Molecular Diagnostics in Pediatric Cytopathology

  • Maren Y. Fuller
  • Sara E. MonacoEmail author


Given that pediatric malignancy is rare, most pediatric fine-needle aspiration (FNA) biopsies will be benign. Of pediatric malignancies, the most common are hematolymphoid malignancies, central nervous system (CNS) tumors, neuroblastoma, and Wilms’ tumor. Leukemias and CNS tumors are unlikely to be encountered by the cytopathologist, so this chapter will focus on pediatric lymphomas and solid organ malignancies, particularly those in which molecular studies play an important role. When evaluating a pediatric FNA, it is important to consider collecting material for ancillary studies including cell block, flow cytometry, cytogenetics, fluorescence in situ hybridization (FISH), molecular testing, as well as fresh frozen tissue, especially in the setting of a potentially neoplastic process. There are three main cytomorphologic patterns that will help guide your workup and differential diagnosis, including small round blue cell morphology (both lymphoid and nonlymphoid), large epithelioid morphology, and spindle cell morphology. Although many diagnoses can be made using a combination of cytomorphology and immunohistochemical stains, there are several pediatric malignancies that require molecular studies for prognosis, therapeutic decisions, and/or definitive diagnosis or subtyping.


Biopsy Children Core-needle biopsy Cytology Cytopathology Fine-needle aspiration FISH Fluorescence in situ hybridization FNA In situ hybridization Molecular Pathology Pediatric Rapid on-site evaluation ROSE Small biopsy 



v-Raf murine sarcoma viral oncogene homolog B


Central nervous system


Cerebrospinal fluid


Erdheim-Chester disease


Formalin-fixed paraffin-embedded


Fluorescence in situ hybridization


Fine-needle aspiration


Immunoglobulin heavy chain




Langerhans cell histiocytosis


Next-generation sequencing


Polymerase chain reaction


Papillary thyroid carcinoma


Roswell Park Memorial Institute



Special thanks to all of the staff in the UPMC molecular pathology and ISH/FISH laboratories for their assistance with the preparation of the images in this chapter.


  1. 1.
    National Cancer Institute. Childhood cancers [Internet]. [cited 2018 Jan 6]. Available from:
  2. 2.
    Howlander N, Noone A, Krapcho M, Miller D, Bishop K, Kosary C, et al., editors. SEER cancer statistics review, 1975–2014. Bethesda: National Cancer Institute; 2017.Google Scholar
  3. 3.
    Ward E, DeSantis C, Robbins A, Kohler B, Jemal A. Childhood and adolescent cancer statistics, 2014. CA Cancer J Clin. 2014;64(2):83–103.CrossRefGoogle Scholar
  4. 4.
    Monaco SE, Teot LA. Cytopathology of pediatric malignancies. Cancer Cytopathol. 2014;122(5):322–36.CrossRefGoogle Scholar
  5. 5.
    Barroca H, Bom-Sucesso M. Fine needle biopsy with cytology in paediatrics: the importance of a multidisciplinary approach and the role of ancillary techniques. Cytopathology. 2014;25(1):6–20.CrossRefGoogle Scholar
  6. 6.
    Barroca H. Fine needle biopsy and genetics, two allied weapons in the diagnosis, prognosis, and target therapeutics of solid pediatric tumors. Diagn Cytopathol. 2008;36(9):678–84.CrossRefGoogle Scholar
  7. 7.
    Kluin P, Harris N, Stein H, Leoncini L, Campo E, Jaffe E, et al. High-grade B-cell lymphoma. In: Swerdlow S, Campo E, Harris N, Jaffe E, Pileri S, Stein H, et al., editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th ed. Lyon: International Agency for Research on Cancer; 2017. p. 335–41.Google Scholar
  8. 8.
    Delattre O, Zucman J, Plougastel B, Desmaze C, Melot T, Peter M, et al. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature. 1992;359(6391):162–5.CrossRefGoogle Scholar
  9. 9.
    May WA, Gishizky ML, Lessnick SL, Lunsford LB, Lewis BC, Delattre O, et al. Ewing sarcoma 11;22 translocation produces a chimeric transcription factor that requires the DNA-binding domain encoded by FLI1 for transformation. Proc Natl Acad Sci U S A. 1993;90(12):5752–6.CrossRefGoogle Scholar
  10. 10.
    Sorensen PH, Lessnick SL, Lopez-Terrada D, Liu XF, Triche TJ, Denny CT. A second Ewing’s sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor. ERG Nat Genet. 1994;6(2):146–51.CrossRefGoogle Scholar
  11. 11.
    Ng TL, O’Sullivan MJ, Pallen CJ, Hayes M, Clarkson PW, Winstanley M, et al. Ewing sarcoma with novel translocation t(2;16) producing an in-flame fusion of FUS and FEV. J Mol Diagnostics. 2007;9(4):459–63.CrossRefGoogle Scholar
  12. 12.
    Tsokos M, Alaggio RD, Dehner LP, Dickman PS. Ewing sarcoma/peripheral primitive neuroectodermal tumor and related tumors. Pediatr Dev Pathol. 2012;15(1 Suppl):108–26.CrossRefGoogle Scholar
  13. 13.
    Kawamura-Saito M, Yamazaki Y, Kaneko K, Kawaguchi N, Kanda H, Mukai H, et al. Fusion between CIC and DUX4 up-regulates PEA3 family genes in Ewing-like sarcomas with t(4;19)(q35;q13) translocation. Hum Mol Genet. 2006;15(13):2125–37.CrossRefGoogle Scholar
  14. 14.
    Italiano A, Sung YS, Zhang L, Singer S, Maki RG, Coindre J-M, et al. High prevalence of CIC fusion with double-homeobox (DUX4) transcription factors in EWSR1-negative undifferentiated small blue round cell sarcomas. Genes Chromosomes Cancer. 2012;51(3):207–18.CrossRefGoogle Scholar
  15. 15.
    Pierron G, Tirode F, Lucchesi C, Reynaud S, Ballet S, Cohen-Gogo S, et al. A new subtype of bone sarcoma defined by BCOR-CCNB3 gene fusion. Nat Genet. 2012;44(4):461–6.CrossRefGoogle Scholar
  16. 16.
    Puls F, Niblett A, Marland G, Gaston CLL, Douis H, Mangham DC, et al. BCOR-CCNB3 (Ewing-like) sarcoma: a clinicopathologic analysis of 10 cases, in comparison with conventional Ewing sarcoma. Am J Surg Pathol. 2014;38(10):1307–18.CrossRefGoogle Scholar
  17. 17.
    Williamson D, Missiaglia E, de Reyniès A, Pierron G, Thuille B, Palenzuela G, et al. Fusion gene–negative alveolar rhabdomyosarcoma is clinically and molecularly indistinguishable from embryonal rhabdomyosarcoma. J Clin Oncol. 2010 May 1;28(13):2151–8.CrossRefGoogle Scholar
  18. 18.
    Pusztaszeri MP, Faquin WC. Update in salivary gland cytopathology: recent molecular advances and diagnostic applications. Semin Diagn Pathol. 2015;32(4):264–74.CrossRefGoogle Scholar
  19. 19.
    Lu C, Zhang J, Nagahawatte P, Easton J, Lee S, Liu Z, et al. The genomic landscape of childhood and adolescent melanoma. J Invest Dermatol. 2015;135(3):816–23.CrossRefGoogle Scholar
  20. 20.
    Monaco SE, Pantanowitz L, Khalbuss WE, Benkovich VA, Ozolek J, Nikiforova MN, et al. Cytomorphological and molecular genetic findings in pediatric thyroid fine-needle aspiration. Cancer Cytopathol. 2012;120(5):342–50.CrossRefGoogle Scholar
  21. 21.
    Buryk MA, Monaco SE, Witchel SF, Mehta DK, Gurtunca N, Nikiforov YE, et al. Preoperative cytology with molecular analysis to help guide surgery for pediatric thyroid nodules. Int J Pediatr Otorhinolaryngol. 2013;77(10):1697–700.CrossRefGoogle Scholar
  22. 22.
    Picarsic JL, Buryk MA, Ozolek J, Ranganathan S, Monaco SE, Simons JP, et al. Molecular characterization of sporadic pediatric thyroid carcinoma with the DNA/RNA ThyroSeq v2 next-generation sequencing assay. Pediatr Dev Pathol. 2016;19(2):115–22.CrossRefGoogle Scholar
  23. 23.
    Ballester LY, Sarabia SF, Sayeed H, Patel N, Baalwa J, Athanassaki I, et al. Integrating molecular testing in the diagnosis and management of children with thyroid lesions. Pediatr Dev Pathol. 2016;19(2):94–100.CrossRefGoogle Scholar
  24. 24.
    Agrawal N, Akbani R, Aksoy BA, Ally A, Arachchi H, Asa SL, et al. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159(3):676–90.CrossRefGoogle Scholar
  25. 25.
    Mostoufi-Moab S, Labourier E, Sullivan L, LiVolsi VA, Li Y, Xiao R, et al. Molecular testing for oncogenic gene alterations in pediatric thyroid lesions. Thyroid. 2018;28(1):60–7.CrossRefGoogle Scholar
  26. 26.
    Haroche J, Charlotte F, Arnaud L, von Deimling A, Hélias-Rodzewicz Z, Hervier B, et al. High prevalence of BRAF V600E mutations in Erdheim-Chester disease but not in other non-Langerhans cell histiocytoses. Blood. 2012;120(13):2700–3.CrossRefGoogle Scholar
  27. 27.
    Erickson-Johnson MR, Chou MM, Evers BR, Roth CW, Seys AR, Jin L, et al. Nodular fasciitis: a novel model of transient neoplasia induced by MYH9-USP6 gene fusion. Lab Investig. 2011;91(10):1427–33.CrossRefGoogle Scholar
  28. 28.
    Patel NR, Chrisinger JSA, Demicco EG, Sarabia SF, Reuther J, Kumar E, et al. USP6 activation in nodular fasciitis by promoter-swapping gene fusions. Mod Pathol. 2017;30(11):1577–88.CrossRefGoogle Scholar
  29. 29.
    Davis JL, Lockwood CM, Albert CM, Tsuchiya K, Hawkins DS, Rudzinski ER. Infantile NTRK -associated Mesenchymal tumors. Pediatr Dev Pathol. 2018;21(1):68–78.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PathologyChildren’s Hospital of Pittsburgh of University of Pittsburgh Medical Center (UPMC)PittsburghUSA
  2. 2.Department of PathologyUniversity of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh of UPMCPittsburghUSA

Personalised recommendations