Skip to main content

Molecular Diagnostics in Hematologic Malignancies

  • Chapter
  • First Online:
Molecular Diagnostics in Cytopathology
  • 1119 Accesses

Abstract

In hematologic malignancies, molecular testing of cytology specimens can be extremely useful in the context of tissue-based neoplasms such as lymphomas and myeloid sarcomas when the source of nucleic acids can be limited. FNA specimens are ideal for obtaining unprocessed high-quality nucleic acids essential for simultaneous assessment of a variety of genetic alterations as is usually the case with hematologic malignancies. Concurrent quantitative tumor burden assessed by multiparametric flow cytometry analysis on these samples enables a more informative interpretation of results. Clonality assays to detect monoclonal rearrangements in immunoglobulin heavy chain (IgH) and T-cell receptor (TCR) beta or gamma receptor genes are invaluable for differentiating low-grade B-cell and T-cell lymphoproliferative disorders from reactive conditions. Assessment of characteristic gene translocations and gene mutations is fundamental for subclassification of small B-cell lymphomas and myeloid leukemias and prognostication of large B-cell lymphomas. Estimation of the degree of somatic hypermutation in IGHV is the standard of care for prognostication in CLL/SLL. Gene mutation analysis also affects the choice of therapy by identification of targets for treatment using approved FDA drugs and novel agents in clinical trials. In this context, screening of drug resistance mutations has emerged as a critical aspect of monitoring these patients akin to the assessment of measurable (minimal) residual disease. And lastly, monitoring of cancer-associated viruses such as EBV is crucial in various settings. Further details are elaborated in the chapter below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABL1 :

ABL proto-oncogene 1

ALCL:

Anaplastic large-cell lymphoma

ALK :

Anaplastic lymphoma kinase or ALK receptor tyrosine kinase

ASXL1 :

Additional sex combs like 1

ATRA:

All-trans-retinoic acid

BCL2/BCL6/BCL10 :

B-cell CLL/lymphoma 2/6/10

BCR:

Breakpoint cluster region

BIRC3 :

Baculoviral IAP repeat-containing protein 3

BRAF :

V-raf murine sarcoma viral oncogene homolog B

BTK :

Bruton tyrosine kinase

CEBPA :

CCAAT-enhancer-binding protein alpha

CHOP:

Cyclophosphamide, hydroxydaunorubicin (doxorubicin or Adriamycin), Oncovin (vincristine), and prednisone

CNS:

Central nervous system

COO:

Cell of origin

CXCR4 :

C-X-C motif chemokine receptor 4

DNA:

Deoxyribonucleic acid

DNMT3A :

DNA methyltransferase 3 alpha

DUSP22 :

Dual specificity phosphatase 22

EBV:

Epstein-Barr virus

FDA:

Food and Drug Administration

FFPE:

Formalin-fixed paraffin-embedded

FISH:

Fluorescence in situ hybridization

FL:

Follicular lymphoma

FLT3 :

Fms-related tyrosine kinase 3

FNA:

Fine-needle aspiration

FOXP1 :

Forkhead box P1

GEP:

Gene expression profile

IDH :

Isocitrate dehydrogenase

IGH:

Immunoglobulin heavy chain locus

IGHV:

Immunoglobulin heavy chain variable region

KIT :

KIT proto-oncogene receptor tyrosine kinase

KRAS :

Kirsten rat sarcoma viral oncogene homolog

MALT1 :

Mucosa-associated lymphoid tissue lymphoma translocation gene 1

MAP2K1 :

Mitogen-activated protein kinase 1

MYC :

V-myc avian myelocytomatosis viral oncogene homolog

MYD88 :

Myeloid differentiation primary response 88

NK:

Natural killer

NGS:

Next-generation sequencing

NOTCH1 :

Notch (Drosophila) homolog 1 (translocation-associated)

NPM1 :

Nucleophosmin 1

PAX-5 :

Paired box 5

PDGFRA :

Platelet-derived growth factor receptor alpha

PLCG2 :

Phospholipase C gamma 2

qPCR:

Quantitative polymerase chain reaction

RUNX1 :

Runt-related transcription factor 1

SF3B1 :

Splicing factor 3b subunit 1

TCL1A :

T-cell leukemia/lymphoma 1A

TCR:

T-cell receptor

TET2 :

Tet methylcytosine dioxygenase 2

TP53/63 :

Tumor protein p53/p63

References

  1. Kanagal-Shamanna R, Singh RR, Routbort MJ, Patel KP, Medeiros LJ, Luthra R. Principles of analytical validation of next-generation sequencing based mutational analysis for hematologic neoplasms in a CLIA-certified laboratory. Expert Rev Mol Diagn. 2016;16(4):461–72.

