Skip to main content

Neuroimaging and Antipsychotics

  • Chapter
  • First Online:
  • 605 Accesses

Abstract

The relationship between pharmacological treatment and structural and functional brain characteristics in the major psychoses is a matter of lively debate. In the case of schizophrenia, a better definition of the role played by antipsychotic treatment on the progressive trajectory of brain abnormalities is crucial to understand the nature of such abnormalities and whether they could be moderated or prevented. In this respect, contrasting data have emerged on the role of first-generation vs second-generation antipsychotics. From a clinical viewpoint, some evidence exists on the relationship between brain structural and functional changes and clinical response to antipsychotic medication. This may help to identify patients who will benefit from a given treatment, a possibility especially useful for costly treatments or treatments with complex management or serious side effect profiles. The goal of the current chapter is to review the existing evidence about the impact of antipsychotic drug treatment on brain structure, as assessed by structural magnetic resonance imaging (sMRI), and function, as assessed by functional neuroimaging techniques (i.e., PET, SPECT, fMRI, MRI spectroscopy) with a focus on prospective, longitudinal studies. Furthermore, change of positive and negative symptoms (both primary and secondary) under treatment with respect to brain structural, functional, and neurochemical correlates is discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Smith RC, Calderon M, Ravichandran GK, Largen J, Vroulis G, Shvartsburd A, Gordon J, Schoolar JC. Nuclear magnetic resonance in schizophrenia: a preliminary study. Psychiatry Res. 1984;12(2):137–47.

    Article  CAS  PubMed  Google Scholar 

  2. Hirayasu Y, Tanaka S, Shenton ME, Salisbury DF, DeSantis MA. Prefrontal gray matter volume reduction in first episode schizophrenia. Cereb Cortex. 2001;11:374–81.

    Article  CAS  PubMed  Google Scholar 

  3. Wible CG, Anderson J, Shenton ME, Kricun A, Hirayasu Y, Tanaka S, Levitt JJ, O’Donnell BF, Kikinis R, Jolesz FA, McCarley RW. Prefrontal cortex, negative symptoms, and schizophrenia: an MRI study. Psychiatry Res. 2001;108:65–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vita A, De Peri L, Deste G, Barlati S, Sacchetti E. The effect of antipsychotic treatment on cortical gray matter changes in schizophrenia: does the class matter? A meta-analysis and meta-regression of longitudinal magnetic resonance imaging studies. Biol Psychiatry. 2015;78(6):403–12.

    Article  CAS  PubMed  Google Scholar 

  5. Wright IC, Rabe-Hesketh S, Woodruff PWR, David AS, Murray RM, Bullmore ET. Meta-analysis of regional brain volumes in schizophrenia. Am J Psychiatry. 2000;157:16–25.

    Article  CAS  PubMed  Google Scholar 

  6. Olabi B, Ellison-Wright I, McIntosh AM, Wood SJ, Bullmore E, Lawrie SM. Are there progressive brain changes in schizophrenia? A meta-analysis of structural magnetic resonance imaging studies. Biol Psychiatry. 2011;70:88–96.

    Article  PubMed  Google Scholar 

  7. Vita A, De Peri L, Deste G, Sacchetti E. Progressive loss of cortical gray matter in schizophrenia: a meta-analysis and meta-regression of longitudinal MRI studies. Transl Psychiatry. 2012;2:e190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fusar-Poli P, Smieskova R, Kempton MJ, Ho BC, Andreasen NC, Borgwardt S. Progressive brain changes in schizophrenia related to antipsychotic treatment? A meta-analysis of longitudinal MRI studies. Neurosci Biobehav Rev. 2013;37:1680–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Haijma SV, Van Haren N, Cahn W, Koolschijn PC, Hulshoff Pol HE, Kahn RS. Brain volumes in schizophrenia: a meta-analysis in over 18 000 subjects. Schizophr Bull. 2013;39:1129–38.

    Article  PubMed  Google Scholar 

  10. Shenton ME, Dickey CC, Frumin M, McCarley RW. A review of MRI findings in schizophrenia. Schizophr Res. 2001;49(1–2):1–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Glahn DC, Laird AR, Ellison-Wright I, Thelen SM, Robinson JL, Lancaster JL, Bullmore E, Fox PT. Meta-analysis of gray matter anomalies in schizophrenia: application of anatomic likelihood estimation and network analysis. Biol Psychiatry. 2008;64:774–81.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shenton ME, Whitford TJ, Kubicki M. Structural neuroimaging in schizophrenia: from methods to insights to treatments. Dialogues Clin Neurosci. 2010;12(3):317–32.

    PubMed  PubMed Central  Google Scholar 

  13. Honea R, Crow TJ, Passingham D, Mackay CE. Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. Am J Psychiatry. 2005;162(12):2233–45.

    Article  PubMed  Google Scholar 

  14. Pearlson GD, Calhoun V. Structural and functional magnetic resonance imaging in psychiatric disorders. Can J Psychiatry. 2007;52(3):158–66.

    Article  PubMed  Google Scholar 

  15. Fornito A, Yucel M, Patti J, Wood SJ, Pantelis C. Mapping grey matter reductions in schizophrenia: an anatomical likelihood estimation analysis of voxel-based morphometry studies. Schizophr Res. 2009;108(1–3):104–13.

    Article  CAS  PubMed  Google Scholar 

  16. Levitt JJ, Bobrow L, Lucia D, Srinivasan P. A selective review of volumetric and morphometric imaging in schizophrenia. Curr Top Behav Neurosci. 2010;4:243–81.

    Article  PubMed  Google Scholar 

  17. Bora E, Fornito A, Radua J, Walterfang M, Seal M, Wood SJ, Yücel M, Velakoulis D, Pantelis C. Neuroanatomical abnormalities in schizophrenia: a multimodal voxelwise meta-analysis and meta-regression analysis. Schizophr Res. 2011;127(1–3):46–57.

    Article  PubMed  Google Scholar 

  18. Schmitt A, Hasan A, Gruber O, Falkai P. Schizophrenia as a disorder of disconnectivity. Eur Arch Psychiatry Clin Neurosci. 2011;261(Suppl 2):S150–4.

    Article  PubMed  Google Scholar 

  19. Palaniyappan L, Balain V, Liddle PF. The neuroanatomy of psychotic diathesis: a metaanalytic review. J Psychiatr Res. 2012;46(10):1249–56.

    Article  PubMed  Google Scholar 

  20. Dazzan P, Morgan KD, Orr K, Hutchinson G, Chitnis X, Suckling J, Fearon P, McGuire PK, Mallett RM, Jones PB, Leff J, Murray RM. Different effects of typical and atypical antipsychotics on grey matter in first episode psychosis: the AESOP study. Neuropsychopharmacology. 2005;30(4):765–74.

    Article  CAS  PubMed  Google Scholar 

  21. Ellison-Wright I, Glahn DC, Laird AR, Thelen SM, Bullmore E. The anatomy of first-episode and chronic schizophrenia: an anatomical likelihood estimation meta-analysis. Am J Psychiatry. 2008;165(8):1015–23.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lim KO, Helpern JA. Neuropsychiatric applications of DTI - a review. NMR Biomed. 2002;15:587–93.

    Article  CAS  PubMed  Google Scholar 

  23. Ardekani BA, Nierenberg J, Hoptman MJ, Javitt DC, Lim KO. MRI study of white matter diffusion anisotropy in schizophrenia. Neuroreport. 2003;14:2025–9.

    Article  PubMed  Google Scholar 

  24. Kubicki M, Westin CF, Nestor PG, Wible CG, Frumin M, Maier SE, Kikinis R, Jolesz FA, McCarley RW, Shenton ME. Cingulate fasciculus integrity disruption in schizophrenia: a magnetic resonance diffusion tensor imaging study. Biol Psychiatry. 2003;54:1171–80.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Burns J, Job D, Bastin ME, Whalley H, Macgillivray T, Johnstone EC, Lawrie SM. Structural disconnectivity in schizophrenia: a diffusion tensor magnetic resonance imaging study. Br J Psychiatry. 2003;182:439–43.

    Article  CAS  PubMed  Google Scholar 

  26. Davis KL, Stewart DG, Friedman JI, Buchsbaum M, Harvey PD, Hof PR, Buxbaum J, Haroutunian V. White matter changes in schizophrenia: evidence for myelin-related dysfunction. Arch Gen Psychiatry. 2003;60:443–56.

    Article  PubMed  Google Scholar 

  27. White T, Nelson M, Lim KO. Diffusion tensor imaging in psychiatric disorders. Top Magn Reson Imaging. 2008;19(2):97–109.

    Article  PubMed  Google Scholar 

  28. Ellison-Wright I, Bullmore E. Meta-analysis of diffusion tensor imaging studies in schizophrenia. Schizophr Res. 2009;108(1–3):3–10.

    Article  PubMed  Google Scholar 

  29. Yao L, Lui S, Liao Y, Du MY, Hu N, Thomas JA, Gong QY. White matter deficits in first episode schizophrenia: an activation likelihood estimation meta-analysis. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;45C:100–6.

    Article  Google Scholar 

  30. Liu CC, Chien YL, Hsieh MH, Hwang TJ, Hwu HG, Liu CM. Aripiprazole for drug-naïve or antipsychotic-short-exposure subjects with ultra-high risk state and first-episode psychosis: an open-label study. J Clin Psychopharmacol. 2013;33:18–23.

    Article  PubMed  CAS  Google Scholar 

  31. Crossley NA, Marques TR, Taylor H, Chaddock C, Dell’Acqua F, Reinders AA, Mondelli V, DiForti M, Simmons A, David AS, Kapur S, Pariante CM, Murray RM, Dazzan P. Connectomic correlates of response to treatment in first-episode psychosis. Brain. 2017;140(Pt 2):487–96.

    Article  PubMed  Google Scholar 

  32. Henze R, Brunner R, Thiemann U, Parzer P, Klein J, Resch F, Stieltjes B. White matter alterations in the corpus callosum of adolescents with first-admission schizophrenia. Neurosci Lett. 2012;513(2):178–82.

    Article  CAS  PubMed  Google Scholar 

  33. Guo W, Liu F, Liu Z, Gao K, Xiao C, Chen H, Zhao J. Right lateralized white matter abnormalities in first-episode, drug-naive paranoid schizophrenia. Neurosci Lett. 2012;531(1):5–9.

    Article  CAS  PubMed  Google Scholar 

  34. Gur RE, Gur RC. Functional magnetic resonance imaging in schizophrenia. Dialogues Clin Neurosci. 2010;12(3):333–43.

    PubMed  PubMed Central  Google Scholar 

  35. Lewis DA, Lieberman JA. Catching up on schizophrenia: natural history and neurobiology. Neuron. 2000;28:325–34.

    Article  CAS  PubMed  Google Scholar 

  36. Glahn DC, Ragland JD, Abramoff A, Barrett J, Laird AR, Bearden CE, Velligan DI. Beyond hypofrontality: a quantitative meta- analysis of functional neuroimaging studies of working memory in schizophrenia. Hum Brain Mapp. 2005;25:60–9.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hubl D, Koenig T, Strik WK, Garcia LM, Dierks T. Competition for neuronal resources: how hallucinations make themselves heard. Br J Psychiatry. 2007;190:57–62.

    Article  PubMed  Google Scholar 

  38. Sim K, Cullen T, Ongur D, Heckers S. Testing models of thalamic dysfunction in schizophrenia using neuroimaging. J Neural Transm. 2006;113:907–28.

    Article  CAS  PubMed  Google Scholar 

  39. Berman KF, Meyer-Lindenberg A. Functional brain imaging studies in schizophrenia. In: Charney D, Nestler E, editors. Neurobiology of mental illness. 2nd ed. Oxford, MA: Oxford University Press; 2004.

    Google Scholar 

  40. Minzenberg MJ, Laird AR, Thelen S, Carter CS, Glahn DC. Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Arch Gen Psychiatry. 2009;66(8):811–22.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Potkin SG, Turner JA, Brown GG, McCarthy G, Greve DN, Glover GH, Manoach DS, Belger A, Diaz M, Wible CG, Ford JM, Mathalon DH, Gollub R, Lauriello J, O’Leary D, van Erp TG, Toga AW, Preda A, Lim KO, FBIRN. Working memory and DLPFC inefficiency in schizophrenia: the FBIRN study. Schizophr Bull. 2009;35(1):19–31.

    Article  CAS  PubMed  Google Scholar 

  42. Ragland JD, Laird AR, Ranganath C, Blumenfeld RS, Gonzales SM, Glahn DC. Prefrontal activation deficits during episodic memory in schizophrenia. Am J Psychiatry. 2009;166(8):863–74.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Callicott JH, Mattay VS, Verchinski BA, Marenco S, Egan MF, Weinberger DR. Complexity of prefrontal cortical dysfunction in schizophrenia: more than up or down. Am J Psychiatry. 2003;160(12):2209–15.

    Article  PubMed  Google Scholar 

  44. Pankow A, Friedel E, Sterzer P, Seiferth N, Walter H, Heinz A, Schlagenhauf F. Altered amygdala activation in schizophrenia patients during emotion processing. Schizophr Res. 2013;150(1):101–6.

    Article  PubMed  Google Scholar 

  45. Li H, Chan RC, McAlonan GM, Gong QY. Facial emotion processing in schizophrenia: a meta-analysis of functional neuroimaging data. Schizophr Bull. 2010;36(5):1029–39.

    Article  PubMed  Google Scholar 

  46. Pantelis C, Yucel M, Wood SJ, Velakoulis D, Sun D, Berger G, Stuart GW, Yung A, Phillips L, McGorry PD. Structural brain imaging evidence for multiple pathological processes at different stages of brain development in schizophrenia. Schizophr Bull. 2005;31:672–96.

    Article  PubMed  Google Scholar 

  47. Hulshoff Pol HE, Kahn RS. What happens after the first episode? A review of progressive brain changes in chronically ill patients with schizophrenia. Schizophr Bull. 2008;34:354–66.

    Article  PubMed  PubMed Central  Google Scholar 

  48. van Haren NE, Cahn W, Hulshoff Pol HE, Kahn RS. Schizophrenia as a progressive brain disease. Eur Psychiatry. 2008;23:245–54.

    Article  PubMed  Google Scholar 

  49. Kochunov P, Hong LE. Neurodevelopmental and neurodegenerative models of schizophrenia: white matter at the center stage. Schizophr Bull. 2014;40(4):721–8.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Andreasen NC, Nopoulos P, Magnotta V, Pierson R, Ziebell S, Ho BC. Progressive brain change in schizophrenia: a prospective longitudinal study of first-episode schizophrenia. Biol Psychiatry. 2011;70:672–9.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Meyer-Lindenberg A. Neuroimaging and the question of neurodegeneration in schizophrenia. Prog Neurobiol. 2011;95:514–6.

    Article  PubMed  Google Scholar 

  52. McGuire PK, Sato JR, Mechelli A, Jackowski A, Bressan RA, Zugman A. Can neuroimaging be used to predict the onset of psychosis? Lancet Psychiatry. 2015;2(12):1117–22.

    Article  PubMed  Google Scholar 

  53. Zipursky RB, Reilly TJ, Murray RM. The myth of schizophrenia as a progressive brain disease. Schizophr Bull. 2013;39:1363–72.

    Article  PubMed  Google Scholar 

  54. Fusar-Poli P, Bonoldi I, Yung AR, Borgwardt S, Kempton MJ, Valmaggia L, Barale F, Caverzasi E, McGuire P. Predicting psychosis: meta-analysis of transition outcomes in individuals at high clinical risk. Arch Gen Psychiatry. 2012;69:220–9.

    Article  PubMed  Google Scholar 

  55. Gong Q, Lui S, Sweeney JA. A selective review of cerebral abnormalities in patients with first-episode schizophrenia before and after treatment. Am J Psychiatry. 2016;173:232–43.

    Article  PubMed  Google Scholar 

  56. Schnack HG, Van Haren NE, Nieuwenhuis M, Hulshoff Pol HE, Cahn W, Kahn RS. Accelerated brain aging in schizophrenia: a longitudinal pattern recognition study. Am J Psychiatry. 2016;173:607–16.

    Article  PubMed  Google Scholar 

  57. Van Haren NE, Cahn W, Hulshoff Pol HE, Kahn RS. The course of brain abnormalities in schizophrenia: can we slow the progression? J Psychopharmacol. 2012;26:8–14.

    Article  PubMed  Google Scholar 

  58. Van Haren NE, Schnack HG, Koevoets MGJC, Cahn W, Hulshoff Pol HE, Kahn RS. Trajectories of subcortical volume change in schizophrenia: a 5-year follow-up. Schizophr Res. 2016;173:140–5.

    Article  PubMed  Google Scholar 

  59. Roiz-Santiañez R, Suarez-Pinilla P, Crespo-Facorro B. Brain structural effects of antipsychotic treatment in schizophrenia: a systematic review. Curr Neuropharmacol. 2015;13(4):422–34.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Cahn W, Hulshoff Pol HE, Lems EB, van Haren NE, Schnack HG, van der Linden JA, Schothorst PF, van Engeland H, Kahn RS. Brain volume changes in first-episode schizophrenia: a 1-year follow-up study. Arch Gen Psychiatry. 2002;59(11):1002–10.

    Article  PubMed  Google Scholar 

  61. Ho BC, Andreasen NC, Nopoulos P, Arndt S, Magnotta V, Flaum M. Progressive structural brain abnormalities and their relationship to clinical outcome: a longitudinal magnetic resonance imaging study early in schizophrenia. Arch Gen Psychiatry. 2003;60:585–94.

    Article  PubMed  Google Scholar 

  62. Yoshida T, McCarley RW, Nakamura M, Lee K, Koo MS, Bouix S, Salisbury DF, Morra L, Shenton ME, Niznikiewicz MA. A prospective longitudinal volumetric MRI study of superior temporal gyrus gray matter and amygdale-hippocampal complex in chronic schizophrenia. Schizophr Res. 2009;113:84–94.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Takahashi T, Suzuki M, Zhou SY, Tanino R, Nakamura K, Kawasaki Y, Seto H, Kurachi M. A follow-up MRI study of the superior temporal subregions in schizotypal disorder and first-episode schizophrenia. Schizophr Res. 2010;119:65–74.

    Article  PubMed  Google Scholar 

  64. van Haren NE, Hulshoff Pol HE, Schnack HG, Cahn W, Mandl RC, Collins DL, Evans AC, Kahn RS. Focal gray matter changes in schizophrenia across the course of the illness: a 5-year follow-up study. Neuropsychopharmacology. 2007;32:2057–66.

    Article  PubMed  Google Scholar 

  65. Chua SE, Cheung C, Cheung V, Tsang JT, Chen EY, Wong JC, Cheung JP, Yip L, Tai KS, Suckling J, McAlonan GM. Cerebral grey, white matter and csf in never-medicated, first-episode schizophrenia. Schizophr Res. 2007;89(1–3):12–21.

    Article  PubMed  Google Scholar 

  66. Ebdrup BH, Glenthøj B, Rasmussen H, Aggernaes B, Langkilde AR, Paulson OB, Lublin H, Skimminge A, Baaré W. Hippocampal and caudate volume reductions in antipsychotic-naive first-episode schizophrenia. J Psychiatry Neurosci. 2010;35(2):95–104.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Morgan KD, Dazzan P, Orr KG, Hutchinson G, Chitnis X, Suckling J, Lythgoe D, Pollock SJ, Rossell S, Shapleske J, Fearon P, Morgan C, David A, McGuire PK, Jones PB, Leff J, Murray RM. Grey matter abnormalities in first-episode schizophrenia and affective psychosis. Br J Psychiatry Suppl. 2007;51:s111–6.

    Article  PubMed  Google Scholar 

  68. Kaspárek T, Prikryl R, Mikl M, Schwarz D, Cesková E, Krupa P. Prefrontal but not temporal grey matter changes in males with first-episode schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry. 2007;31(1):151–7.

    Article  Google Scholar 

  69. Meisenzahl EM, Koutsouleris N, Bottlender R, Scheuerecker J, Jäger M, Teipel SJ, Holzinger S, Frodl T, Preuss U, Schmitt G, Burgermeister B, Reiser M, Born C, Möller HJ. Structural brain alterations at different stages of schizophrenia: a voxel-based morphometric study. Schizophr Res. 2008;104(1–3):44–60.

    Article  CAS  PubMed  Google Scholar 

  70. Lui S, Deng W, Huang X, Jiang L, Ma X, Chen H, Zhang T, Li X, Li D, Zou L, Tang H, Zhou XJ, Mechelli A, Collier DA, Sweeney JA, Li T, Gong Q. Association of cerebral deficits with clinical symptoms in antipsychotic-naive first-episode schizophrenia: an optimized voxel-based morphometry and resting state functional connectivity study. Am J Psychiatry. 2009;166(2):196–205.

    Article  PubMed  Google Scholar 

  71. Vita A, De Peri L, Silenzi C, Dieci M. Brain morphology in first-episode schizophrenia: a meta-analysis of quantitative magnetic resonance imaging studies. Schizophr Res. 2006;82(1):75–88.

    Article  CAS  PubMed  Google Scholar 

  72. Steen RG, Mull C, McClure R, Hamer RM, Lieberman JA. Brain volume in first-episode schizophrenia: systematic review and meta-analysis of magnetic resonance imaging studies. Br J Psychiatry. 2006;188:510–8.

    Article  PubMed  Google Scholar 

  73. Fraguas D, Díaz-Caneja CM, Pina-Camacho L, Janssen J, Arango C. Progressive brain changes in children and adolescents with early-onset psychosis: a meta-analysis of longitudinal MRI studies. Schizophr Res. 2016;173(3):132–9.

    Article  PubMed  Google Scholar 

  74. Gutiérrez-Galve L, Chu EM, Leeson VC, Price G, Barnes TR, Joyce EM, Ron MA. A longitudinal study of cortical changes and their cognitive correlates in patients followed up after first-episode psychosis. Psychol Med. 2015;45(1):205–16.

    Article  PubMed  Google Scholar 

  75. Théberge J, Williamson KE, Aoyama N, Drost DJ, Manchanda R, Malla AK, Northcott S, Menon RS, Neufeld RW, Rajakumar N, Pavlosky W, Densmore M, Schaefer B, Williamson PC. Longitudinal grey-matter and glutamatergic losses in first-episode schizophrenia. Br J Psychiatry. 2007;191:325–34.

    Article  PubMed  Google Scholar 

  76. Koo MS, Levitt JJ, Salisbury DF, Nakamura M, Shenton ME, McCarley RW. A cross-sectional and longitudinal magnetic resonance imaging study of cingulate gyrus gray matter volume abnormalities in first-episode schizophrenia and first-episode affective psychosis. Arch Gen Psychiatry. 2008;65(7):746–60.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Nakamura M, Salisbury DF, Hirayasu Y, Bouix S, Pohl KM, Yoshida T, Koo MS, Shenton ME, McCarley RW. Neocortical gray matter volume in first-episode schizophrenia and first-episode affective psychosis: a cross-sectional and longitudinal MRI study. Biol Psychiatry. 2007;62(7):773–83.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Pantelis C, Velakoulis D, McGorry PD, Wood SJ, Suckling J, Phillips LJ, Yung AR, Bullmore ET, Brewer W, Soulsby B, Desmond P, McGuire PK. Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet. 2003;361(9354):281–8.

    Article  PubMed  Google Scholar 

  79. Borgwardt SJ, McGuire PK, Aston J, Berger G, Dazzan P, Gschwandtner U, Pflüger M, D’Souza M, Radue EW, Riecher-Rössler A. Structural brain abnormalities in individuals with an at-risk mental state who later develop psychosis. Br J Psychiatry Suppl. 2007;51:s69–75.

    Article  PubMed  Google Scholar 

  80. Nenadic I, Dietzek M, Schönfeld N, Lorenz C, Gussew A, Reichenbach JR, Sauer H, Gaser C, Smesny S. Brain structure in people at ultra-high risk of psychosis, patients with first-episode schizophrenia, and healthy controls: a VBM study. Schizophr Res. 2015;161(2–3):169–76.

    Article  PubMed  Google Scholar 

  81. Cannon TD, Chung Y, He G, Sun D, Jacobson A, van Erp TG, McEwen S, Addington J, Bearden CE, Cadenhead K, Cornblatt B, Mathalon DH, McGlashan T, Perkins D, Jeffries C, Seidman LJ, Tsuang M, Walker E, Woods SW, Heinssen R, North American Prodrome Longitudinal Study Consortium. Progressive reduction in cortical thickness as psychosis develops: a multisite longitudinal neuroimaging study of youth at elevated clinical risk. Biol Psychiatry. 2015;77(2):147–57.

    Article  PubMed  Google Scholar 

  82. Palaniyappan L, Balain V, Liddle PF. The neuroanatomy of psychotic diathesis: a meta-analytic review. J Psychiatr Res. 2012;46(10):1249–56.

    Article  PubMed  Google Scholar 

  83. Brans RG, van Haren NE, van Baal GC, Staal WG, Schnack HG, Kahn RS, Hulshoff Pol HE. Longitudinal MRI study in schizophrenia patients and their healthy siblings. Br J Psychiatry. 2008;193(5):422–3.

    Article  PubMed  Google Scholar 

  84. Peters BD, Blaas J, de Haan L. Diffusion tensor imaging in the early phase of schizophrenia: what have we learned? J Psychiatr Res. 2010;44(15):993–1004.

    Article  PubMed  Google Scholar 

  85. Price G, Bagary MS, Cercignani M, Altmann DR, Ron MA. The corpus callosum in first episode schizophrenia: a diffusion tensor imaging study. J Neurol Neurosurg Psychiatry. 2005;76(4):585–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Price G, Cercignani M, Parker GJ, Altmann DR, Barnes TR, Barker GJ, Joyce EM, Ron MA. White matter tracts in first-episode psychosis: a DTI tractography study of the uncinate fasciculus. NeuroImage. 2008;39(3):949–55.

    Article  PubMed  Google Scholar 

  87. Friedman JI, Tang C, Carpenter D, Buchsbaum M, Schmeidler J, Flanagan L, Golembo S, Kanellopoulou I, Ng J, Hof PR, Harvey PD, Tsopelas ND, Stewart D, Davis KL. Diffusion tensor imaging findings in first-episode and chronic schizophrenia patients. Am J Psychiatry. 2008;165(8):1024–32.

    Article  PubMed  Google Scholar 

  88. Qiu A, Zhong J, Graham S, Chia MY, Sim K. Combined analyses of thalamic volume, shape and white matter integrity in first-episode schizophrenia. NeuroImage. 2009;47(4):1163–71.

    Article  PubMed  Google Scholar 

  89. White T, Magnotta VA, Bockholt HJ, Williams S, Wallace S, Ehrlich S, Mueller BA, Ho BC, Jung RE, Clark VP, Lauriello J, Bustillo JR, Schulz SC, Gollub RL, Andreasen NC, Calhoun VD, Lim KO. Global white matter abnormalities in schizophrenia: a multisite diffusion tensor imaging study. Schizophr Bull. 2011;37(1):222–32.

    Article  PubMed  Google Scholar 

  90. Mendelsohn A, Strous RD, Bleich M, Assaf Y, Hendler T. Regional axonal abnormalities in first episode schizophrenia: preliminary evidence based on high b-value diffusion-weighted imaging. Psychiatry Res. 2006;146(3):223–9.

    Article  PubMed  Google Scholar 

  91. Chan WY, Yang GL, Chia MY, Lau IY, Sitoh YY, Nowinski WL, Sim K. White matter abnormalities in first-episode schizophrenia: a combined structural MRI and DTI study. Schizophr Res. 2010;119(1–3):52–60.

    Article  PubMed  Google Scholar 

  92. Mathalon DH, Sullivan EV, Lim KO, Pfefferbaum A. Progressive brain volume changes and the clinical course of schizophrenia in men: a longitudinal magnetic resonance imaging study. Arch Gen Psychiatry. 2001;58(2):148–57.

    Article  CAS  PubMed  Google Scholar 

  93. Veijola J, Guo JY, Moilanen JS, Jääskeläinen E, Miettunen J, Kyllönen M, Haapea M, Huhtaniska S, Alaräisänen A, Mäki P, Kiviniemi V, Nikkinen J, Starck T, Remes JJ, Tanskanen P, Tervonen O, Wink AM, Kehagia A, Suckling J, Kobayashi H, Barnett JH, Barnes A, Koponen HJ, Jones PB, Isohanni M, Murray GK. Longitudinal changes in total brain volume in schizophrenia: relation to symptom severity, cognition and antipsychotic medication. PLoS One. 2014;9(7):e101689.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Schaufelberger MS, Lappin JM, Duran FL, Rosa PG, Uchida RR, Santos LC, Murray RM, PK MG, Scazufca M, Menezes PR, Busatto GF. Lack of progression of brain abnormalities in first-episode psychosis: a longitudinal magnetic resonance imaging study. Psychol Med. 2011;41(8):1677–89.

    Article  CAS  PubMed  Google Scholar 

  95. Haukvik UK, Hartberg CB, Nerland S, Jørgensen KN, Lange EH, Simonsen C, Nesvåg R, Dale AM, Andreassen OA, Melle I, Agartz I. No progressive brain changes during a 1-year follow-up of patients with first-episode psychosis. Psychol Med. 2016;46(3):589–98.

    Article  CAS  PubMed  Google Scholar 

  96. Heilbronner U, Samara M, Leucht S, Falkai P, Schulze TG. The longitudinal course of schizophrenia across the lifespan: clinical, cognitive, and neurobiological aspects. Harv Rev Psychiatry. 2016;24(2):118–28.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Dietsche B, Kircher T, Falkenberg I. Structural brain changes in schizophrenia at different stages of the illness: a selective review of longitudinal magnetic resonance imaging studies. Aust N Z J Psychiatry. 2017;51(5):500–8.

    Article  PubMed  Google Scholar 

  98. Weinberger DR, Radulescu E. Finding the elusive psychiatric “lesion” with 21st-century neuroanatomy: a note of caution. Am J Psychiatry. 2016;173(1):27–33.

    Article  PubMed  Google Scholar 

  99. Janicak PG. Acute management of schizophrenia. In: Janicak PG, Marder SR, Tandon R, Goldman M, editors. Schizophrenia: recent advances in diagnosis and treatment. New York: Springer; 2014.

    Chapter  Google Scholar 

  100. Mauri MC, Paletta S, Maffini M, Colasanti A, Dragogna F, Di Pace C, Altamura AC. Clinical pharmacology of atypical antipsychotics: an update. EXCLI J. 2014;13:1163–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Fleischhacker WW. Antipsychotic drugs. In: Fleischhacker WW, Stolerman IP, editors. Encyclopedia of schizophrenia: focus on management options. London: Springer; 2011.

    Chapter  Google Scholar 

  102. Horacek J, Bubenikova-Valesova V, Kopecek M, Palenicek T, Dockery C, Mohr P, Höschl C. Mechanism of action of atypical antipsychotic drugs and the neurobiology of schizophrenia. CNS Drugs. 2006;20(5):389–409.

    Article  CAS  PubMed  Google Scholar 

  103. Miyamoto S, Duncan GE, Marx CE, Lieberman JA. Treatments for schizophrenia: a critical review of pharmacology and mechanisms of action of antipsychotic drugs. Mol Psychiatry. 2005;10(1):79–104.

    Article  CAS  PubMed  Google Scholar 

  104. Howes OD, Egerton A, Allan V, McGuire P, Stokes P, Kapur S. Mechanisms underlying psychosis and antipsychotic treatment response in schizophrenia: insights from PET and SPECT imaging. Curr Pharm Des. 2009;15(22):2550–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Howes O, McCutcheon R, Stone J. Glutamate and dopamine in schizophrenia: an update for the 21st century. J Psychopharmacol. 2015;29(2):97–115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Stone JM, Davis JM, Leucht S, Pilowsky LS. Cortical dopamine D2/D3 receptors are a common site of action for antipsychotic drugs – an original patient data meta-analysis of the SPECT and PET in vivo receptor imaging literature. Schizophr Bull. 2009;35(4):789–97.

    Article  PubMed  Google Scholar 

  107. Farde L, Nordstrom AL, Wiesel FA, Pauli S, Halldin C, Sedvall G. Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Relation to extrapyramidal side effects. Arch Gen Psychiatry. 1992;49:538–44.

    Article  CAS  PubMed  Google Scholar 

  108. Grace AA. The depolarization block hypothesis of neuroleptic action: implications for the etiology and treatment of schizophrenia. J Neural Transm. 1992;36:91–131.

    CAS  Google Scholar 

  109. Miyamoto S, Lieberman JA, Fleischhacker WW, Aoba A, Marder SR. Antipsychotic drugs. In: Tasman A, Kay J, Lieberman JA, editors. Psychiatry. 2nd ed. Chichester: Wiley; 2003.

    Google Scholar 

  110. Remington G, Kapur S. D2 and 5-HT2 receptor effects of antipsychotics: bridging basic and clinical findings using PET. J Clin Psychiatry. 1999;60(Suppl 10):15–9.

    CAS  PubMed  Google Scholar 

  111. Duncan GE, Zorn S, Lieberman JA. Mechanisms of typical and atypical antipsychotic drug action in relation to dopamine and NMDA receptor hypofunction hypotheses of schizophrenia. Mol Psychiatry. 1999;4:418–28.

    Article  CAS  PubMed  Google Scholar 

  112. Kapur S, Seeman P. Does fast dissociation from the dopamine D2 receptor explain the action of atypical antipsychotics? A new hypothesis. Am J Psychiatry. 2001;158:360–9.

    Article  CAS  PubMed  Google Scholar 

  113. Lieberman JA. Understanding the mechanism of action of atypical antipsychotic drugs: a review of compounds in use and development. Br J Psychiatry. 1993;163:7–18.

    Article  Google Scholar 

  114. Meltzer HY, Matsubara S, Lee JC. Classification of typical and atypical antipsychotic drugs on the basis of dopamine D1, D2 and Serotonin2 pKi values. J Pharmacol Exp Ther. 1989;251:238–46.

    CAS  PubMed  Google Scholar 

  115. Meltzer HY, Li Z, Kaneda Y, Ichikawa J. Serotonin receptors: their key role in drugs to treat schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry. 2003;27:1159–72.

    Article  CAS  Google Scholar 

  116. Seeman P. Atypical antipsychotics: mechanism of action. Can J Psychiatry. 2002;47:27–38.

    PubMed  Google Scholar 

  117. Stahl SM. Stahl’s essential psychopharmacology. 4th ed. New York: Cambridge University Press; 2013.

    Google Scholar 

  118. Abi-Dargham A, Meyer JM. Schizophrenia: the role of dopamine and glutamate. J Clin Psychiatry. 2014;75(3):274–5.

    Article  PubMed  Google Scholar 

  119. Lieberman JA, Tollefson GD, Charles C, Zipursky R, Sharma T, Kahn RS, Keefe RS, Green AI, Gur RE, McEvoy J, Perkins D, Hamer RM, Gu H, Tohen M, HGDH Study Group. Antipsychotic drug effects on brain morphology in first-episode psychosis. Arch Gen Psychiatry. 2005;62(4):361–70.

    Article  CAS  PubMed  Google Scholar 

  120. Vita A, De Peri L. The effects of antipsychotic treatment on cerebral structure and function in schizophrenia. Int Rev Psychiatry. 2007;19(4):429–36.

    Article  PubMed  Google Scholar 

  121. Smieskova R, Fusar-Poli P, Allen P, Bendfeldt K, Stieglitz RD, Drewe J, Radue EW, McGuire PK, Riecher-Rössler A, Borgwardt SJ. The effects of antipsychotics on the brain: what have we learnt from structural imaging of schizophrenia? -- A systematic review. Curr Pharm Des. 2009;15(22):2535–49.

    Article  CAS  PubMed  Google Scholar 

  122. Navari S, Dazzan P. Do antipsychotic drugs affect brain structure? A systematic and critical review of MRI findings. Psychol Med. 2009;39(11):1763–77.

    Article  CAS  PubMed  Google Scholar 

  123. Ho BC, Andreasen NC, Ziebell S, Pierson R, Magnotta V. Long-term antipsychotic treatment and brain volumes: a longitudinal study of first-episode schizophrenia. Arch Gen Psychiatry. 2011;68(2):128–37.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Aderhold V, Weinmann S, Hägele C, Heinz A. Frontal brain volume reduction due to antipsychotic drugs? Nervenarzt. 2015;86(3):302–23.

    Article  CAS  PubMed  Google Scholar 

  125. Moncrieff J, Leo J. A systematic review of the effects of antipsychotic drugs on brain volume. Psychol Med. 2010;40(9):1409–22.

    Article  CAS  PubMed  Google Scholar 

  126. Ebdrup BH, Nørbak H, Borgwardt S, Glenthøj B. Volumetric changes in the basal ganglia after antipsychotic monotherapy: a systematic review. Curr Med Chem. 2013;20(3):438–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Torres US, Portela-Oliveira E, Borgwardt S, Busatto GF. Structural brain changes associated with antipsychotic treatment in schizophrenia as revealed by voxel-based morphometric MRI: an activation likelihood estimation meta-analysis. BMC Psychiatry. 2013;13:342.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Ren W, Lui S, Deng W, Li F, Li M, Huang X, Wang Y, Li T, Sweeney JA, Gong Q. Anatomical and functional brain abnormalities in drug-naive first-episode schizophrenia. Am J Psychiatry. 2013;170(11):1308–16.

    Article  PubMed  Google Scholar 

  129. Leung M, Cheung C, Yu K, Yip B, Sham P, Li Q, Chua S, McAlonan G. Gray matter in first-episode schizophrenia before and after antipsychotic drug treatment. Anatomical likelihood estimation meta-analyses with sample size weighting. Schizophr Bull. 2011;37(1):199–211.

    Article  PubMed  Google Scholar 

  130. Goozée R, Handley R, Kempton MJ, Dazzan P. A systematic review and meta-analysis of the effects of antipsychotic medications on regional cerebral blood flow (rCBF) in schizophrenia: association with response to treatment. Neurosci Biobehav Rev. 2014;43:118–36.

    Article  PubMed  CAS  Google Scholar 

  131. van Haren NE, Schnack HG, Cahn W, van den Heuvel MP, Lepage C, Collins L, Evans AC, Hulshoff Pol HE, Kahn RS. Changes in cortical thickness during the course of illness in schizophrenia. Arch Gen Psychiatry. 2011;68(9):871–80.

    Article  PubMed  Google Scholar 

  132. Andreasen NC, Liu D, Ziebell S, Vora A, Ho BC. Relapse duration, treatment intensity, and brain tissue loss in schizophrenia: a prospective longitudinal MRI study. Am J Psychiatry. 2013;170(6):609–15.

    Article  PubMed  Google Scholar 

  133. Torres US, Duran FL, Schaufelberger MS, Crippa JA, Louzã MR, Sallet PC, Kanegusuku CY, Elkis H, Gattaz WF, Bassitt DP, Zuardi AW, Hallak JE, Leite CC, Castro CC, Santos AC, Murray RM, Busatto GF. Patterns of regional gray matter loss at different stages of schizophrenia: a multisite, cross-sectional VBM study in first-episode and chronic illness. Neuroimage Clin. 2016;12:1–15.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Moilanen J, Huhtaniska S, Haapea M, Jääskeläinen E, Veijola J, Isohanni M, Koponen H, Miettunen J. Brain morphometry of individuals with schizophrenia with and without antipsychotic medication – The Northern Finland Birth Cohort 1966 Study. Eur Psychiatry. 2015;30(5):598–605.

    Article  CAS  PubMed  Google Scholar 

  135. Roiz-Santianez R, Tordesillas-Gutierrez D, de la Foz Ortiz-Garcia V, Ayesa-Arriola R, Gutierrez A, Tabares-Seisdedos R, Vazquez-Barquero JL, Crespo-Facorro B. Effect of antipsychotic drugs on cortical thickness. A randomized controlled one-year follow-up study of haloperidol, risperidone and olanzapine. Schizophr Res. 2012;141(1):22–8.

    Article  PubMed  Google Scholar 

  136. Dorph-Petersen KA, Pierri JN, Perel JM, Sun Z, Sampson AR, Lewis DA. The influence of chronic exposure to antipsychotic medications on brain size before and after tissue fixation: a comparison of haloperidol and olanzapine in macaque monkeys. Neuropsychopharmacology. 2005;30:1649–61.

    Article  CAS  PubMed  Google Scholar 

  137. Takahashi T, Wood SJ, Soulsby B, McGorry PD, Tanino R, Suzuki M, Velakoulis D, Pantelis C. Follow-up MRI study of the insular cortex in first-episode psychosis and chronic schizophrenia. Schizophr Res. 2009;108(1–3):49–56.

    Article  PubMed  Google Scholar 

  138. Keshavan MS, Bagwell WW, Haas GL, Sweeney JA, Schooler NR, Pettegrew JW. Changes in caudate volume with neuroleptic treatment. Lancet. 1994;344(8934):1434.

    Article  CAS  PubMed  Google Scholar 

  139. Chakos MH, Lieberman JA, Bilder RM, Borenstein M, Lerner G, Bogerts B, Wu H, Kinon B, Ashtari M. Increase in caudate nuclei volumes of first-episode schizophrenic patients taking antipsychotic drugs. Am J Psychiatry. 1994;151(10):1430–6.

    Article  CAS  PubMed  Google Scholar 

  140. Guo JY, Huhtaniska S, Miettunen J, Jääskeläinen E, Kiviniemi V, Nikkinen J, Moilanen J, Haapea M, Mäki P, Jones PB, Veijola J, Isohanni M, Murray GK. Longitudinal regional brain volume loss in schizophrenia: relationship to antipsychotic medication and change in social function. Schizophr Res. 2015;168(1–2):297–304.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Gur RE, Maany V, Mozley PD, Swanson C, Bilker W, Gur RC. Subcortical MRI volumes in neuroleptic-naive and treated patients with schizophrenia. Am J Psychiatry. 1998;155(12):1711–7.

    Article  CAS  PubMed  Google Scholar 

  142. Tomelleri L, Jogia J, Perlini C, Bellani M, Ferro A, Rambaldelli G, Tansella M, Frangou S, Brambilla P, Neuroimaging Network of the ECNP networks initiative. Brain structural changes associated with chronicity and antipsychotic treatment in schizophrenia. Eur Neuropsychopharmacol. 2009;19(12):835–40.

    Article  CAS  PubMed  Google Scholar 

  143. Garver DL, Holcomb JA, Christensen JD. Cerebral cortical gray expansion associated with two second-generation antipsychotics. Biol Psychiatry. 2005;58(1):62–6.

    Article  CAS  PubMed  Google Scholar 

  144. McClure RK, Carew K, Greeter S, Maushauer E, Steen G, Weinberger DR. Absence of regional brain volume change in schizophrenia associated with short-term atypical antipsychotic treatment. Schizophr Res. 2008;98(1–3):29–39.

    Article  PubMed  Google Scholar 

  145. Thompson PM, Bartzokis G, Hayashi KM, Klunder AD, Lu PH, Edwards N, Hong MS, Yu M, Geaga JA, Toga AW, Charles C, Perkins DO, McEvoy J, Hamer RM, Tohen M, Tollefson GD, Lieberman JA, HGDH Study Group. Time-lapse mapping of cortical changes in schizophrenia with different treatments. Cereb Cortex. 2009;19(5):1107–23.

    Article  PubMed  Google Scholar 

  146. Ho BC, Andreasen NC, Dawson JD, Wassink TH. Association between brain-derived neurotrophic factor Val66Met gene polymorphism and progressive brain volume changes in schizophrenia. Am J Psychiatry. 2007;164(12):1890–9.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Tauscher-Wisniewski S, Tauscher J, Logan J, Christensen BK, Mikulis DJ, Zipursky RB. Caudate volume changes in first episode psychosis parallel the effects of normal aging: a 5-year follow-up study. Schizophr Res. 2002;58(2-3):185–8.

    Article  PubMed  Google Scholar 

  148. Ebdrup BH, Skimminge A, Rasmussen H, Aggernaes B, Oranje B, Lublin H, Baaré W, Glenthøj B. Progressive striatal and hippocampal volume loss in initially antipsychotic-naive, first-episode schizophrenia patients treated with quetiapine: relationship to dose and symptoms. Int J Neuropsychopharmacol. 2011;14(1):69–82.

    Article  CAS  PubMed  Google Scholar 

  149. Goghari VM, Smith GN, Honer WG, Kopala LC, Thornton AE, Su W, Macewan GW, Lang DJ. Effects of eight weeks of atypical antipsychotic treatment on middle frontal thickness in drug-naive first-episode psychosis patients. Schizophr Res. 2013;149(1–3):149–55.

    Article  PubMed  Google Scholar 

  150. Ansell BR, Dwyer DB, Wood SJ, Bora E, Brewer WJ, Proffitt TM, Velakoulis D, McGorry PD, Pantelis C. Divergent effects of first-generation and second-generation antipsychotics on cortical thickness in first-episode psychosis. Psychol Med. 2015;45(3):515–27.

    Article  CAS  PubMed  Google Scholar 

  151. Crespo-Facorro B, Roiz-Santiáñez R, Pérez-Iglesias R, Pelayo-Terán JM, Rodríguez-Sánchez JM, Tordesillas-Gutiérrez D, Ramírez M, Martínez O, Gutiérrez A, de Lucas EM, Vázquez-Barquero JL. Effect of antipsychotic drugs on brain morphometry. A randomized controlled one-year follow-up study of haloperidol, risperidone and olanzapine. Prog Neuro-Psychopharmacol Biol Psychiatry. 2008;32(8):1936–43.

    Article  CAS  Google Scholar 

  152. Jørgensen KN, Nesvåg R, Gunleiksrud S, Raballo A, Jönsson EG, Agartz I. First- and second-generation antipsychotic drug treatment and subcortical brain morphology in schizophrenia. Eur Arch Psychiatry Clin Neurosci. 2016;266(5):451–60.

    Article  PubMed  Google Scholar 

  153. Bartlett EJ, Brodie JD, Simkowitz P, Schlösser R, Dewey SL, Lindenmayer JP, Rusinek H, Wolkin A, Cancro R, Schiffer W. Effect of a haloperidol challenge on regional brain metabolism in neuroleptic-responsive and nonresponsive schizophrenic patients. Am J Psychiatry. 1998;155(3):337–43.

    Article  CAS  PubMed  Google Scholar 

  154. Lahti AC, Weiler MA, Medoff DR, Tamminga CA, Holcomb HH. Functional effects of single dose first- and second-generation antipsychotic administration in subjects with schizophrenia. Psychiatry Res. 2005;139(1):19–30.

    Article  CAS  PubMed  Google Scholar 

  155. Lahti AC, Holcomb HH, Weiler MA, Medoff DR, Tamminga CA. Functional effects of antipsychotic drugs: comparing clozapine with haloperidol. Biol Psychiatry. 2003;53(7):601–8.

    Article  CAS  PubMed  Google Scholar 

  156. Bartlett EJ, Wolkin A, Brodie JD, Laska EM, Wolf AP, Sanfilipo M. Importance of pharmacologic control in PET studies: effects of thiothixene and haloperidol on cerebral glucose utilization in chronic schizophrenia. Psychiatry Res. 1991;40(2):115–24.

    Article  CAS  PubMed  Google Scholar 

  157. Buchsbaum MS, Potkin SG, Siegel BV Jr, Lohr J, Katz M, Gottschalk LA, Gulasekaram B, Marshall JF, Lottenberg S, Teng CY, Abel L, Plon L, Bunney WE. Striatal metabolic rate and clinical response to neuroleptics in schizophrenia. Arch Gen Psychiatry. 1992;49(12):966–74.

    Article  CAS  PubMed  Google Scholar 

  158. Miller DD, Rezai K, Alliger R, Andreasen NC. The effect of antipsychotic medication on relative cerebral blood perfusion in schizophrenia: assessment with technetium-99m hexamethyl-propyleneamine oxime single photon emission computed tomography. Biol Psychiatry. 1997;41(5):550–9.

    Article  CAS  PubMed  Google Scholar 

  159. Miller DD, Andreasen NC, O’Leary DS, Watkins GL, Boles Ponto LL, Hichwa RD. Comparison of the effects of risperidone and haloperidol on regional cerebral blood flow in schizophrenia. Biol Psychiatry. 2001;49(8):704–15.

    Article  CAS  PubMed  Google Scholar 

  160. Buchsbaum MS, Wu JC, DeLisi LE, Holcomb HH, Hazlett E, Cooper-Langston K, Kessler R. Positron emission tomography studies of basal ganglia and somatosensory cortex neuroleptic drug effects: differences between normal controls and schizophrenic patients. Biol Psychiatry. 1987;22(4):479–94.

    Article  CAS  PubMed  Google Scholar 

  161. Buchsbaum MS, Haznedar MM, Aronowitz J, Brickman AM, Newmark RE, Bloom R, Brand J, Goldstein KE, Heath D, Starson M, Hazlett EA. FDG-PET in never previously medicated psychotic adolescents treated with olanzapine or haloperidol. Schizophr Res. 2007;94(1–3):293–305.

    Article  PubMed  Google Scholar 

  162. Scottish Schizophrenia Research Group. Regional cerebral blood flow in first-episode schizophrenia patients before and after antipsychotic drug treatment. Acta Psychiatr Scand. 1998;97(6):440–9.

    Article  Google Scholar 

  163. Desco M, Gispert JD, Reig S, Sanz J, Pascau J, Sarramea F, Benito C, Santos A, Palomo T, Molina V. Cerebral metabolic patterns in chronic and recent-onset schizophrenia. Psychiatry Res. 2003;122(2):125–35.

    Article  PubMed  Google Scholar 

  164. Corson PW, O’Leary DS, Miller DD, Andreasen NC. The effects of neuroleptic medications on basal ganglia blood flow in schizophreniform disorders: a comparison between the neuroleptic-naïve and medicated states. Biol Psychiatry. 2002;52(9):855–962.

    Article  CAS  PubMed  Google Scholar 

  165. Borghammer P, Hansen SB, Eggers C, Chakravarty M, Vang K, Aanerud J, Hilker R, Heiss WD, Rodell A, Munk OL, Keator D, Gjedde A. Glucose metabolism in small subcortical structures in Parkinson’s disease. Acta Neurol Scand. 2012;125(5):303–10.

    Article  PubMed  Google Scholar 

  166. Berman I, Merson A, Sison C, Allan E, Schaefer C, Loberboym M, Losonczy MF. Regional cerebral blood flow changes associated with risperidone treatment in elderly schizophrenia patients: a pilot study. Psychopharmacol Bull. 1996;32(1):95–100.

    CAS  PubMed  Google Scholar 

  167. Liddle PF, Lane CJ, Ngan ET. Immediate effects of risperidone on cortico-striato-thalamic loops and the hippocampus. Br J Psychiatry. 2000;177:402–7.

    Article  CAS  PubMed  Google Scholar 

  168. Ngan ET, Lane CJ, Ruth TJ, Liddle PF. Immediate and delayed effects of risperidone on cerebral metabolism in neuroleptic naïve schizophrenic patients: correlations with symptom change. J Neurol Neurosurg Psychiatry. 2002;72(1):106–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Molina V, Tamayo P, Montes C, De Luxán A, Martin C, Rivas N, Sancho C, Domínguez-Gil A. Clozapine may partially compensate for task-related brain perfusion abnormalities in risperidone-resistant schizophrenia patients. Prog Neuro-Psychopharmacol Biol Psychiatry. 2008;32(4):948–54.

    Article  CAS  Google Scholar 

  170. Molina V, Gispert JD, Reig S, Pascau J, Martínez R, Sanz J, Palomo T, Desco M. Olanzapine-induced cerebral metabolic changes related to symptom improvement in schizophrenia. Int Clin Psychopharmacol. 2005;20(1):13–8.

    Article  PubMed  Google Scholar 

  171. Gonul AS, Kula M, Sofuoglu S, Tutus A, Esel E. Tc-99 HMPAO SPECT study of regional cerebral blood flow in olanzapine-treated schizophrenic patients. Eur Arch Psychiatry Clin Neurosci. 2003;253(1):29–33.

    Article  PubMed  Google Scholar 

  172. Molina V, Gispert JD, Reig S, Sanz J, Pascau J, Santos A, Desco M, Palomo T. Cerebral metabolic changes induced by clozapine in schizophrenia and related to clinical improvement. Psychopharmacology. 2005;178(1):17–26.

    Article  CAS  PubMed  Google Scholar 

  173. Potkin SG, Basile VS, Jin Y, Masellis M, Badri F, Keator D, Wu JC, Alva G, Carreon DT, Bunney WE Jr, Fallon JH, Kennedy JL. D1 receptor alleles predict PET metabolic correlates of clinical response to clozapine. Mol Psychiatry. 2003;8(1):109–13.

    Article  CAS  PubMed  Google Scholar 

  174. Abbott CC, Jaramillo A, Wilcox CE, Hamilton DA. Antipsychotic drug effects in schizophrenia: a review of longitudinal fMRI investigations and neural interpretations. Curr Med Chem. 2013;20(3):428–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Kani AS, Shinn AK, Lewandowski KE, Öngür D. Converging effects of diverse treatment modalities on frontal cortex in schizophrenia: a review of longitudinal functional magnetic resonance imaging studies. J Psychiatr Res. 2017;84:256–76.

    Article  PubMed  Google Scholar 

  176. Meisenzahl EM, Scheuerecker J, Zipse M, Ufer S, Wiesmann M, Frodl T, Koutsouleris N, Zetzsche T, Schmitt G, Riedel M, Spellmann I, Dehning S, Linn J, Brückmann H, Möller HJ. Effects of treatment with the atypical neuroleptic quetiapine on working memory function: a functional MRI follow-up investigation. Eur Arch Psychiatry Clin Neurosci. 2006;256(8):522–31.

    Article  CAS  PubMed  Google Scholar 

  177. Jones HM, Brammer MJ, O’Toole M, Taylor T, Ohlsen RI, Brown RG, Purvis R, Williams S, Pilowsky LS. Cortical effects of quetiapine in first-episode schizophrenia: a preliminary functional magnetic resonance imaging study. Biol Psychiatry. 2004;56(12):938–42.

    Article  CAS  PubMed  Google Scholar 

  178. Honey GD, Bullmore ET, Soni W, Varatheesan M, Williams SC, Sharma T. Differences in frontal cortical activation by a working memory task after substitution of risperidone for typical antipsychotic drugs in patients with schizophrenia. Proc Natl Acad Sci U S A. 1999;96(23):13432–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Schlagenhauf F, Dinges M, Beck A, Wüstenberg T, Friedel E, Dembler T, Sarkar R, Wrase J, Gallinat J, Juckel G, Heinz A. Switching schizophrenia patients from typical neuroleptics to aripiprazole: effects on working memory dependent functional activation. Schizophr Res. 2010;118(1–3):189–200.

    Article  PubMed  Google Scholar 

  180. Schlagenhauf F, Wüstenberg T, Schmack K, Dinges M, Wrase J, Koslowski M, Kienast T, Bauer M, Gallinat J, Juckel G, Heinz A. Switching schizophrenia patients from typical neuroleptics to olanzapine: effects on BOLD response during attention and working memory. Eur Neuropsychopharmacol. 2008;18(8):589–99.

    Article  CAS  PubMed  Google Scholar 

  181. Snitz BE, MacDonald A 3rd, Cohen JD, Cho RY, Becker T, Carter CS. Lateral and medial hypofrontality in first-episode schizophrenia: functional activity in a medication-naive state and effects of short-term atypical antipsychotic treatment. Am J Psychiatry. 2005;162(12):2322–9.

    Article  PubMed  Google Scholar 

  182. van Veelen NM, Vink M, Ramsey NF, van Buuren M, Hoogendam JM, Kahn RS. Prefrontal lobe dysfunction predicts treatment response in medication-naive first-episode schizophrenia. Schizophr Res. 2011;129(2–3):156–62.

    Article  PubMed  Google Scholar 

  183. Lui S, Li T, Deng W, Jiang L, Wu Q, Tang H, Yue Q, Huang X, Chan RC, Collier DA, Meda SA, Pearlson G, Mechelli A, Sweeney JA, Gong Q. Short-term effects of antipsychotic treatment on cerebral function in drug-naive first-episode schizophrenia revealed by “resting state” functional magnetic resonance imaging. Arch Gen Psychiatry. 2010;67(8):783–92.

    Article  PubMed  Google Scholar 

  184. Davidson M, Galderisi S, Weiser M, Werbeloff N, Fleischhacker WW, Keefe RS, Boter H, Keet IP, Prelipceanu D, Rybakowski JK, Libiger J, Hummer M, Dollfus S, López-Ibor JJ, Hranov LG, Gaebel W, Peuskens J, Lindefors N, Riecher-Rössler A, Kahn RS. Cognitive effects of antipsychotic drugs in first-episode schizophrenia and schizophreniform disorder: a randomized, open-label clinical trial (EUFEST). Am J Psychiatry. 2009;166(6):675–82.

    Article  PubMed  Google Scholar 

  185. Keefe RS, Bilder RM, Davis SM, Harvey PD, Palmer BW, Gold JM, Meltzer HY, Green MF, Capuano G, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO, Davis CE, Hsiao JK, Lieberman JA, CATIE Investigators; Neurocognitive Working Group. Neurocognitive effects of antipsychotic medications in patients with chronic schizophrenia in the CATIE Trial. Arch Gen Psychiatry. 2007;64(6):633–47.

    Article  CAS  PubMed  Google Scholar 

  186. Nielsen RE, Levander S, Kjaersdam Telléus G, Jensen SO, Østergaard Christensen T, Leucht S. Second-generation antipsychotic effect on cognition in patients with schizophrenia--a meta-analysis of randomized clinical trials. Acta Psychiatr Scand. 2015;131(3):185–96.

    Article  CAS  PubMed  Google Scholar 

  187. Lesh TA, Tanase C, Geib BR, Niendam TA, Yoon JH, Minzenberg MJ, Ragland JD, Solomon M, Carter CS. A multimodal analysis of antipsychotic effects on brain structure and function in first-episode schizophrenia. JAMA Psychiatry. 2015;72(3):226–34.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Grace AA, Bunney BS, Moore H, Todd CL. Dopamine-cell depolarization block as a model for the therapeutic actions of antipsychotic drugs. Trends Neurosci. 1997;20(1):31–7.

    Article  CAS  PubMed  Google Scholar 

  189. Miyamoto S, Miyake N, Jarskog LF, Fleischhacker WW, Lieberman JA. Pharmacological treatment of schizophrenia: a critical review of the pharmacology and clinical effects of current and future therapeutic agents. Mol Psychiatry. 2012;17(12):1206–27.

    Article  CAS  PubMed  Google Scholar 

  190. Howes OD, Kambeitz J, Kim E, Stahl D, Slifstein M, Abi-Dargham A, Kapur S. The nature of dopamine dysfunction in schizophrenia and what this means for treatment. Arch Gen Psychiatry. 2012;69(8):776–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Heinz A, Knable MB, Weinberger DR. Dopamine D2 receptor imaging and neuroleptic drug response. J Clin Psychiatry. 1996;57(Suppl 11):84–8.

    CAS  PubMed  Google Scholar 

  192. Heinz A, Knable MB, Coppola R, Gorey J, Jones D, Lee KS, Weinberger DR. Psychomotor slowing, negative symptoms, and dopamine receptor availability - an IBZM SPECT study in neuroleptically treated and drug-free schizophrenic patients. Schizophr Res. 1998;31:19–26.

    Article  CAS  PubMed  Google Scholar 

  193. Lataster J, van Os J, de Haan L, Thewissen V, Bak M, Lataster T, Lardinois M, Delespaul PA, Myin-Germeys I. Emotional experience and estimates of D2 receptor occupancy in psychotic patients treated with haloperidol, risperidone, or olanzapine: an experience sampling study. J Clin Psychiatry. 2011;72(10):1397–404.

    Article  CAS  PubMed  Google Scholar 

  194. Seeman P, Lee T. Antipsychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons. Science. 1975;188:1217–9.

    Article  CAS  PubMed  Google Scholar 

  195. Stone JM, Davis JM, Leucht S, Pilowsky LS. Cortical dopamine D2/D3 receptors are a common site of action for antipsychotic drugs – an original patient data meta-analysis of the SPECT and PET in vivo receptor imaging literature. Schizophr Bull. 2008;35:789–97.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Howes O, Bose S, Turkheimer F, Valli I, Egerton A, Stahl D, Valmaggia L, Allen P, Murray R, McGuire P. Progressive increase in striatal dopamine synthesis capacity as patients develop psychosis: a PET study. Mol Psychiatry. 2011;16(9):885–6.

    Article  CAS  PubMed  Google Scholar 

  197. Gründer G, Vernaleken I, Müller MJ, Davids E, Heydari N, Buchholz HG, Bartenstein P, Munk OL, Stoeter P, Wong DF, Gjedde A, Cumming P. Subchronic haloperidol downregulates dopamine synthesis capacity in the brain of schizophrenic patients in vivo. Neuropsychopharmacology. 2003;28(4):787–94.

    Article  PubMed  CAS  Google Scholar 

  198. Demjaha A, Murray RM, McGuire PK, Kapur S, Howes OD. Dopamine synthesis capacity in patients with treatment-resistant schizophrenia. Am J Psychiatry. 2012;169:1203–10.

    Article  PubMed  Google Scholar 

  199. Merritt K, Egerton A, Kempton MJ, Taylor MJ, McGuire PK. Nature of glutamate alterations in schizophrenia: a meta-analysis of proton magnetic resonance spectroscopy studies. JAMA Psychiatry. 2016;73(7):665–74.

    Article  PubMed  Google Scholar 

  200. Egerton A, Modinos G, Ferrera D, McGuire P. Neuroimaging studies of GABA in schizophrenia: a systematic review with meta-analysis. Transl Psychiatry. 2017;7(6):e1147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Egerton A, Bhachu A, Merritt K, McQueen G, Szulc A, McGuire P. Effects of antipsychotic administration on brain glutamate in schizophrenia: a systematic review of longitudinal 1H-MRS studies. Front Psychiatry. 2017;8:66.

    Article  PubMed  PubMed Central  Google Scholar 

  202. Steen RG, Hamer RM, Lieberman JA. Measurement of brain metabolites by 1H magnetic resonance spectroscopy in patients with schizophrenia: a systematic review and meta-analysis. Neuropsychopharmacology. 2005;30(11):1949–62.

    Article  CAS  PubMed  Google Scholar 

  203. Marsman A, van den Heuvel MP, Klomp DW, Kahn RS, Luijten PR, Hulshoff Pol HE. Glutamate in schizophrenia: a focused review and meta-analysis of 1H-MRS studies. Schizophr Bull. 2013;39(1):120–9.

    Article  PubMed  Google Scholar 

  204. Fannon D, Simmons A, Tennakoon L, O’Céallaigh S, Sumich A, Doku V, Shew C, Sharma T. Selective deficit of hippocampal N-acetylaspartate in antipsychotic-naive patients with schizophrenia. Biol Psychiatry. 2003;54(6):587–98.

    Article  CAS  PubMed  Google Scholar 

  205. Bustillo JR, Rowland LM, Jung R, Brooks WM, Qualls C, Hammond R, Hart B, Lauriello J. Proton magnetic resonance spectroscopy during initial treatment with antipsychotic medication in schizophrenia. Neuropsychopharmacology. 2008;33(10):2456–66.

    Article  CAS  PubMed  Google Scholar 

  206. Gan JL, Cheng ZX, Duan HF, Yang JM, Zhu XQ, Gao CY. Atypical antipsychotic drug treatment for 6 months restores N-acetylaspartate in left prefrontal cortex and left thalamus of first-episode patients with early onset schizophrenia: a magnetic resonance spectroscopy study. Psychiatry Res. 2014;223(1):23–7.

    Article  PubMed  Google Scholar 

  207. Bustillo JR, Chen H, Jones T, Lemke N, Abbott C, Qualls C, Canive J, Gasparovic C. Increased glutamine in patients undergoing long-term treatment for schizophrenia: a proton magnetic resonance spectroscopy study at 3 T. JAMA Psychiatry. 2014;71(3):265–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Lindenmayer JP. Treatment refractory schizophrenia. Psychiatr Q. 2000;71(4):373–84.

    Article  CAS  PubMed  Google Scholar 

  209. Emsley R, Rabinowitz J, Medori R. Time course for antipsychotic treatment response in first-episode schizophrenia. Am J Psychiatry. 2006;163(4):743–5.

    Article  PubMed  Google Scholar 

  210. Rubio JM, Kane JM. Psychosis breakthrough on antipsychotic maintenance medication (BAMM): what can we learn? NPJ Schizophr. 2017;3(1):36.

    Article  PubMed  PubMed Central  Google Scholar 

  211. Demjaha A, Egerton A, Murray RM, Kapur S, Howes OD, Stone JM, McGuire PK. Antipsychotic treatment resistance in schizophrenia associated with elevated glutamate levels but normal dopamine function. Biol Psychiatry. 2014;75(5):e11–3.

    Article  CAS  PubMed  Google Scholar 

  212. Howes OD, McCutcheon R, Agid O, de Bartolomeis A, van Beveren NJ, Birnbaum ML, et al. Treatment-resistant schizophrenia: treatment response and resistance in psychosis (TRRIP) working group consensus guidelines on diagnosis and terminology. Am J Psychiatry. 2017;174(3):216–29.

    Article  PubMed  Google Scholar 

  213. Gillespie AL, Samanaite R, Mill J, Egerton A, MacCabe JH. Is treatment-resistant schizophrenia categorically distinct from treatment-responsive schizophrenia? A systematic review. BMC Psychiatry. 2017;17(1):12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  214. Falkenberg LE, Westerhausen R, Craven AR, Johnsen E, Kroken RA, L Berg EM, Specht K, Hugdahl K. Impact of glutamate levels on neuronal response and cognitive abilities in schizophrenia. Neuroimage Clin. 2014;4:576–84.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Halim ND, Weickert CS, McClintock BW, Weinberger DR, Lipska BK. Effects of chronic haloperidol and clozapine treatment on neurogenesis in the adult rat hippocampus. Neuropsychopharmacology. 2004;29(6):1063–9.

    Article  CAS  PubMed  Google Scholar 

  216. Angelucci F, Aloe L, Iannitelli A, Gruber SH, Mathé AA. Effect of chronic olanzapine treatment on nerve growth factor and brain-derived neurotrophic factor in the rat brain. Eur Neuropsychopharmacol. 2005;15(3):311–7.

    Article  CAS  PubMed  Google Scholar 

  217. Millan MJ. N-Methyl-d-aspartate receptors as a target for improved antipsychotic agents: novel insights and clinical perspectives. Psychopharmacology. 2005;179(1):30–53.

    Article  CAS  PubMed  Google Scholar 

  218. Konopaske GT, Dorph-Petersen KA, Pierri JN, Wu Q, Sampson AR, Lewis DA. Effect of chronic exposure to antipsychotic medication on cell numbers in the parietal cortex of macaque monkeys. Neuropsychopharmacology. 2007;32(6):1216–23.

    Article  CAS  PubMed  Google Scholar 

  219. De Rossi P, Chiapponi C, Spalletta G. Brain functional effects of psychopharmacological treatments in schizophrenia: a network-based functional perspective beyond neurotransmitter systems. Curr Neuropharmacol. 2015;13(4):435–44.

    Article  PubMed  PubMed Central  Google Scholar 

  220. Van Haren NE, Cahn W, Hulshoff Pol HE, Kahn RS. Confounders of excessive brain volume loss in schizophrenia. Neurosci Biobehav Rev. 2013;37(10 Pt 1):2418–23.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Vita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vita, A., Schlagenhauf, F., Barlati, S., Heinz, A. (2019). Neuroimaging and Antipsychotics. In: Galderisi, S., DeLisi, L., Borgwardt, S. (eds) Neuroimaging of Schizophrenia and Other Primary Psychotic Disorders . Springer, Cham. https://doi.org/10.1007/978-3-319-97307-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97307-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97306-7

  • Online ISBN: 978-3-319-97307-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics