Skip to main content

Molecular Cytopathology: Final Thoughts and Future Directions

  • Chapter
  • First Online:
Molecular Diagnostics in Cytopathology

Abstract

The rapid integration of molecular diagnostic assays into pathology has revolutionized the practice of diagnostic cytopathology by providing a genomic dimension to morphologic diagnoses while providing predictive, prognostic, and therapeutic information for patient care. The versatility of cytology specimen preparations provides a variety of options for performing molecular assays, as long as the pre-analytic aspects of specimen processing and handling are optimized and the tests are appropriately validated. With the increasing use of liquid biopsy assays, several investigators are exploring molecular testing using tumor-derived cell-free DNA (cfDNA) in cytology samples. In addition, cytopathologists are discovering ways to better utilize cytology specimens by repurposing previously discarded samples to provide additional genomic information in cases that would otherwise warrant an additional biopsy. These novel applications of molecular assays in cytology have expanded the role of cytopathology in routine patient care. Cytopathologists will need to continue to evolve with the changing landscape of molecular medicine, to adopt and optimize new technology, and to integrate molecular methods into routine cytopathology practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BRAF :

v-Raf murine sarcoma viral oncogene homolog B

cfDNA:

Cell-free DNA

CSF:

Cerebrospinal fluid

ctDNA:

Circulating tumor DNA

DNA:

Deoxyribonucleic acid

ddPCR:

Droplet digital PCR

EBUS-TBNA:

Endobronchial ultrasound-guided transbronchial needle aspiration

EGFR :

Epidermal growth factor receptor

EUS:

Endoscopic ultrasound

FDA:

United States Food and Drug Administration

FNA:

Fine-needle aspiration

FISH:

Fluorescence in situ hybridization

HPV:

Human papillomavirus

KRAS :

Kirsten rat sarcoma viral oncogene homolog

LBC:

Liquid-based cytology

LOH:

Loss of heterozygosity

NGS:

Next-generation sequencing

NRAS :

Neuroblastoma RAS viral oncogene

PCR:

Polymerase chain reaction

PPAR-γ:

Peroxisome proliferator-activated receptor γ

PTC:

Papillary thyroid carcinoma

RET :

Proto-oncogene tyrosine-protein kinase receptor Ret

RNA:

Ribonucleic acid

References

  1. Schmitt FC. Demystifying molecular cytopathology. Int J Surgical Pathol. 2010;18:213S–5S.

    Article  Google Scholar 

  2. Bellevicine C, Malapelle U, Vigliar E, Pisapia P, Vita G, Troncone G. How to prepare cytological samples for molecular testing. J Clin Pathol. 2017;70:819–26.

    Article  CAS  Google Scholar 

  3. da Cunha Santos G. Standardizing preanalytical variables for molecular cytopathology. Cancer Cytopathol. 2013;121:341–3.

    Article  Google Scholar 

  4. Maxwell P, Salto-Tellez M. Validation of immunocytochemistry as a morphomolecular technique. Cancer Cytopathol. 2016;124:540–5.

    Article  CAS  Google Scholar 

  5. Roy-Chowdhuri S, Stewart J. Preanalytic variables in cytology: lessons learned from next-generation sequencing-the MD Anderson experience. Arch Pathol Lab Med. 2016;140:1191–9.

    Article  Google Scholar 

  6. Fischer AH, Schwartz MR, Moriarty AT, Wilbur DC, Souers R, Fatheree L, et al. Immunohistochemistry practices of cytopathology laboratories: a survey of participants in the College of American Pathologists Nongynecologic Cytopathology Education Program. Arch Pathol Lab Med. 2014;138(9):1167–72.

    Article  Google Scholar 

  7. Berry AB. Analytic inquiry: validation and practical considerations. Cancer. 2017;125:465–9.

    Google Scholar 

  8. Fitzgibbons PL, Bradley LA, Fatheree LA, Alsabeh R, Fulton RS, Goldsmith JD, et al.; College of American Pathologists Pathology and Laboratory Quality Center. Principles of analytic validation of immunohistochemical assays: guideline from the College of American Pathologists Pathology and Laboratory Quality Center. Arch Pathol Lab Med. 2014;138(11):1432–43.

    Article  Google Scholar 

  9. Jennings LJ, Arcila ME, Corless C, Kamel-Reid S, Lubin IM, Pfeifer J, et al. Guidelines for validation of next-generation sequencing-based oncology panels: a joint consensus recommendation of the Association for Molecular Pathology and College of American Pathologists. J Mol Diagn. 2017;19(3):341–65.

    Article  Google Scholar 

  10. Stewart CM, Kothari PD, Mouliere F, Mair R, Somnay S, Benayed R, et al. The value of cell-free DNA for molecular pathology. J Pathol. 2018;244(5):616–27.

    Article  CAS  Google Scholar 

  11. Krishnamurthy N, Spencer E, Torkamani A, Nicholson L. Liquid biopsies for cancer: coming to a patient near you. J Clin Med. 2017;6(1):pii: E3.

    Article  Google Scholar 

  12. Kwapisz D. The first liquid biopsy test approved. Is it a new era of mutation testing for non-small cell lung cancer? Ann Transl Med. 2017;5(3):46.

    Article  Google Scholar 

  13. Janku F, Vibat CR, Kosco K, Holley VR, Cabrilo G, Meric-Bernstam F, et al. BRAF V600E mutations in urine and plasma cell-free DNA from patients with Erdheim-Chester disease. Oncotarget. 2014;5(11):3607–10.

    Article  Google Scholar 

  14. Li Y, Pan W, Connolly ID, Reddy S, Nagpal S, Quake S, Gephart MH. Tumor DNA in cerebral spinal fluid reflects clinical course in a patient with melanoma leptomeningeal brain metastases. J Neuro-Oncol. 2016;128(1):93–100.

    Article  CAS  Google Scholar 

  15. Li YS, Jiang BY, Yang J, Zhang XC, Zhang Z, Ye JY, et al. Unique genetic profiles from cerebrospinal fluid cell-free DNA in leptomeningeal metastases of EGFR-mutant non-small-cell lung cancer: a new medium of liquid biopsy. Annals Oncol. 2018;29(4):945–52.

    Article  CAS  Google Scholar 

  16. Momtaz P, Pentsova E, Abdel-Wahab O, Diamond E, Hyman D, Merghoub T, et al. Quantification of tumor-derived cell free DNA(cfDNA) by digital PCR (DigPCR) in cerebrospinal fluid of patients with BRAFV600 mutated malignancies. Oncotarget. 2016;7(51):85430–6.

    Article  Google Scholar 

  17. Russo IJ, Ju Y, Gordon NS, Zeegers MP, Cheng KK, James ND, et al. Toward personalised liquid biopsies for urothelial carcinoma: characterisation of ddPCR and urinary cfDNA for the detection of the TERT 228 G>A/T mutation. Bladder Cancer. 2018;4(1):41–8.

    Article  Google Scholar 

  18. Togneri FS, Ward DG, Foster JM, Devall AJ, Wojtowicz P, Alyas S, et al. Genomic complexity of urothelial bladder cancer revealed in urinary cfDNA. Eur J Hum Genet. 2016;24(8):1167–74.

    Article  CAS  Google Scholar 

  19. Xia Y, Huang CC, Dittmar R, Du M, Wang Y, Liu H, et al. Copy number variations in urine cell free DNA as biomarkers in advanced prostate cancer. Oncotarget. 2016;7(24):35818–31.

    Article  Google Scholar 

  20. Wei S, Lieberman D, Morrissette JJ, Baloch ZW, Roth DB, McGrath C. Using “residual” FNA rinse and body fluid specimens for next-generation sequencing: an institutional experience. Cancer Cytopathol. 2016;124(5):324–9.

    Article  CAS  Google Scholar 

  21. Fuller MY, Mody D, Hull A, Pepper K, Hendrickson H, Olsen R. Next-generation sequencing identifies gene mutations that are predictive of malignancy in residual needle rinses collected from fine-needle aspirations of thyroid nodules. Arch Pathol Lab Med. 2018;142(2):178–83.

    Article  Google Scholar 

  22. Doxtader EE, Cheng YW, Zhang Y. Molecular testing of non-small cell lung carcinoma diagnosed by endobronchial ultrasound-guided transbronchial fine-needle aspiration. Arch Pathol Lab Med. 2018. https://doi.org/10.5858/arpa.2017-0184-RA.

  23. Tian SK, Killian JK, Rekhtman N, Benayed R, Middha S, Ladanyi M, et al. Optimizing workflows and processing of cytologic samples for comprehensive analysis by next-generation sequencing: Memorial Sloan Kettering Cancer Center experience. Arch Pathol Lab Med. 2016;140(11):1200–5.

    Article  CAS  Google Scholar 

  24. Krane JF, Cibas ES, Alexander EK, Paschke R, Eszlinger M. Molecular analysis of residual ThinPrep material from thyroid FNAs increases diagnostic sensitivity. Cancer Cytopathol. 2015;123(6):356–61.

    Article  CAS  Google Scholar 

  25. Kwon H, Kim WG, Eszlinger M, Paschke R, Song DE, Kim M, et al. Molecular diagnosis using residual liquid-based cytology materials for patients with nondiagnostic or indeterminate thyroid nodules. Endocrinol Metab (Seoul). 2016;31(4):586–91.

    Article  CAS  Google Scholar 

  26. Deftereos G, Finkelstein SD, Jackson SA, Ellsworth EM, Krishnamurti U, Liu Y, et al. The value of mutational profiling of the cytocentrifugation supernatant fluid from fine-needle aspiration of pancreatic solid mass lesions. Mod Pathol. 2014;27(4):594–601.

    Article  CAS  Google Scholar 

  27. Finkelstein SD, Bibbo M, Kowalski TE, Loren DE, Siddiqui AA, Solomides C, Ellsworth E. Mutational analysis of cytocentrifugation supernatant fluid from pancreatic solid mass lesions. Diagn Cytopathol. 2014;42(8):719–25.

    Article  Google Scholar 

  28. Finkelstein SD, Bibbo M, Loren DE, Siddiqui AA, Solomides C, Kowalski TE, Ellsworth E. Molecular analysis of centrifugation supernatant fluid from pancreaticobiliary duct samples can improve cancer detection. Acta Cytol. 2012;56(4):439–47.

    Article  CAS  Google Scholar 

  29. Brown AE, Lim KS, Corpus G, Hustek MT, Tran TA, Chang CC. Detection of BRAF mutation in the cytocentrifugation supernatant fluid from fine-needle aspiration of thyroid lesions may enhance the diagnostic yield. Cytojournal. 2017;14:4.

    Article  Google Scholar 

  30. Roy-Chowdhuri S, Mehrotra M, Bolivar AM, Kanagal-Shamanna R, Barkoh BA, Hannigan B, et al. Salvaging the supernatant: next generation cytopathology for solid tumor mutation profiling. Mod Pathol. 2018;31:1036–45.

    Article  CAS  Google Scholar 

  31. Malhotra N, Jackson SA, Freed LL, Styn MA, Sidawy MK, Haddad NG, Finkelstein SD. The added value of using mutational profiling in addition to cytology in diagnosing aggressive pancreaticobiliary disease: review of clinical cases at a single center. BMC Gastroenterol. 2014;14(1):135.

    Article  Google Scholar 

  32. da Cunha Santos G, Saieg MA. Preanalytic specimen triage: smears, cell blocks, cytospin preparations, transport media, and cytobanking. Cancer Cytopathol. 2017;125:455–64.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinchita Roy-Chowdhuri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roy-Chowdhuri, S. (2019). Molecular Cytopathology: Final Thoughts and Future Directions. In: Roy-Chowdhuri, S., VanderLaan, P., Stewart, J., Santos, G. (eds) Molecular Diagnostics in Cytopathology. Springer, Cham. https://doi.org/10.1007/978-3-319-97397-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97397-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97396-8

  • Online ISBN: 978-3-319-97397-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics