Skip to main content

Reachable Set Estimation and Verification for Neural Network Models of Nonlinear Dynamic Systems

  • Chapter
  • First Online:
Book cover Safe, Autonomous and Intelligent Vehicles

Part of the book series: Unmanned System Technologies ((UST))

Abstract

Neural networks have been widely used to solve complex real-world problems. Due to the complex, nonlinear, non-convex nature of neural networks, formal safety and robustness guarantees for the behaviors of neural network systems are crucial for their applications in safety-critical systems. In this paper, the reachable set estimation and safety verification problems for Nonlinear Autoregressive-Moving Average (NARMA) models in the forms of neural networks are addressed. The neural networks involved in the model are a class of feed-forward neural networks called Multi-Layer Perceptrons (MLPs). By partitioning the input set of an MLP into a finite number of cells, a layer-by-layer computation algorithm is developed for reachable set estimation of each individual cell. The union of estimated reachable sets of all cells forms an over-approximation of the reachable set of the MLP. Furthermore, an iterative reachable set estimation algorithm based on reachable set estimation for MLPs is developed for NARMA models. The safety verification can be performed by checking the existence of non-empty intersections between unsafe regions and the estimated reachable set. Several numerical examples are provided to illustrate the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.I. Baig, A. Mahmood, Robust control design of a magnetic levitation system, in 2016 19th International Multi-Topic Conference (INMIC) (2016), pp. 1–5

    Google Scholar 

  2. S. Bak, P. Sridhar Duggirala, HyLAA: a tool for computing simulation-equivalent reachability for linear systems, in Proceedings of the 20th International Conference on Hybrid Systems: Computation and Control (ACM, New York, 2017), pp. 173–178

    Google Scholar 

  3. S. Bak, P. Sridhar Duggirala, Rigorous simulation-based analysis of linear hybrid systems, in International Conference on Tools and Algorithms for the Construction and Analysis of Systems (Springer, Berlin, 2017), pp. 555–572

    Google Scholar 

  4. M.H. Beale, M.T. Hagan, H.B. Demuth, Neural network toolbox user’s guide, in R2016a. The MathWorks, Inc., Natick (2012). www.mathworks.com

  5. P.J. Berkelman, R.L. Hollis, Lorentz magnetic levitation for haptic interaction: device design, performance, and integration with physical simulations. Int. J. Robot. Res. 19(7), 644–667 (2000)

    Article  Google Scholar 

  6. M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L.D. Jackel, M. Monfort, U. Muller, J. Zhang, et al. End to end learning for self-driving cars (2016). Arxiv preprint arXiv:1604.07316

    Google Scholar 

  7. O. De Jesus, A. Pukrittayakamee, M.T. Hagan, A comparison of neural network control algorithms, in International Joint Conference on Neural Networks, 2001. Proceedings. IJCNN ’01., vol. 1 (2001), pp. 521–526

    Google Scholar 

  8. R.J. Duffin, Free suspension and earnshaw’s theorem. Arch. Ration. Mech. Anal. 14(1), 261–263 (1963)

    Article  MathSciNet  Google Scholar 

  9. P.S. Duggirala, S. Mitra, M. Viswanathan, M. Potok, C2E2: a verification tool for stateflow models, in International Conference on Tools and Algorithms for the Construction and Analysis of Systems (Springer, Berlin, 2015), pp. 68–82

    Book  Google Scholar 

  10. A. El Hajjaji, M. Ouladsine, Modeling and nonlinear control of magnetic levitation systems. IEEE Trans. Ind. Electron. 48(4), 831–838 (2001)

    Article  Google Scholar 

  11. C. Fan, B. Qi, S. Mitra, M. Viswanathan, P. Sridhar Duggirala, Automatic reachability analysis for nonlinear hybrid models with C2E2, in International Conference on Computer Aided Verification (Springer, Berlin, 2016), pp. 531–538

    Google Scholar 

  12. S.S. Ge, C.C. Hang, T. Zhang, Adaptive neural network control of nonlinear systems by state and output feedback. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 29(6), 818–828 (1999)

    Article  Google Scholar 

  13. K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989)

    Article  Google Scholar 

  14. X. Huang, M. Kwiatkowska, S. Wang, M. Wu, Safety verification of deep neural networks (2016). Arxiv preprint arXiv:1610.06940

    Google Scholar 

  15. K. Jetal Hunt, D. Sbarbaro, R. Żbikowski, P.J Gawthrop, Neural networks for control systems: a survey. Automatica 28(6), 1083–1112 (1992)

    Article  MathSciNet  Google Scholar 

  16. J. Kaloust, C. Ham, J. Siehling, E. Jongekryg, Q. Han, Nonlinear robust control design for levitation and propulsion of a maglev system. IEE Proc. Control Theory Appl. 151(4), 460–464 (2004)

    Article  Google Scholar 

  17. G. Katz, C. Barrett, D. Dill, K. Julian, M. Kochenderfer, Reluplex: an efficient SMT solver for verifying deep neural networks (2017). Arxiv preprint arXiv:1702.01135

    Google Scholar 

  18. C.H. Kim, J. Lim, J.M. Lee, H.S. Han, D.Y. Park, Levitation control design of super-speed maglev trains, in 2014 World Automation Congress (WAC) (2014), pp. 729–734

    Google Scholar 

  19. S. Lawrence, C. Lee Giles, Ah. Chung Tsoi, A.D Back, Face recognition: a convolutional neural-network approach. IEEE Trans. Neural Netw. 8(1), 98–113 (1997)

    Article  Google Scholar 

  20. X.-D. Li, J.K.L. Ho, T.W.S. Chow, Approximation of dynamical time-variant systems by continuous-time recurrent neural networks. IEEE Trans. Circuits Syst. Express Briefs 52(10), 656–660 (2005)

    Article  Google Scholar 

  21. L.S.H. Ngia, J. Sjoberg, Efficient training of neural nets for nonlinear adaptive filtering using a recursive levenberg-marquardt algorithm. IEEE Trans. Signal Process. 48(7), 1915–1927 (2000)

    Article  Google Scholar 

  22. M. Ono, S. Koga, H. Ohtsuki, Japan’s superconducting maglev train. IEEE Instrum. Meas. Mag. 5(1), 9–15 (2002)

    Article  Google Scholar 

  23. L. Pulina, A. Tacchella, An abstraction-refinement approach to verification of artificial neural networks, in International Conference on Computer Aided Verification (Springer, Berlin, 2010), pp. 243–257

    Google Scholar 

  24. L. Pulina, A. Tacchella, Challenging SMT solvers to verify neural networks. AI Commun. 25(2), 117–135 (2012)

    MathSciNet  MATH  Google Scholar 

  25. D.M. Rote, Y. Cai, Review of dynamic stability of repulsive-force maglev suspension systems. IEEE Trans. Mag. 38(2), 1383–1390 (2002)

    Article  Google Scholar 

  26. J. Schmidhuber, Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  27. D. Silver, A. Huang, C.J Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    Article  Google Scholar 

  28. C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, R. Fergus, Intriguing properties of neural networks (2013). Arxiv preprint arXiv:1312.6199

    Google Scholar 

  29. R. Uswarman, A.I. Cahyadi, O. Wahyunggoro, Control of a magnetic levitation system using feedback linearization, in 2013 International Conference on Computer, Control, Informatics and Its Applications (IC3INA) (2013), pp. 95–98

    Google Scholar 

  30. M. Viet Thuan, H. Manh Tran, H. Trinh, Reachable sets bounding for generalized neural networks with interval time-varying delay and bounded disturbances. Neural Comput. Appl. 29(10), 783–794 (2018)

    Article  Google Scholar 

  31. R.J. Wai, J.D. Lee, Robust levitation control for linear maglev rail system using fuzzy neural network. IEEE Trans. Control Syst. Technol. 17(1), 4–14 (2009)

    Article  Google Scholar 

  32. W. Xiang, On equivalence of two stability criteria for continuous-time switched systems with dwell time constraint. Automatica 54, 36–40 (2015)

    Article  MathSciNet  Google Scholar 

  33. W. Xiang, Necessary and sufficient condition for stability of switched uncertain linear systems under dwell-time constraint. IEEE Trans. Automatic Control 61(11), 3619–3624 (2016)

    Article  MathSciNet  Google Scholar 

  34. W. Xiang, Parameter-memorized Lyapunov functions for discrete-time systems with time-varying parametric uncertainties. Automatica 87, 450–454 (2018)

    Article  MathSciNet  Google Scholar 

  35. W. Xiang, J. Xiao, Stabilization of switched continuous-time systems with all modes unstable via dwell time switching. Automatica 50(3), 940–945 (2014)

    Article  MathSciNet  Google Scholar 

  36. W. Xiang, J. Lam, J. Shen, Stability analysis and \(\mathcal {L}_1\)-gain characterization for switched positive systems under dwell-time constraint. Automatica 85, 1–8 (2017)

    Article  Google Scholar 

  37. W. Xiang, H.-D. Tran, T.T. Johnson, Robust exponential stability and disturbance attenuation for discrete-time switched systems under arbitrary switching. IEEE Trans. Autom. Control (2017). https://doi.org/10.1109/TAC.2017.2748918

    Article  MathSciNet  Google Scholar 

  38. W. Xiang, H.-D. Tran, T.T. Johnson, On reachable set estimation for discrete-time switched linear systems under arbitrary switching, in American Control Conference (ACC), 2017 (IEEE, New York, 2017), pp. 4534–4539

    Google Scholar 

  39. W. Xiang, H.-D. Tran, T.T. Johnson, Output reachable set estimation and verification for multi-layer neural networks (2017). Arxiv preprint arXiv:1708.03322

    Google Scholar 

  40. W. Xiang, H.-D. Tran, T.T. Johnson, Output reachable set estimation for switched linear systems and its application in safety verification. IEEE Trans. Autom. Control 62(10), 5380–5387 (2017)

    Article  MathSciNet  Google Scholar 

  41. W. Xiang, H.-D. Tran, T.T. Johnson, Reachable set computation and safety verification for neural networks with ReLU activations (2017). Arxiv preprint arXiv: 1712.08163

    Google Scholar 

  42. Z. Xu, H. Su, P. Shi, R. Lu, Z.-G. Wu, Reachable set estimation for Markovian jump neural networks with time-varying delays. IEEE Trans. Cybern. 47(10), 3208–3217 (2017)

    Article  Google Scholar 

  43. L. Zhang, W. Xiang, Mode-identifying time estimation and switching-delay tolerant control for switched systems: an elementary time unit approach. Automatica 64, 174–181 (2016)

    Article  MathSciNet  Google Scholar 

  44. L. Zhang, Y. Zhu, W.X. Zheng, Synchronization and state estimation of a class of hierarchical hybrid neural networks with time-varying delays. IEEE Trans. Neural Netw. Learn. Syst. 27(2), 459–470 (2016)

    Article  MathSciNet  Google Scholar 

  45. L. Zhang, Y. Zhu, W.X. Zheng, State estimation of discrete-time switched neural networks with multiple communication channels. IEEE Trans. Cybern. 47(4), 1028–1040 (2017)

    Article  Google Scholar 

  46. S.T. Zhao, X.W. Gao, Neural network adaptive state feedback control of a magnetic levitation system, in The 26th Chinese Control and Decision Conference (2014 CCDC) (2014), pp. 1602–1605

    Google Scholar 

  47. Z. Zuo, Z. Wang, Y. Chen, Y. Wang, A non-ellipsoidal reachable set estimation for uncertain neural networks with time-varying delay. Commun. Nonlinear Sci. Numer. Simul. 19(4), 1097–1106 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The material presented in this paper is based upon work supported by the National Science Foundation (NSF) under grant numbers CNS 1464311, CNS 1713253, SHF 1527398, and SHF 1736323, the Air Force Office of Scientific Research (AFOSR) through contract numbers FA9550-15-1-0258, FA9550-16-1-0246, and FA9550-18-1-0122, the Defense Advanced Research Projects Agency (DARPA) through contract number FA8750-18-C-0089, and the Office of Naval Research through contract number N00014-18-1-2184. The US government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation thereon. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of AFOSR, DARPA, NSF, or ONR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taylor T. Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xiang, W., Lopez, D.M., Musau, P., Johnson, T.T. (2019). Reachable Set Estimation and Verification for Neural Network Models of Nonlinear Dynamic Systems. In: Yu, H., Li, X., Murray, R., Ramesh, S., Tomlin, C. (eds) Safe, Autonomous and Intelligent Vehicles. Unmanned System Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-97301-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97301-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97300-5

  • Online ISBN: 978-3-319-97301-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics