Ransil BJ, Morgan JP. Differential effects of cardiac hypertrophy and failure on right versus left ventricular calcium activation. Circ Res. 1990;67:707–12.

    Article  CAS  Google Scholar 

  53. Rausch MK, Kuhl E. On the effect of prestrain and residual stress in thin biological membranes. J Mech Phys Solids. 2013;61:1955–69. https://doi.org/10.1016/j.jmps.2013.04.005.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Roca-Cusachs P, Gauthier NC, del Rio A, Sheetz MP. Clustering of α(5)β(1) integrins determines adhesion strength whereas α(v)β(3) and talin enable mechanotransduction. Proc Natl Acad Sci U S A. 2009;106:16245–50. https://doi.org/10.1073/pnas.0902818106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Roche SL, Redington AN. The failing right ventricle in congenital heart disease. Can J Cardiol. 2013;29:768–78. https://doi.org/10.1016/j.cjca.2013.04.018.

    Article  PubMed  Google Scholar 

  56. Rossi MA. Pathologic fibrosis and connective tissue matrix in left ventricular hypertrophy due to chronic arterial hypertension in humans. J Hypertens. 1998;16:1031–41.

    Article  CAS  Google Scholar 

  57. Rouleau JL, Paradis P, Shenasa H, Juneau C. Faster time to peak tension and velocity of shortening in right versus left ventricular trabeculae and papillary muscles of dogs. Circ Res. 1986;59:556–61.

    Article  CAS  Google Scholar 

  58. Ryan TD, Rothstein EC, Aban I, Tallaj JA, Husain A, Lucchesi PA, Dell’Italia LJ. Left ventricular eccentric remodeling and matrix loss are mediated by bradykinin and precede cardiomyocyte elongation in rats with volume overload. J Am Coll Cardiol. 2007;49:811–21. https://doi.org/10.1016/j.jacc.2006.06.083.

    Article  CAS  PubMed  Google Scholar 

  59. Sacks MS, Chuong CJ. Biaxial mechanical properties of passive right ventricular free wall myocardium. J Biomech Eng. 1993;115:202–5.

    Article  CAS  Google Scholar 

  60. Sacks MS, et al. In-vivo dynamic deformation of the mitral valve anterior leaflet. Ann Thorac Surg. 2006;82:1369–77. https://doi.org/10.1016/j.athoracsur.2006.03.117.

    Article  PubMed  Google Scholar 

  61. Sacks MS, Merryman WD, Schmidt DE. On the biomechanics of heart valve function. J Biomech. 2009;42:1804–24. https://doi.org/10.1016/j.jbiomech.2009.05.015.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sacks MS, Yoganathan AP. Heart valve function: a biomechanical perspective philosophical transactions of the Royal Society of London Series B. Biol Sci. 2007;362:1369–91. https://doi.org/10.1098/rstb.2007.2122.

    Article  Google Scholar 

  63. Schroer AK, Merryman WD. Mechanobiology of myofibroblast adhesion in fibrotic cardiac disease. J Cell Sci. 2015;128:1865–75. https://doi.org/10.1242/jcs.162891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Seo Y, Ishizu T, Aonuma K. Current status of 3-dimensional speckle tracking echocardiography: a review from our experiences. J Cardiovasc Ultrasound. 2014;22:49–57. https://doi.org/10.4250/jcu.2014.22.2.49.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Skowronski EW, et al. Right and left ventricular function after cardiac transplantation Changes during and after rejection. Circulation. 1991;84:2409–17.

    Article  CAS  Google Scholar 

  66. Soleimanifard S, Abd-Elmoniem KZ, Sasano T, Agarwal HK, Abraham MR, Abraham TP, Prince JL. Three-dimensional regional strain analysis in porcine myocardial infarction: a 3T magnetic resonance tagging study. J Cardiovasc Magn Reson. 2012;14:85. https://doi.org/10.1186/1532-429X-14-85.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Stella JA, Sacks MS. On the biaxial mechanical properties of the layers of the aortic valve leaflet. J Biomech Eng. 2007;129:757–66. https://doi.org/10.1115/1.2768111.

    Article  PubMed  Google Scholar 

  68. Tao G, Kotick JD, Lincoln J. Heart valve development, maintenance, and disease: the role of endothelial cells. Curr Top Dev Biol. 2012;100:203–32. https://doi.org/10.1016/B978-0-12-387786-4.00006-3.

    Article  CAS  PubMed  Google Scholar 

  69. Taylor PM, Batten P, Brand NJ, Thomas PS, Yacoub MH. The cardiac valve interstitial cell. Int J Biochem Cell Biol. 2003;35:113–8.

    Article  CAS  Google Scholar 

  70. Terracio L, Miller B, Borg TK. Effects of cyclic mechanical stimulation of the cellular components of the heart. In vitro Cell Dev Biol. 1988;24:53–8. https://doi.org/10.1007/bf02623815.

    Article  CAS  PubMed  Google Scholar 

  71. van Putten S, Shafieyan Y, Hinz B. Mechanical control of cardiac myofibroblasts. J Mol Cell Cardiol. 2016;93:133–42. https://doi.org/10.1016/j.yjmcc.2015.11.025.

    Article  CAS  PubMed  Google Scholar 

  72. Villarreal FJ. Interstitial fibrosis in heart failure. Boston: Springer Science + Business Media, Inc.; 2005.

    Book  Google Scholar 

  73. Virgen-Ortiz A, Marin JL, Elizalde A, Castro E, Stefani E, Toro L, Muniz J. Passive mechanical properties of cardiac tissues in heart hypertrophy during pregnancy. J Physiol Sci. 2009;59:391–6. https://doi.org/10.1007/s12576-009-0047-5.

    Article  PubMed  Google Scholar 

  74. Voelkel NF, et al. Right ventricular function and failure: report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure. Circulation. 2006;114:1883–91. https://doi.org/10.1161/CIRCULATIONAHA.106.632208.

    Article  PubMed  Google Scholar 

  75. Voigt JU, et al. Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/industry task force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging. 2015;16:1–11. https://doi.org/10.1093/ehjci/jeu184.

    Article  CAS  PubMed  Google Scholar 

  76. Wainwright JM, Czajka CA, Patel UB, Freytes DO, Tobita K, Gilbert TW, Badylak SF. Preparation of cardiac extracellular matrix from an intact porcine heart tissue engineering Part C. Methods. 2010;16:525–32. https://doi.org/10.1089/ten.TEC.2009.0392.

    Article  CAS  Google Scholar 

  77. Walker LA, Buttrick PM. The right ventricle: biologic insights and response to disease: updated. Current cardiology reviews. 2013;9:73–81.

    PubMed  PubMed Central  Google Scholar 

  78. Wang Z, Chesler NC (2011) Pulmonary vascular wall stiffness: An important contributor to the increased right ventricular afterload with pulmonary hypertension Pulmonary Circulation 1:212–223 https://doi.org/10.4103/2045-8932.83453

    Article  Google Scholar 

  79. Wang Z, Golob M, Chesler NC. Viscoelastic properties of cardiovascular tissues. In: El-Amin MF, editor. Viscoelastic and viscoplastic materials: InTech; 2016. https://doi.org/10.5772/61921.

    Google Scholar 

  80. Wang Z, Schreier DA, Hacker TA, Chesler NC. Progressive right ventricular functional and structural changes in a mouse model of pulmonary arterial hypertension. Physiol Rep. 2013;1:e00184. https://doi.org/10.1002/phy2.184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wiltz D, Arevalos CA, Balaoing LR, Blancas AA, Sapp MC, Zhang X, Grande-Allen KJ. Extracellular matrix organization, structure, and function. In: Aikawa E, editor. Calcific aortic valve disease: InTech; 2013. https://doi.org/10.5772/52842.

    Google Scholar 

  82. Wu Y, Cazorla O, Labeit D, Labeit S, Granzier H. Changes in titin and collagen underlie diastolic stiffness diversity of cardiac muscle. J Mol Cell Cardiol. 2000;32:2151–62. https://doi.org/10.1006/jmcc.2000.1281.

    Article  CAS  PubMed  Google Scholar 

  83. Yost MJ, Simpson D, Wrona K, Ridley S, Ploehn HJ, Borg TK, Terracio L. Design and construction of a uniaxial cell stretcher. Am J Physiol Heart Circ Physiol. 2000;279:H3124–30.

    Article  CAS  Google Scholar 

  84. Zheng J, et al. Microarray identifies extensive downregulation of noncollagen extracellular matrix and profibrotic growth factor genes in chronic isolated mitral regurgitation in the dog. Circulation. 2009;119:2086–95. https://doi.org/10.1161/CIRCULATIONAHA.108.826230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zong P, Tune JD, Downey HF. Mechanisms of oxygen demand/supply balance in the right ventricle. Exp Biol Med (Maywood). 2005;230:507–19.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijie Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nguyen-Truong, M., Wang, Z. (2018). Biomechanical Properties and Mechanobiology of Cardiac ECM. In: Schmuck, E., Hematti, P., Raval, A. (eds) Cardiac Extracellular Matrix. Advances in Experimental Medicine and Biology, vol 1098. Springer, Cham. https://doi.org/10.1007/978-3-319-97421-7_1

Download citation

Publish with us

Policies and ethics