    Article  CAS  Google Scholar 

  2. Dietel M. Molecular pathology: a requirement for precision medicine in cancer. Oncol Res Treat. 2016;39(12):804–10.

    Article  CAS  Google Scholar 

  3. Peluso AL, Ieni A, Mignogna C, Zeppa P. Lymph node fine-needle cytology: beyond flow cytometry. Acta Cytol. 2016;60(4):372–84.

    Article  CAS  Google Scholar 

  4. Ochs RC, Bagg A. Molecular genetic characterization of lymphoma: application to cytology diagnosis. Diagn Cytopathol. 2012;40(6):542–55.

    Article  Google Scholar 

  5. da Cunha Santos G, Ko HM, Geddie WR, Boerner SL, Lai SW, Have C, et al. Targeted use of fluorescence in situ hybridization (FISH) in cytospin preparations: results of 298 fine needle aspirates of B-cell non-Hodgkin lymphoma. Cancer Cytopathol. 2010;118(5):250–8.

    Article  Google Scholar 

  6. Bentz JS, Rowe LR, Anderson SR, Gupta PK, McGrath CM. Rapid detection of the t(11;14) translocation in mantle cell lymphoma by interphase fluorescence in situ hybridization on archival cytopathologic material. Cancer. 2004;102(2):124–31.

    Article  CAS  Google Scholar 

  7. Caraway NP, Gu J, Lin P, Romaguera JE, Glassman A, Katz R. The utility of interphase fluorescence in situ hybridization for the detection of the translocation t(11;14)(q13;q32) in the diagnosis of mantle cell lymphoma on fine-needle aspiration specimens. Cancer. 2005;105(2):110–8.

    Article  Google Scholar 

  8. Baró C, Espinet B, Salido M, García M, Sánchez B, Florensa L, et al. Cryptic IGH/BCL2 rearrangements with variant FISH patterns in follicular lymphoma. Leuk Res. 2011;35(2):256–9.

    Article  Google Scholar 

  9. Grosso LE, Collins BT. DNA polymerase chain reaction using fine needle aspiration biopsy smears to evaluate non-Hodgkin’s lymphoma. Acta Cytol. 1999;43(5):837–41.

    Article  CAS  Google Scholar 

  10. Rambaldi A, Carlotti E, Oldani E, Della Starza I, Baccarani M, Cortelazzo S, et al. Quantitative PCR of bone marrow BCL2/IgH(+) cells at diagnosis predicts treatment response and long-term outcome in follicular non-Hodgkin lymphoma. Blood. 2005;105(9):3428–33.

    Article  CAS  Google Scholar 

  11. Richmond J, Bryant R, Trotman W, Beatty B, Lunde J. FISH detection of t(14;18) in follicular lymphoma on Papanicolaou-stained archival cytology slides. Cancer. 2006;108(3):198–204.

    Article  Google Scholar 

  12. Safley AM, Buckley PJ, Creager AJ, Dash RC, Dodd LG, Goodman BK, et al. The value of fluorescence in situ hybridization and polymerase chain reaction in the diagnosis of B-cell non-Hodgkin lymphoma by fine-needle aspiration. Arch Pathol Lab Med. 2004;128(12):1395–403.

    CAS  PubMed  Google Scholar 

  13. Gong Y, Caraway N, Gu J, Zaidi T, Fernandez R, Sun X, et al. Evaluation of interphase fluorescence in situ hybridization for the t(14;18)(q32;q21) translocation in the diagnosis of follicular lymphoma on fine-needle aspirates: a comparison with flow cytometry immunophenotyping. Cancer. 2003;99(6):385–93.

    Article  Google Scholar 

  14. Shin HJ1, Thorson P, Gu J, Katz RL. Detection of a subset of CD30+ anaplastic large cell lymphoma by interphase fluorescence in situ hybridization. Diagn Cytopathol. 2003;29(2):61–6.

    Article  Google Scholar 

  15. Xing X, Feldman AL. Anaplastic large cell lymphomas: ALK positive, ALK negative, and primary cutaneous. Adv Anat Pathol. 2015;22(1):29–49.

    Article  Google Scholar 

  16. Hsi AC, Robirds DH, Luo J, Kreisel FH, Frater JL, Nguyen TT. T-cell prolymphocytic leukemia frequently shows cutaneous involvement and is associated with gains of MYC, loss of ATM, and TCL1A rearrangement. Am J Surg Pathol. 2014;38(11):1468–83.

    Article  Google Scholar 

  17. Wierda WG, Zelenetz AD, Gordon LI, Abramson JS, Advani RH, Andreadis CB, et al. NCCN guidelines insights: chronic lymphocytic leukemia/small lymphocytic leukemia, version 1.2017. J Natl Compr Cancer Netw. 2017;15(3):293–311.

    Article  Google Scholar 

  18. Malcikova J, Tausch E, Rossi D, Sutton LA, Soussi T, Zenz T, et al., European Research Initiative on Chronic Lymphocytic Leukemia (ERIC) — TP53 network. ERIC recommendations for TP53 mutation analysis in chronic lymphocytic leukemia-update on methodological approaches and results interpretation. Leukemia. 2018;32(5):1070–80.

    Article  CAS  Google Scholar 

  19. Kanagal-Shamanna R, Portier BP, Singh RR, Routbort MJ, Aldape KD, Handal BA, et al. Next-generation sequencing-based multi-gene mutation profiling of solid tumors using fine needle aspiration samples: promises and challenges for routine clinical diagnostics. Mod Pathol. 2014;27(2):314–27.

    Article  CAS  Google Scholar 

  20. Santos Gda C, Saieg MA, Ko HM, Geddie WR, Boerner SL, Craddock KJ, et al. Multiplex sequencing for EZH2, CD79B, and MYD88 mutations using archival cytospin preparations from B-cell non-Hodgkin lymphoma aspirates previously tested for MYC rearrangement and IGH/BCL2 translocation. Cancer Cytopathol. 2015;123(7):413–20.

    Article  Google Scholar 

  21. Saieg MA, Geddie WR, Boerner SL, Bailey D, Crump M, da Cunha Santos G. EZH2 and CD79B mutational status over time in B-cell non-Hodgkin lymphomas detected by high-throughput sequencing using minimal samples. Cancer Cytopathol. 2013;121(7):377–86.

    Article  CAS  Google Scholar 

  22. Treon SP, Xu L, Yang G, Zhou Y, Liu X, Cao Y, Sheehy P, et al. MYD88 L265P somatic mutation in Waldenström’s macroglobulinemia. N Engl J Med. 2012;367:826–33.

    Article  CAS  Google Scholar 

  23. Treon SP, Cao Y, Xu L, Yang G, Liu X, Hunter ZR. Somatic mutations in MYD88 and CXCR4 are determinants of clinical presentation and overall survival in Waldenström macroglobulinemia. Blood. 2014;123(18):2791–6.

    Article  CAS  Google Scholar 

  24. Hunter ZR, Xu L, Yang G, Zhou Y, Liu X, Cao Y, et al. The genomic landscape of Waldenström macroglobulinemia is characterized by highly recurring MYD88 and WHIM-like CXCR4 mutations, and small somatic deletions associated with B-cell lymphomagenesis. Blood. 2014;123(11):1637–46.

    Article  CAS  Google Scholar 

  25. Rossi D, Rasi S, Spina V, Bruscaggin A, Monti S, Ciardullo C, et al. Integrated mutational and cytogenetic analysis identifies new prognostic subgroups in chronic lymphocytic leukemia. Blood. 2013;121(8):1403–12.

    Article  CAS  Google Scholar 

  26. Liu H, Wang W, Tang G, Yin CC, Muzzafar T, Medeiros LJ, Hu S. Lymphomatous variant of hairy cell leukaemia: a distinctive presentation mimicking low-grade B-cell lymphoma. Histopathology. 2015;67(5):740–5.

    Article  Google Scholar 

  27. Tiacci E, Trifonov V, Schiavoni G, Holmes A, Kern W, Martelli MP, et al. BRAF mutations in hairy-cell leukemia. N Engl J Med. 2011;364(24):2305–15.

    Article  CAS  Google Scholar 

  28. Tiacci E, Park JH, De Carolis L, Chung SS, Broccoli A, Scott S, et al. Targeting mutant BRAF in relapsed or refractory hairy-cell leukemia. N Engl J Med. 2015;373(18):1733–47.

    Article  CAS  Google Scholar 

  29. Angelova E, et al. Clinicopathologic and molecular features in hairy cell leukemia variant: single institutional experience. Mod Pathol. 2018. https://doi.org/10.1038/s41379-018-0093-8.

    Article  CAS  Google Scholar 

  30. Badalian-Very G, Vergilio JA, Degar BA, MacConaill LE, Brandner B, Calicchio ML, et al. Recurrent BRAF mutations in Langerhans cell histiocytosis. Blood. 2010;116(11):1919–23.

    Article  CAS  Google Scholar 

  31. Garces S, Medeiros LJ, Patel KP, Li S, Pina-Oviedo S, Li J, et al. Mutually exclusive recurrent KRAS and MAP 2K1 mutations in Rosai-Dorfman disease. Mod Pathol. 2017;30(10):1367–77.

    Article  CAS  Google Scholar 

  32. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403(6769):503–11.

    Article  CAS  Google Scholar 

  33. Leonard JP, Kolibaba KS, Reeves JA, Tulpule A, Flinn IW, Kolevska T, et al. Randomized phase II study of R-CHOP with or without Bortezomib in previously untreated patients with non-germinal center B-cell-like diffuse large B-cell lymphoma. J Clin Oncol. 2017;35(31):3538–46.

    Article  CAS  Google Scholar 

  34. Scott DW, Mottok A, Ennishi D, Wright GW, Farinha P, Ben-Neriah S, et al. Prognostic significance of diffuse large B-cell lymphoma cell of origin determined by digital gene expression in formalin-fixed paraffin-embedded tissue biopsies. J Clin Oncol. 2015;33(26):2848–56.

    Article  CAS  Google Scholar 

  35. Scott DW, Wright GW, Williams PM, Lih CJ, Walsh W, Jaffe ES, et al. Determining cell-of-origin subtypes of diffuse large B-cell lymphoma using gene expression in formalin-fixed paraffin-embedded tissue. Blood. 2014;123(8):1214–7.

    Article  CAS  Google Scholar 

  36. Rimsza LM, Wright G, Schwartz M, Chan WC, Jaffe ES, Gascoyne RD, et al. Accurate classification of diffuse large B-cell lymphoma into germinal center and activated B-cell subtypes using a nuclease protection assay on formalin-fixed, paraffin-embedded tissues. Clin Cancer Res. 2011;17(11):3727–32.

    Article  Google Scholar 

  37. Goy A1, Stewart J, Barkoh BA, Remache YK, Katz R, Sneige N, Gilles F. The feasibility of gene expression profiling generated in fine-needle aspiration specimens from patients with follicular lymphoma and diffuse large B-cell lymphoma. Cancer. 2006;108(1):10–20.

    Article  CAS  Google Scholar 

  38. Campo E. Whole genome profiling and other high throughput technologies in lymphoid neoplasms—current contributions and future hopes. Mod Pathol. 2013;26(S1):S97.

    Article  CAS  Google Scholar 

  39. Baccarani M, Cilloni D, Rondoni M, Ottaviani E, Messa F, Merante S, et al. The efficacy of imatinib mesylate in patients with FIP1L1-PDGFRalpha-positive hypereosinophilic syndrome. Results of a multicenter prospective study. Haematologica. 2007;92(9):1173–9.

    Article  CAS  Google Scholar 

  40. Cools J, DeAngelo DJ, Gotlib J, Stover EH, Legare RD, Cortes J, et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med. 2003;348(13):1201–14.

    Article  CAS  Google Scholar 

  41. Legrand F, Renneville A, MacIntyre E, Mastrilli S, Ackermann F, Cayuela JM, et al., French Eosinophil Network. The spectrum of FIP1L1-PDGFRA-associated chronic eosinophilic leukemia: new insights based on a survey of 44 cases. Medicine (Baltimore) 2013;92(5):e1–9.

    Article  CAS  Google Scholar 

  42. Vega-Ruiz A, Cortes JE, Sever M, Manshouri T, Quintás-Cardama A, Luthra R, et al. Phase II study of imatinib mesylate as therapy for patients with systemic mastocytosis. Leuk Res. 2009;33(11):1481–4.

    Article  CAS  Google Scholar 

  43. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405.

    Article  CAS  Google Scholar 

  44. O'Donnell MR, Tallman MS, Abboud CN, Altman JK, Appelbaum FR, Arber DA, et al. Acute myeloid leukemia, version 3.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2017;15(7):926–57.

    Article  Google Scholar 

  45. Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Büchner T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424–47.

    Article  Google Scholar 

  46. Stein EM, DiNardo CD, Pollyea DA, Fathi AT, Roboz GJ, Altman JK, et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood. 2017;130(6):722–31.

    Article  CAS  Google Scholar 

  47. Levis M. Midostaurin approved for FLT3-mutated AML. Blood. 2017;129(26):3403–6.

    Article  CAS  Google Scholar 

  48. Baer C, Kern W, Koch S, Nadarajah N, Schindela S, Meggendorfer M, et al. Ultra-deep sequencing leads to earlier and more sensitive detection of the tyrosine kinase inhibitor resistance mutation T315I in chronic myeloid leukemia. Haematologica. 2016;101(7):830–8.

    Article  CAS  Google Scholar 

  49. Woyach JA, Ruppert AS, Guinn D, Lehman A, Blachly JS, Lozanski A. BTK C481S-mediated resistance to ibrutinib in chronic lymphocytic leukemia. J Clin Oncol. 2017;35(13):1437–43.

    Article  CAS  Google Scholar 

  50. Gulley ML, Tang W. Laboratory assays for Epstein-Barr virus-related disease. J Mol Diagn. 2008;10(4):279–92.

    Article  Google Scholar 

  51. Engelmann I, Alidjinou EK, Lazrek M, Pouillaude JM, Ogiez J, Rose F, et al. Comparison of two commercial quantitative PCR assays for EBV DNA detection and their correlation with the first WHO International Standard for EBV. J Med Microbiol. 2018;67(4):529–36.

    Article  Google Scholar 

  52. Semenova T, Lupo J, Alain S, Perrin-Confort G, Grossi L, Dimier J, et al. Multicenter evaluation of whole-blood Epstein-Barr viral load standardization using the WHO international standard. J Clin Microbiol. 2016;54(7):1746–50.

    Article  CAS  Google Scholar 

  53. Gulley ML. Molecular diagnosis of Epstein-Barr virus-related diseases. J Mol Diagn. 2001;3(1):1–10.

    Article  CAS  Google Scholar 

  54. Venkatraman L, Catherwood MA, Patterson A, Lioe TF, McCluggage WG, Anderson NH. Role of polymerase chain reaction and immunocytochemistry in the cytological assessment of lymphoid proliferations. J Clin Pathol. 2006;59(11):1160–5.

    Article  CAS  Google Scholar 

  55. Bagg A. Immunoglobulin and T-cell receptor gene rearrangements: minding your B’s and T’s in assessing lineage and clonality in neoplastic lymphoproliferative disorders. J Mol Diagn. 2006;8(4):426–9. quiz 526-7

    Article  CAS  Google Scholar 

  56. Zhang S, Abreo F, Lowery-Nordberg M, Veillon DM, Cotelingam JD. The role of fluorescence in situ hybridization and polymerase chain reaction in the diagnosis and classification of lymphoproliferative disorders on fine-needle aspiration. Cancer Cytopathol. 2010;118(2):105–12.

    Article  Google Scholar 

  57. Maroto A, Martinez M, Martinez MA, de Agustin P, Rodriguez-Peralto JL. Comparative analysis of immunoglobulin polymerase chain reaction and flow cytometry in fine needle aspiration biopsy differential diagnosis of non-Hodgkin B-cell lymphoid malignancies. Diagn Cytopathol. 2009;37(9):647–53.

    Article  Google Scholar 

  58. Peluso AL, Cozzolino I, Bottiglieri A, Lucchese L, Di Crescenzo RM, Langella M, et al. Immunoglobulin heavy and light chains and T-cell receptor beta and gamma chains PCR assessment on cytological samples. A study comparing FTA cards and cryopreserved lymph node fine-needle cytology. Cytopathology. 2017;28(3):203–15.

    Article  CAS  Google Scholar 

  59. Langerak AW, Groenen PJ, Brüggemann M, Beldjord K, Bellan C, Bonello L, et al. EuroClonality/BIOMED-2 guidelines for interpretation and reporting of Ig/TCR clonality testing in suspected lymphoproliferations. Leukemia. 2012;26(10):2159.

    Article  CAS  Google Scholar 

  60. van Dongen JJ, Langerak AW, Brüggemann M, Evans PA, Hummel M, Lavender FL, et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 concerted action BMH4-CT98-3936. Leukemia. 2003;17(12):2257–317.

    Article  Google Scholar 

  61. Patel KP, Pan Q, Wang Y, Maitta RW, Du J, Xue X, Lin J, Ratech H. Comparison of BIOMED-2 versus laboratory-developed polymerase chain reaction assays for detecting T-cell receptor-γ gene rearrangements. J Mol Diagn. 2010;12(2):226–37.

    Article  CAS  Google Scholar 

  62. Evans PA, Pott C, Groenen PJ, Salles G, Davi F, Berger F, et al. Significantly improved PCR-based clonality testing in B-cell malignancies by use of multiple immunoglobulin gene targets. Report of the BIOMED-2 concerted action BHM4-CT98-3936. Leukemia. 2007;21(2):207–14.

    Article  CAS  Google Scholar 

  63. McClure RF, Kaur P, Pagel E, Ouillette PD, Holtegaard CE, Treptow CL, Kurtin PJ. Validation of immunoglobulin gene rearrangement detection by PCR using commercially available BIOMED-2 primers. Leukemia. 2006;20(1):176–9.

    Article  CAS  Google Scholar 

  64. Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL, et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood. 1999;94(6):1840–7.

    CAS  PubMed  Google Scholar 

  65. Oscier D, Wade R, Davis Z, Morilla A, Best G, Richards S, et al., Chronic Lymphocytic Leukaemia Working Group, UK National Cancer Research Institute. Prognostic factors identified three risk groups in the LRF CLL4 trial, independent of treatment allocation. Haematologica. 2010;95(10):1705–12.

    Article  CAS  Google Scholar 

  66. Tobin G, Thunberg U, Johnson A, Thörn I, Söderberg O, Hultdin M, et al. Somatically mutated Ig V(H)3-21 genes characterize a new subset of chronic lymphocytic leukemia. Blood. 2002;99(6):2262–4.

    Article  CAS  Google Scholar 

  67. Forconi F, Sozzi E, Cencini E, Zaja F, Intermesoli T, Stelitano C, et al. Hairy cell leukemias with unmutated IGHV genes define the minor subset refractory to single-agent cladribine and with more aggressive behavior. Blood. 2009;114(21):4696–702.

    Article  CAS  Google Scholar 

  68. Arons E, Suntum T, Stetler-Stevenson M, Kreitman RJ. VH4-34+ hairy cell leukemia, a new variant with poor prognosis despite standard therapy. Blood. 2009;114(21):4687–95.

    Article  CAS  Google Scholar 

  69. Xi L, Arons E, Navarro W, Calvo KR, Stetler-Stevenson M, Raffeld M, Kreitman RJ. Both variant and IGHV4-34-expressing hairy cell leukemia lack the BRAF V600E mutation. Blood. 2012;119(14):3330–2.

    Article  CAS  Google Scholar 

  70. McClure R, Mai M, McClure S. High-throughput sequencing using the Ion Torrent personal genome machine for clinical evaluation of somatic hypermutation status in chronic lymphocytic leukemia. J Mol Diagn. 2015;17(2):145–54.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashmi Kanagal-Shamanna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kanagal-Shamanna, R. (2019). Molecular Diagnostics in Hematologic Malignancies. In: Roy-Chowdhuri, S., VanderLaan, P., Stewart, J., Santos, G. (eds) Molecular Diagnostics in Cytopathology. Springer, Cham. https://doi.org/10.1007/978-3-319-97397-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97397-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97396-8

  • Online ISBN: 978-3-319-97397-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics