Skip to main content

Topology and Magnetic Domain Walls

  • Chapter
  • First Online:
Topology in Magnetism

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 192))

Abstract

This chapter presents the various connections between topology and magnetic domain walls. To begin with, we expose what topology tells us about magnetic domain walls, answering questions like: may domain walls be topological defects?, are there topologically different classes of domain walls? We then turn to dynamics, explaining the profound link between topology and the dynamics of magnetic textures, domain walls here. Experimental aspects are reviewed in the next sections, constructed according to material and sample types, with a special role played by bubble garnet films where a number of fundamental concepts were introduced. The authors try to provide a unified view of the vast literature on the subject, that spreads over four decades and different research thematics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An example of a topologically non-trivial space is the Möbius strip [1].

  2. 2.

    Other values of p and \(p'\) are given in mathematical textbooks, e.g. [7] Sect. 2.4.1.

  3. 3.

    The mathematical objects adapted to this case are called relative homotopy groups. See e.g. [7] for a reference textbook. As the spaces that are considered are easily visualized, we can avoid the mathematical machinery here.

  4. 4.

    If two paths existed that use the two sides of \(S^1\), they would form a loop that encloses \(S^1\) once, so that a topological defect of \(n=2\) would exist, a vortex point in \(d=2\) or a vortex line in \(d=3\).

  5. 5.

    Whereas for domain walls a rich taxonomy has developed, with Bloch, Néel, asymmetric Bloch, asymmetric Néel, cross-tie walls, followed recently by transverse, vortex, asymmetric transverse, Bloch point walls etc., such is not the case of lines, that are nearly always called Bloch lines. Feldtkeller [8] proposed a denomination logics for lines, based on which type of wall they display in their core, but this has not been adopted by the whole community.

  6. 6.

    This can be figured out simply by remarking that, at the VBL core one has \(\partial \mathbf {m} / \partial x\) along \(+x\) and \(\partial \mathbf {m} / \partial y\) along \(-z\), so that \(\partial \mathbf {m} / \partial x \times \partial \mathbf {m} / \partial y\) is along \(+y\), parallel resp. antiparallel to the local magnetization for cases E resp. F.

  7. 7.

    The functional derivative differs from the partial derivative as soon as \(\mathscr {E}\) contains terms involving gradients of \(\mathbf {m}\). In the energy differential, the terms involving the gradients of the variation of \(\mathbf {m}\) have to be integrated by parts to be transformed into terms involving only the variations of \(\mathbf {m}\). This integration also produces surface terms, that contribute to the micromagnetic boundary conditions. See [2] for details.

  8. 8.

    Note that, in general, velocity is not linear with field as the moving domain wall structure differs from the rest structure, so that the Thiele domain wall width is not a constant.

  9. 9.

    This is not exactly so, though, when \(\Delta _\mathrm {T}\) varies much with field.

  10. 10.

    It may prove more pedagogical to input all external actions in \(\mathbf {T}\) rather than in \(\mathbf {H}_\mathrm {eff}\); then \(\mathbf {F}\) is zero as the self-energy of the texture \(\mathbf {m}_0\) should be independent of position (assuming a uniform medium, infinitely extended). See Sect. 2.4 for the special case of an infinite extension in one dimension only.

  11. 11.

    This domain wall width is implicitly defined in [30] (Sect. 2.4) when applying the Thiele equation to the dynamics of a simple domain wall. The explicit definition of the Thiele domain wall width occured later [32].

  12. 12.

    We stick to the historical formulation that refers to the domain wall energy density \(\sigma \), but in fact it is the total energy \(E=\int {\mathscr {E} d^3r}=\int {\mathscr {E} dqdS}=\int {\sigma dS}\). Indeed, expressing the effect of an easy axis field by \(\delta \sigma / \delta q=2 \mu _0 M_\mathrm {s} H\), which means a position-dependent domain wall energy, is physically artificial.

  13. 13.

    Soft magnetic films often display a small in-plane uniaxial anisotropy.

  14. 14.

    By convention for bubbles, the bias field is up so that the bubble core magnetization is down. Thus topological and winding numbers are in one-to-one correspondence (in fact, they are simply opposite, as the core is down-magnetized).

  15. 15.

    The two VBLs indeed have same core magnetization, namely that of the HBL, same magnetization gradient normal to the domain wall and opposite magnetization gradients along the domain wall, hence opposite vertical gyrovector components.

  16. 16.

    It is thus meaningless to try to call these walls Bloch or Néel, as the latter have no volume charge resp. a dipolar volume charge.

  17. 17.

    This is not exact, actually, as magnetization tilts slightly out-of-plane close to the half antivortex and half hedgehog vortex. The surface thus covered on the sphere is, however, not topologically protected.

References

  1. O.V. Pylypovskyi, V.P. Kravchuk, D.D. Sheka, D. Makarov, O.G. Schmidt, Y. Gaididei, Phys. Rev. Lett. 114, 197204 (2015)

    Article  ADS  Google Scholar 

  2. A. Hubert, R. Schäfer, Magnetic Domains (Springer, Berlin, 1998)

    Google Scholar 

  3. W.F. Brown Jr., Micromagnetics (Interscience Publishers, New York, 1963)

    MATH  Google Scholar 

  4. G. Toulouse, M. Kléman, J. Phys. Lett. 37, L149 (1976)

    Article  Google Scholar 

  5. M. Kléman, Points, Lines and Walls (Wiley, Chichester, 1983)

    Google Scholar 

  6. N.D. Mermin, Rev. Mod. Phys. 51, 591 (1979)

    Article  ADS  Google Scholar 

  7. A. Hatcher, Algebraic Topology (Cambridge University Press, Cambridge, 2002), http://www.math.cornell.edu/~hatcher

  8. E. Feldtkeller, Z. angew. Phys. 19, 530 (1965). English translation: IEEE. Trans. Magn. 53, 0700308 (2017)

    Google Scholar 

  9. A.P. Malozemoff, J.C. Slonczewski, Magnetic Domain Walls in Bubble Materials (Academic Press, New York, 1979)

    Google Scholar 

  10. L. Michel, Rev. Mod. Phys. 52, 617 (1980)

    Article  ADS  Google Scholar 

  11. H.R. Trebin, Adv. Phys. 31, 195 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  12. V. Mineyev, G. Volovik, Phys. Rev. B 18, 3197 (1978)

    Article  ADS  Google Scholar 

  13. H.J. Williams, M. Goertz, J. Appl. Phys. 23, 316 (1952)

    Article  ADS  Google Scholar 

  14. R.W. DeBlois, C.D. Graham Jr., J. Appl. Phys. 29, 931 (1958)

    Article  ADS  Google Scholar 

  15. E.E. Huber Jr., D. Smith, J.B. Goodenough, J. Appl. Phys. 29, 294 (1958)

    Article  ADS  Google Scholar 

  16. L. Landau, E. Lifshitz, Phys. Z. Sowjetunion 8, 153 (1935)

    Google Scholar 

  17. T.L. Gilbert, Phys. Rev. 100, 1243 (1955). (abstract only)

    Google Scholar 

  18. M.D. Stiles, J. Miltat, Spin Dynamics in Confined Magnetic Structures III (Springer, Berlin, 2006), pp. 225–308

    Book  Google Scholar 

  19. D.C. Ralph, M.D. Stiles, J. Magn. Magn. Mater. 320, 1190 (2008)

    Article  ADS  Google Scholar 

  20. D.C. Ralph, M.D. Stiles, J. Magn. Magn. Mater. 321, 2508 (2009)

    Article  ADS  Google Scholar 

  21. A. Brataas, A.D. Kent, H. Ohno, Nat. Mater. 11, 372 (2012)

    Article  ADS  Google Scholar 

  22. P. Gambardella, I.M. Miron, Phil. Trans. R. Soc. A 369(13), 3175 (2011). https://doi.org/10.1098/rsta.2010.0336

    Article  ADS  Google Scholar 

  23. A. Thiaville, Y. Nakatani, J. Miltat, Y. Suzuki, Europhys. Lett. 69, 990 (2005)

    Article  ADS  Google Scholar 

  24. N.L. Schryer, L.R. Walker, J. Appl. Phys. 45, 5406 (1974)

    Article  ADS  Google Scholar 

  25. J.C. Slonczewski, Int. J. Magn. 2, 85 (1972)

    Google Scholar 

  26. M.J. Donahue, D.G. Porter, OOMMF user’s guide, version 1.0, Interagency report NISTIR 6376 (1999)

    Google Scholar 

  27. T. Fischbacher, M. Franchin, G. Bordignon, H. Fangohr, IEEE Trans. Magn. 43, 2896 (2007)

    Article  ADS  Google Scholar 

  28. A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, B. Van Waeyenberge, AIP Adv. 4, 107133 (2014)

    Article  ADS  Google Scholar 

  29. A.A. Thiele, Phys. Rev. Lett. 30, 230 (1973)

    Article  ADS  Google Scholar 

  30. A.A. Thiele, J. Appl. Phys. 45, 377 (1974)

    Article  ADS  Google Scholar 

  31. L. Berger, Phys. Rev. B 33, 1572 (1986)

    Article  ADS  Google Scholar 

  32. A. Thiaville, Y. Nakatani, Domain wall dynamics in nanowires and nanostrips, in Spin Dynamics in Confined Magnetic Structures III (Springer, Berlin, 2006), pp. 161–206

    Google Scholar 

  33. J.F. Dillon Jr., Magnetism, vol. III (Academic Press, New York, 1963), pp. 415–464

    Google Scholar 

  34. Y. Nakatani, A. Thiaville, J. Miltat, J. Magn. Magn. Mater. 290–291, 750 (2005)

    Article  ADS  Google Scholar 

  35. E. Jué, A. Thiaville, S. Pizzini, J. Miltat, J. Sampaio, L.D. Buda-Prejbeanu, S. Rohart, J. Vogel, M. Bonfim, O. Boulle, S. Auffret, I.M. Miron, G. Gaudin, Phys. Rev. B 93, 014403 (2016)

    Article  ADS  Google Scholar 

  36. W. Döring, Z. Naturforschg. 3a, 373 (1948)

    Google Scholar 

  37. G.M. Wysin, F.G. Mertens, Equations of motion for vortices in 2-D easy-plane magnets, in Nonlinear Coherent Structures in Physics and Biology (Springer, Berlin, 1991)

    Google Scholar 

  38. G.M. Wysin, F.G. Mertens, A.R. Völkel, A.R. Bishop, Mass and momentum for vortices in two-dimensional easy-plane magnets, in Nonlinear Coherent Structures in Physics and Biology (Plenum, New York, 1994)

    Chapter  Google Scholar 

  39. F.G. Mertens, A.R. Bishop, Dynamics of vortices in two-dimensional magnets, in Nonlinear Science at the Dawn of the 21st Century (Springer, Berlin, 2000), pp. 137–170

    Google Scholar 

  40. W. Koshibae, N. Nagaosa, New J. Phys. 18, 045007 (2016)

    Article  ADS  Google Scholar 

  41. A.P. Malozemoff, J.C. DeLuca, Appl. Phys. Lett. 26, 719 (1975)

    Article  ADS  Google Scholar 

  42. A.A. Thiele, J. Appl. Phys. 47, 2759 (1976)

    Article  ADS  Google Scholar 

  43. J.C. Slonczewski, J. Magn. Magn. Mater. 12, 108 (1979)

    Article  ADS  Google Scholar 

  44. S. Komineas, N. Papanicolaou, Phys. D 99, 81 (1996)

    Article  MathSciNet  Google Scholar 

  45. A. Thiaville, Y. Nakatani, F. Piéchon, J. Miltat, T. Ono, Eur. Phys. J. B 60, 15 (2007)

    Article  ADS  Google Scholar 

  46. V.S. Gornakov, L.M. Dedukh, V.I. Nikitenko, V.T. Synogach, Sov. Phys. JETP 63, 1225 (1986)

    Google Scholar 

  47. L.J. Schwee, H.R. Irons, W.E. Anderson, in AIP Conference Proceedings, vol. 18, p. 1383 (1974)

    Google Scholar 

  48. O. Bostanjoglo, T. Rosin, Phys. Stat. Sol. A 57, 561 (1980)

    Google Scholar 

  49. B.E. Argyle, B. Petek, M.E. Re, F. Suits, D.A. Herman, J. Appl. Phys. 64, 6595 (1988)

    Article  ADS  Google Scholar 

  50. B.E. Argyle, E. Terrenzio, J.C. Slonczewski, Phys. Rev. Lett. 53, 190 (1984)

    Article  ADS  Google Scholar 

  51. Y.P. Kabanov, L.M. Dedukh, V.I. Nikitenko, JETP Lett. 49, 637 (1989)

    ADS  Google Scholar 

  52. V.S. Gornakov, V.I. Nikitenko, I.A. Prudnikov, JETP Lett. 50, 513 (1990)

    ADS  Google Scholar 

  53. J.C. Slonczewski, J. Appl. Phys. 44, 1759 (1973)

    Article  ADS  Google Scholar 

  54. J.C. Slonczewski, J. Appl. Phys. 45, 2705 (1974)

    Article  ADS  Google Scholar 

  55. B.E. MacNeal, F.B. Humphrey, IEEE Trans. Magn. 15, 1272 (1979)

    Article  ADS  Google Scholar 

  56. K. Patek, A. Thiaville, J. Miltat, Phys. Rev. B 49, 6678 (1994)

    Article  ADS  Google Scholar 

  57. J.C. Slonczewski, A.P. Malozemoff, O. Voegeli, in AIP Conference Proceedings vol. 10, p. 458 (1973)

    Google Scholar 

  58. J.J. Fernandez de Castro, F.J. Friedlaender, D. Musselman, J.A. Nyenhuis, IEEE Trans. Magn. 23, 3388 (1987)

    Article  ADS  Google Scholar 

  59. J.A. Nyenhuis, F.J. Friedlaender, H. Sato, IEEE Trans. Magn. 19, 1796 (1983)

    Article  ADS  Google Scholar 

  60. C.A. Jones, M.V.C. Stroomer, O. Voegeli, F.J. Friedlaender, IEEE Trans. Magn. 15, 926 (1979)

    Article  ADS  Google Scholar 

  61. J.C. Slonczewski, J. Appl. Phys. 50, 7850 (1979)

    Article  ADS  Google Scholar 

  62. A.P. Malozemoff, J.C. Slonczewski, IEEE Trans. Magn. 11, 1091 (1975)

    Article  ADS  Google Scholar 

  63. B.E. Argyle, S. Maekawa, P. Dekker, J.C. Slonczewski, in AIP Conference Proceedings, vol. 34, p. 131 (1976)

    Google Scholar 

  64. A.P. Malozemoff, S. Maekawa, J. Appl. Phys. 47, 3321 (1976)

    Article  ADS  Google Scholar 

  65. S. Maekawa, P. Dekker, in AIP Conference Proceedings, vol. 34, p. 148 (1976)

    Google Scholar 

  66. F.B. Hagedorn, J. Appl. Phys. 45, 3129 (1974)

    Article  ADS  Google Scholar 

  67. A. Thiaville, L. Arnaud, F. Boileau, G. Sauron, J. Miltat, IEEE Trans. Magn. 24, 1722 (1988)

    Article  ADS  Google Scholar 

  68. A. Thiaville, J. Ben Youssef, Y. Nakatani, J. Miltat, J. Appl. Phys. 69, 6090 (1991)

    Article  ADS  Google Scholar 

  69. S. Konishi, K. Matsuyama, I. Chida, S. Kubota, H. Kawahara, M. Ohbo, IEEE Trans. Magn. 20, 1129 (1984)

    Article  ADS  Google Scholar 

  70. K. Mizuno, H. Matsutera, H. Kawahara, Y. Hidaka, IEEE Trans. Magn. 26, 2520 (1990)

    Article  ADS  Google Scholar 

  71. M.V. Chetkin, V.B. Smirnov, A.F. Novikov, I.V. Parygina, A.K. Zvezdin, S.V. Gomonov, Sov. Phys. JETP 67, 2269 (1988)

    Google Scholar 

  72. A. Thiaville, J. Miltat, J. Magn. Magn. Mater. 104–107, 335 (1992)

    Article  ADS  Google Scholar 

  73. A. Thiaville, J. Miltat, Europhys. Lett. 26, 1006 (1994)

    Article  Google Scholar 

  74. Y. Maruyama, T. Ikeda, R. Suzuki, IEEE Trans. J. Magn. Jpn. 4, 730 (1989)

    Article  Google Scholar 

  75. W.J. Tabor, A.H. Bobeck, G.P. Vella-Coleiro, A. Rosencwaig, Bell Syst. Tech. J. 51, 1427 (1972)

    Article  Google Scholar 

  76. A. Rosencwaig, W.J. Tabor, T.J. Nelson, Phys. Rev. Lett. 29, 946 (1972)

    Article  ADS  Google Scholar 

  77. S. Konishi, IEEE Trans. Magn. 19, 1838 (1983)

    Article  ADS  Google Scholar 

  78. J. Haisma, K.L.L. van Mierloo, W.F. Druyvesteyn, U. Enz, Appl. Phys. Lett. 27, 459 (1975)

    Article  ADS  Google Scholar 

  79. C.Y. You, I.M. Sung, B.K. Joe, Appl. Phys. Lett. 89, 222513 (2006)

    Article  ADS  Google Scholar 

  80. D. Navas, C. Nam, D. Velazquez, C.A. Ross, Phys. Rev. B 81, 224439 (2010)

    Article  ADS  Google Scholar 

  81. J.Y. Chauleau, B.J. McMorran, R. Belkhou, N. Bergeard, T.O. Mentes, M.A. Niño, A. Locatelli, J. Unguris, S. Rohart, J. Miltat, A. Thiaville, Phys. Rev. B 84, 094416 (2011)

    Article  ADS  Google Scholar 

  82. H. Kronmüller, M. Fähnle, Micromagnetization and the Microstructure of Ferromagnetic Solids (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  83. R.D. McMichael, M.J. Donahue, IEEE Trans. Magn. 33, 4167 (1997)

    Article  ADS  Google Scholar 

  84. J.Y. Chauleau, R. Weil, A. Thiaville, J. Miltat, Phys. Rev. B 82, 214414 (2010)

    Article  ADS  Google Scholar 

  85. J.Y. Chauleau, Textures magnétiques et parois de domaines: les objets du transfert de spin. Ph.D. thesis, Université Paris-Sud, 2010

    Google Scholar 

  86. O. Tchernyshyov, G.W. Chern, Phys. Rev. Lett. 95, 197204 (2005)

    Article  ADS  Google Scholar 

  87. G.W. Chern, H. Youk, O. Tchernyshyov, J. Appl. Phys. 99, 08Q505 (2006)

    Article  Google Scholar 

  88. D.J. Clarke, O.A. Tretiakov, G.W. Chern, Y.B. Bazaliy, O. Tchernyshyov, Phys. Rev. B 78, 134412 (2008)

    Article  ADS  Google Scholar 

  89. H.A.M. van den Berg, IBM, J. Res. Develop. 33, 540 (1989)

    Google Scholar 

  90. T. Ono, H. Miyajima, K. Shigeto, K. Mibu, N. Hosoito, T. Shinjo, Science 284, 468 (1999)

    Article  ADS  Google Scholar 

  91. D. Atkinson, D.A. Allwood, G. Xiong, M.D. Cooke, C.C. Faulkner, R.P. Cowburn, Nature Mater. 2, 85 (2003)

    Article  ADS  Google Scholar 

  92. J.Y. Lee, K.S. Lee, S. Choi, K.Y. Guslienko, S.K. Kim, Phys. Rev. B 76, 184408 (2007)

    Article  ADS  Google Scholar 

  93. G.D. Beach, C. Nistor, C. Knutson, M. Tsoi, J.L. Erskine, Nat. Mater. 4, 741 (2005)

    Article  ADS  Google Scholar 

  94. J. Yang, C. Nistor, G.S.D. Beach, J.L. Erskine, Phys. Rev. B 77, 014413 (2008)

    Article  ADS  Google Scholar 

  95. M. Hayashi, L. Thomas, C. Rettner, R. Moriya, S.S.P. Parkin, Nat. Phys. 3, 21 (2007)

    Article  Google Scholar 

  96. S. Glathe, R. Mattheis, D.V. Berkov, Appl. Phys. Lett. 93, 072508 (2008)

    Article  ADS  Google Scholar 

  97. Y. Nakatani, A. Thiaville, J. Miltat, Nat. Mater. 2, 521 (2003)

    Article  ADS  Google Scholar 

  98. L. Thomas, M. Hayashi, X. Jiang, R. Moriya, C. Rettner, S. Parkin, Nature 443, 197 (2006)

    Article  ADS  Google Scholar 

  99. S. Zhang, Z. Li, Phys. Rev. Lett. 93, 127204 (2004)

    Article  ADS  Google Scholar 

  100. L. Heyne, M. Kläui, D. Backes, T.A. Moore, S. Krzyk, U. Rüdiger, L.J. Heyderman, A.F. Rodríguez, F. Nolting, T.O. Mentes, M. Niño, A. Locatelli, K. Kirsch, R. Mattheis, Phys. Rev. Lett. 100, 066603 (2008)

    Article  ADS  Google Scholar 

  101. M. Kläui, P.O. Jubert, R. Allenspach, A. Bischof, J.A.C. Bland, G. Faini, U. Rüdiger, C.A.F. Vaz, L. Vila, C. Vouille, Phys. Rev. Lett. 95, 026601 (2005)

    Article  ADS  Google Scholar 

  102. M. Hayashi, L. Thomas, C. Rettner, R. Moriya, X. Jiang, S.S.P. Parkin, Phys. Rev. Lett. 97, 207205 (2006)

    Article  ADS  Google Scholar 

  103. N. Vernier, D.A. Allwood, D. Atkinson, M.D. Cooke, R.P. Cowburn, Europhys. Lett. 65, 526 (2004)

    Article  ADS  Google Scholar 

  104. S.S.P. Parkin, M. Hayashi, L. Thomas, Science 320, 190 (2008)

    Article  ADS  Google Scholar 

  105. G.E. Volovik, J. Phys. C Solid State Phys. 20, L83 (1987)

    Article  ADS  Google Scholar 

  106. S.E. Barnes, S. Maekawa, Concepts in Spin Electronics (Oxford University Press, Oxford, 2006)

    MATH  Google Scholar 

  107. S.A. Yang, G.S.D. Beach, C. Knutson, D. Xiao, Q. Niu, M. Tsoi, J.L. Erskine, Phys. Rev. Lett. 102, 067201 (2009)

    Article  ADS  Google Scholar 

  108. S.S.L. Zhang, S. Zhang, Phys. Rev. B 82, 184423 (2010)

    Article  ADS  Google Scholar 

  109. S. Jamet, N. Rougemaille, J.C. Toussaint, O. Fruchart, Magnetic Nano- and Microwires, chap. 25 (Elsevier, Amsterdam, 2015), pp. 783–811

    Chapter  Google Scholar 

  110. H. Forster, T. Schrefl, W. Scholz, D. Suess, V. Tsiantos, J. Fidler, J. Magn. Magn. Mater. 249, 181 (2002)

    Article  ADS  Google Scholar 

  111. R. Hertel, J. Magn. Magn. Mater. 249, 251 (2002)

    Article  ADS  Google Scholar 

  112. A. Hubert, J. Magn. Magn. Mater. 2, 25 (1976)

    Article  ADS  Google Scholar 

  113. S. Da Col, S. Jamet, N. Rougemaille, A. Locatelli, T.O. Mentes, B. Santos Burgos, R. Afid, M. Darques, L. Cagnon, J.C. Toussaint, O. Fruchart, Phys. Rev. B 89, 180405(R) (2014)

    Article  Google Scholar 

  114. R. Hertel, J. Kirschner, Phys. B 343, 206 (2004)

    Article  ADS  Google Scholar 

  115. R. Hertel, J. Kirschner, J. Magn. Magn. Mater. 278, L291 (2004)

    Article  ADS  Google Scholar 

  116. C. Andreas, A. Kákay, R. Hertel, Phys. Rev. B 89, 134403 (2014)

    Article  ADS  Google Scholar 

  117. R. Hertel, J. Phys. Condens. Matter 28, 483002 (2016)

    Article  Google Scholar 

  118. P. Landeros, A.S. Núñez, J. Appl. Phys. 108, 033917 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Maurice Kléman, formerly at LPS, for being an inspiration and, by his pionneering works, a source for the content of this chapter. They thank Jean-Yves Chauleau for providing MFM images of domain walls in Ni-Fe nanostrips, borrowed from his Ph.D. thesis [85]. The critical reading of the manuscript by O. Fruchart is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Thiaville .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thiaville, A., Miltat, J. (2018). Topology and Magnetic Domain Walls. In: Zang, J., Cros, V., Hoffmann, A. (eds) Topology in Magnetism. Springer Series in Solid-State Sciences, vol 192. Springer, Cham. https://doi.org/10.1007/978-3-319-97334-0_2

Download citation

Publish with us

Policies and ethics